

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver

High-Performance RISC CPU:

- Only 49 Instructions to Learn:
- All single-cycle instructions except branches
- Operating Speed:
 - DC 32 MHz oscillator/clock input
 - DC 125 ns instruction cycle
- Up to 16K x 14 Words of Flash Program Memory
- Up to 1024 Bytes of Data Memory (RAM)
- · Interrupt Capability with automatic Context Saving
- 16-Level Deep Hardware Stack
- · Direct, Indirect and Relative Addressing Modes
- Processor Read Access to Program Memory
- Pinout Compatible to other 28/40-pin PIC16CXXX and PIC16FXXX Microcontrollers

Special Microcontroller Features:

- · Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency range from 32 MHz to 31 kHz
- Power-Saving Sleep Mode
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR):
- Selectable between two trip points
- Disable in Sleep option
- Multiplexed Master Clear with Pull-up/Input Pin
- Programmable Code Protection
- Wide Operating Voltage Range:
 - 1.8V-5.5V (PIC16F193X)
 - 1.8V-3.6V (PIC16LF193X)

PIC16LF193X Low-Power Features:

- Standby Current:
 - 60 nA @ 1.8V, typical
- Operating Current:
 43 μA/MHz @ 1.8V, typical
- Timer1 Oscillator Current:
- 600 nA @ 32 kHz, 1.8V, typical
- Low-Power Watchdog Timer Current:
 - 500 nA @ 1.8V, typical

Peripheral Features:

- Up to 35 I/O Pins and 1 Input-only pin:
 - High-current source/sink for direct LED driveIndividually programmable Interrupt-on-pin
 - Individually programmable interrupt-on-p change pins
 - Individually programmable weak pull-ups
- Integrated LCD Controller:
 - Up to 96 segments
 - Variable clock input
 - Contrast control
 - Internal voltage reference selections
- Capacitive Sensing Module (mTouch[™]):
 - Up to 16 selectable channels
- A/D Converter:
 - 10-bit resolution and up to 14 channels
 - Selectable 1.024/2.048/4.096V voltage reference
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- Enhanced Timer1:
 - Dedicated low-power 32 kHz oscillator driver
 - 16-bit timer/counter with prescaler
 - External Gate Input mode with toggle and single-shot modes
 - Interrupt-on-gate completion
- Timer2, 4, 6: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler
- · Two Capture, Compare, PWM Modules (CCP):
 - 16-bit Capture, max. resolution 125 ns
 - 16-bit Compare, max. resolution 125 ns
 - 10-bit PWM, max. frequency 31.25 kHz
- Three Enhanced Capture, Compare, PWM Modules (ECCP):
 - 3 PWM time-base options
 - Auto-shutdown and auto-restart
 - PWM steering
 - Programmable Dead-band Delay

Peripheral Features (Continued):

- Host Synchronous Serial Port (MSSP) with SPI and I² C[™] with:
 - 7-bit address masking
 - SMBus/PMBus[™] compatibility
 - Auto-wake-up on start
- Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART):
 - RS-232, RS-485 and LIN compatible
 - Auto-Baud Detect
- SR Latch (555 Timer):
 - Multiple Set/Reset input options
 - Emulates 555 Timer applications

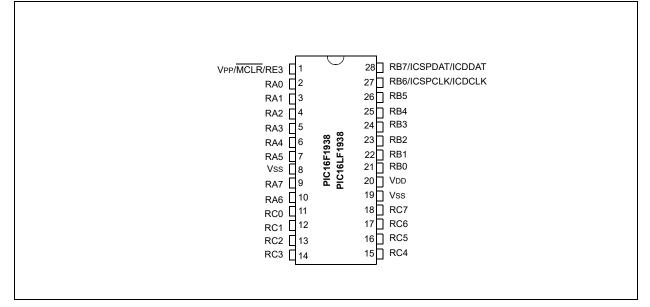
- 2 Comparators:
 - Rail-to-rail inputs/outputs
 - Power mode control
 - Software enable hysteresis
- Voltage Reference Module:
 - Fixed Voltage Reference (FVR) with 1.024V, 2.048V and 4.096V output levels
 - 5-bit rail-to-rail resistive DAC with positive and negative reference selection

Device	Data Sheet Index	Program Memory Flash (words)	Data EEPROM (bytes)	Data SRAM (bytes)	I/O's ⁽²⁾	10-bit ADC (ch)	Cap Sense (ch)	Comparators	Timers (8/16-bit)	EUSART	MSSP (I ² C/SPI)	ECCP	ССР	LCD (Com/Seg/Total)	Debug ⁽¹⁾	XLP
PIC16(L)F1933	(1)	4096	256	256	25	11	8	2	4/1	1	1	3	2	4/16/60 ⁽³⁾	I/H/E	Y
PIC16(L)F1934	(2)	4096	256	256	36	14	16	2	4/1	1	1	3	2	4/24/96	I/H/E	Υ
PIC16(L)F1936	(2)	8192	256	512	25	11	8	2	4/1	1	1	3	2	4/16/60 ⁽³⁾	I/H/E	Y
PIC16(L)F1937	(2)	8192	256	512	36	14	16	2	4/1	1	1	3	2	4/24/96	I/H/E	Υ
PIC16(L)F1938	(3)	16384	256	1024	25	11	8	2	4/1	1	1	3	2	4/16/60 ⁽³⁾	I/H/E	Υ
PIC16(L)F1939	(3)	16384	256	1024	36	14	16	2	4/1	1	1	3	2	4/24/96	I/H/E	Υ
PIC16(L)F1946	(4)	8192	256	512	54	17	17	3	4/1	2	2	3	2	4/46/184	I	Υ
PIC16(L)F1947	(4)	16384	256	1024	54	17	17	3	4/1	2	2	3	2	4/46/184	I	Υ

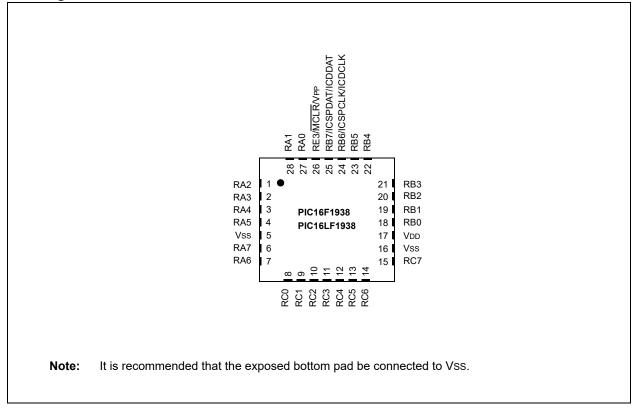
Note 1: Debugging Methods: (I) – Integrated On-Chip; (H) – using Debug Header; (E) – using Emulation Header.

2: One pin is input-only.

3: COM3 and SEG15 share the same physical pin, therefore SEG15 is not available when using 1/4 multiplex displays.

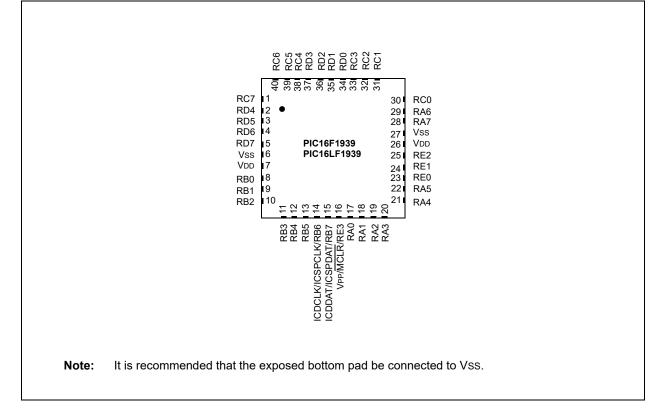

Data Sheet Index: (Unshaded devices are described in this document.)

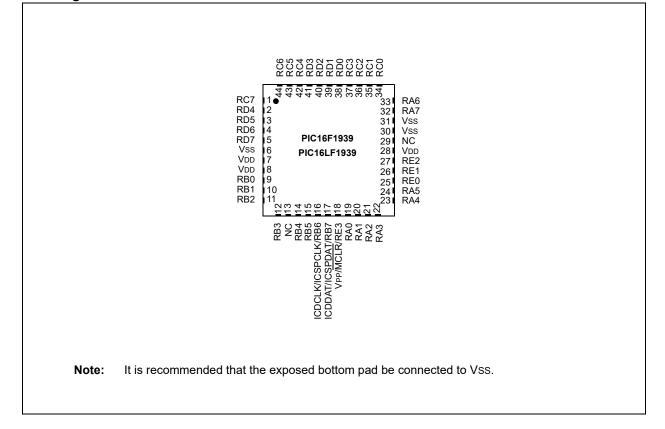
- 1: DS41575 PIC16(L)F1933 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.
- 2: DS41364 PIC16(L)F1934/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.
- 3: DS41574 PIC16(L)F1938/9 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.
- 4: DS41414 PIC16(L)F1946/1947 Data Sheet, 64-Pin Flash, 8-bit Microcontrollers.


Note: For other small form-factor package availability and marking information, visit http://www.microchip.com/packaging or contact the local sales office.

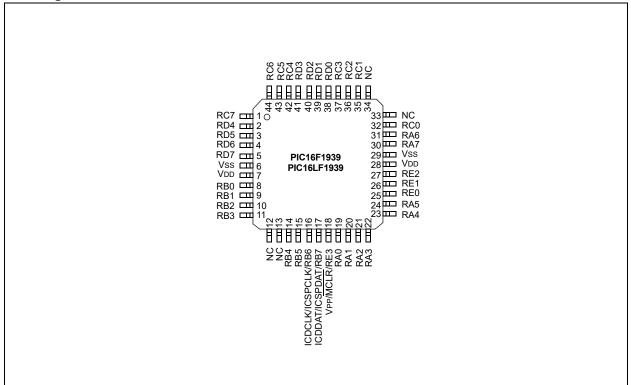
PIC16(L)F193X/194X FAMILY TYPES

PIN DIAGRAMS


Pin Diagram – 28-Pin QFN/UQFN/VQFN


Pin Diagram – 40-Pin PDIP

VPP/MCLR/RE3 1 RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 VDD 11 VDD 11 VSS 12 RA7 13 RA6 14 RC0 15 RC1 16	29 RD6 28 RD5 27 RD4 26 RC7 25 RC6
RA6 [] 14	27 RD4
RC0 [] 15	26 RC7


Pin Diagram – 40-Pin QFN (5x5), UQFN (5x5)

Pin Diagram – 44-Pin QFN 8x8

Pin Diagram – 44-Pin TQFP

TABLE 1: 28-PIN SUMMARY (PIC16F1938, PIC16LF1938)

			-					,		-					
QI	28-Pin SPDIP/SOIC/SSOP	28-Pin QFN/UQFN/VQFN	ANSEL	Q/A	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	dssw	ГСР	Interrupt	dn-llud	Basic
RA0	2	27	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾			—	<u>SS</u> (1)	SEG12	-	_	VCAP ⁽²⁾
RA1	3	28	Y	AN1	_	C12IN1-	-	—		_	_	SEG7		—	_
RA2	4	1	Y	AN2/ Vref-	_	C2IN+/ DACOUT			_	_		COM2			—
RA3	5	2	Y	AN3/ Vref+	_	C1IN+		_	-	_	_	SEG15/ COM3		-	—
RA4	6	3	Y	—	CPS6	C10UT	SRQ	T0CKI	CCP5	—	_	SEG4	_	—	—
RA5	7	4	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	_	_	—	SS ⁽¹⁾	SEG5	—	—	VCAP ⁽²⁾
RA6	10	7	_	_	_	_	_	_	_	_	_	SEG1	-	-	OSC2/ CLKOUT VCAP ⁽²⁾
RA7	9	6	_		—				_	—		SEG2	l		OSC1/ CLKIN
RB0	21	18	Y	AN12	CPS0		SRI		CCP4			SEG0	INT/ IOC	Y	—
RB1	22	19	Y	AN10	CPS1	C12IN3-	_	—	P1C	—	—	VLCD1	IOC	Υ	—
RB2	23	20	Y	AN8	CPS2	—	—	—	P1B	—	—	VLCD2	IOC	Y	—
RB3	24	21	Y	AN9	CPS3	C12IN2-	_	_	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	—	VLCD3	IOC	Y	—
RB4	25	22	Y	AN11	CPS4	—	—	—	P1D	—	—	COM0	IOC	Y	—
RB5	26	23	Y	AN13	CPS5			T1G ⁽¹⁾	P2B ⁽¹⁾ CCP3 ⁽¹⁾ / P3A ⁽¹⁾	_	_	COM1	IOC	Y	—
RB6	27	24	_	—	—	_	-	—	—	—	—	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	28	25	_	—	_	_	_	_		_	_	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	11	8	—	—	_	_	_	T1OSO/ T1CKI	P2B ⁽¹⁾	_	_	_	—	—	—
RC1	12	9	_	—	—	_	_	T1OSI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	—		_	—	—
RC2	13	10	_	—	—	_	_	—	CCP1/ P1A	—	—	SEG3	-		-
RC3	14	11	-	—		_	_		_	—	SCK/SCL	SEG6	—	—	—
RC4	15	12	_	—	—	—	—	T1G ⁽¹⁾	_	—	SDI/SDA	SEG11	_	—	—
RC5	_	13	-	-	_	_	_	_	-	—	SDO	SEG10	_	—	—
RC6	17	14	_	_	—	—	—	—	CCP3 ⁽¹⁾ P3A ⁽¹⁾	TX/CK	_	SEG9	-		-
RC7	18	15	_	—	—	—	—	_	P3B	RX/DT	—	SEG8	—	—	_
RE3	1	26	—	—	—	_	—	—	_	—	—	-	_	Y	MCLR/VPP
VDD	20	17	_	-	—	—	—	—	—	—	—	—	—	—	Vdd
Vss	8, 19	5, 16	_			_	—	_	—	_	—	—	—		Vss
Note	1:	Din	tunotion	e con ho	movedu	sing the APF	()()NI rogic	tor							

Note 1:

1: Pin functions can be moved using the APFCON register.

2: PIC16F1938 devices only.

TAB	LE 2	2:	4	10/44	-PI	N SUN	MMAR	Y (PIC16	F1939, I	PIC16L	F1939)						
0/1	40-Pin PDIP	40-Pin QFN/UQFN	44-Pin TQFP	44-Pin QFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	ГСР	Interrupt	Pull-up	Basic
RA0	2	17	19	19	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	_	—	—	SS ⁽¹⁾	SEG12	—	_	VCAP
RA1	3	18	20	20	Y	AN1	—	C12IN1-	_	_	_	—	_	SEG7	—	—	_
RA2	4	19	21	21	Y	AN2/ VREF-	—	C2IN+/ DACOUT	_		—	—	—	COM2	—		—
RA3	5	20	22	22	Y	AN3/ Vref+	_	C1IN+			—	—	_	SEG15	—	_	_
RA4	6	21	23	23	Y	—	CPS6	C1OUT	SRQ	T0CKI		—	_	SEG4	—	—	—
RA5	7	22	24	24	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾				SS ⁽¹⁾	SEG5	—	—	VCAP
RA6	14	29	31	33	_	_	_	_	_	_	_	_	_	SEG1	_	_	OSC2/ CLKOUT VCAP
RA7	13	28	30	32	—	-	—				—	—	—	SEG2	—		OSC1/ CLKIN
RB0	33	8	8	9	Y	AN12	CPS0		SRI		—		—	SEG0	INT/ IOC	Y	—
RB1	34	9	9	10	Y	AN10	CPS1	C12IN3-	_	_	—	—	—	VLCD1	IOC	Υ	—
RB2	35	10	10	11	Y	AN8	CPS2	—	-	—	—	—	—	VLCD2	IOC	Y	—
RB3	36	11	11	12	Y	AN9	CPS3	C12IN2-	—	-	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	_	—	VLCD3	IOC	Y	_
RB4	37	12	14	14	Y	AN11	CPS4	—	—	—	—	—	—	COM0	IOC	Y	—
RB5	38	13	15	15	Y	AN13	CPS5	_	_	T1G ⁽¹⁾	CCP3 ⁽¹⁾ / P3A ⁽¹⁾	_	_	COM1	IOC	Y	_
RB6	39	14	16	16	—	—	-	—	—	—	—	_	—	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	40	15	17	17	_	_	—	-	—	-	-	_	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	15	30	32	34	—	_	—	_	—	T1OSO/ T1CKI	P2B ⁽¹⁾	_	—	—	_		—
RC1	16	31	35	35	-	—	_	_	_	T1OSI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	_	_	_	—	—	_
RC2	17	32	36	36	—	_	—	—	—	—	CCP1/ P1A	_	—	SEG3	—	—	—
RC3	18	37	37	37	—			_					SCK/SCL	SEG6	_	—	
RC4	23	38	42	42	—		—	—	—	T1G ⁽¹⁾	—	—	SDI/SDA	SEG11	—	—	—
RC5	24	39	43	43	_			_		_		_	SDO	SEG10	_	—	
RC6	25	40	44	44	—			_		_		TX/CK		SEG9		—	
RC7	26	1 34	1	1	Y	_	-	_	-	_	_	RX/DT	_	SEG8	_	_	_
RD0 RD1	19 20	34 35	38 39	38 39	Y Y		CPS8 CPS9	_	_	_	— CCP4	_		COM3	_	_	_
	20	36	40	40	Y	_	CPS10	_		_	P2B ⁽¹⁾	_	—			_	
RD2 RD3	21	36 37	40	40	Y Y		CPS10 CPS11				P2B(-) P2C	_	_	— SEG16	_		_
RD3	27	2	2	2	Y	_	CPS12				P2C P2D			SEG10			
RD5	27	2	2	3	Y	_	CPS12 CPS13	_	_	_	P1B		_	SEG17 SEG18	_	_	_
RD6	29	4	4	4	Y	_	CPS14	_	-	_	P1C		_	SEG19	_	_	_
RD7	30	5	5	5	Y	_	CPS15	_	_	_	P1D	_	_	SEG20	_		_
RE0	8	23	25	25	Y	AN5	_	—	—	—	CCP3 ⁽¹⁾ P3A ⁽¹⁾	—	—	SEG21	-	—	—
RE1	9	24	26	26	Y	AN6	_	_	-	_	P3B	_	_	SEG22	_	_	_
RE2	10	25	27	27	Y	AN7	—	—	—	—	CCP5		_	SEG23	_	—	—
RE3	1	16	18	18	_	_	_	_	_	_	_	_	_	_	_	Y	MCLR/VPP
VDD	11, 32	7, 26	7, 28	7,8, 28	—	—	—	—	—	—	—	—	—	—	—	—	VDD
Vss	12, 31	6, 27	6, 29	6,30, 31	-	—	—	—	-	—	—	—	—	—	—	—	Vss
Note	1.				· .	· .				1							

Note 1: Pin functions can be moved using the APFCON register.

TABLE OF CONTENTS

1.0	Device Overview	
2.0	Enhanced Mid-range CPU	
3.0	Memory Organization	
4.0	Device Configuration	
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	
6.0	Resets	
7.0	Interrupts	
8.0	Low Dropout (LDO) Voltage Regulator	
9.0	Power-Down Mode (Sleep)	
10.0	Watchdog Timer	
11.0	Data EEPROM and Flash Program Memory Control	
12.0	I/O Ports	
13.0	Interrupt-On-Change	
14.0	Fixed Voltage Reference (FVR)	
15.0		
16.0	Temperature Indicator Module	
17.0	Digital-to-Analog Converter (DAC) Module	159
18.0	Comparator Module	163
19.0	SR Latch	172
	Timer0 Module	
21.0	Timer1 Module with Gate Control	180
22.0		
23.0	Capture/Compare/PWM Modules	195
	(======)	
	Capacitive Sensing (CPS) Module	
28.0	In-Circuit Serial Programming™ (ICSP™)	
29.0	······································	
31.0		
32.0		
	Packaging Information	
	Microchip Website	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F1938/9 are described within this data sheet. They are available in the following package configurations:

- 28-pin SPDIP, SOIC, SSOP, QFN/UQFN and VQFN
- 40-pin PDIP, QFN and UQFN
- 44-pin QFN and TQFP

Figure 1-1 shows a block diagram of the PIC16(L)F1938/9 devices. Table 1-2 shows the pin out descriptions.

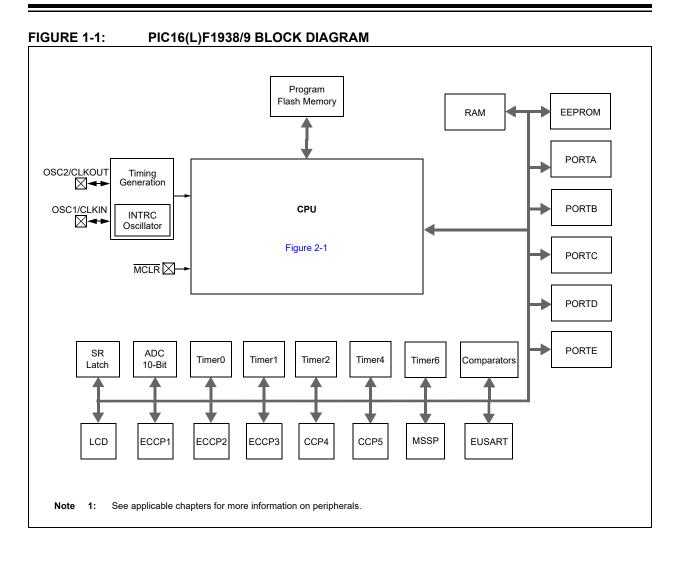

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16F1938/9 2011-2021	PIC16LF1938/9
ADC	•	•	
Capacitive Sensing Mod	•	•	
Digital-to-Analog Conve	•	•	
EUSART	•	•	
Fixed Voltage Referenc	•	•	
LCD	٠	•	
SR Latch		٠	•
Temperature Indicator		٠	•
Capture/Compare/PWM	Modules		
	ECCP1	•	•
	ECCP2	•	•
	ECCP3	•	•
	CCP4	•	•
	CCP5	•	•
Comparators			
	C1	•	•
	C2	•	•
Host Synchronous Seria	al Ports		
	MSSP1	•	•
Timers			

TABLE 1-1:DEVICE PERIPHERAL
SUMMARY

		2	
Peripheral		PIC16F1938/9 2011-2021	PIC16LF1938/9
	Timer0	•	٠
	Timer1	•	•
	Timer2	•	•
	Timer4	•	•
	Timer6	•	•

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN		A/D Channel 0 input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	C2OUT		CMOS	Comparator C2 output.
	SRNQ		CMOS	SR Latch inverting output.
	CS	ST	_	Client Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1938/9 only).
	SEG12	_	AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN		A/D Channel 1 input.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SEG7		AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	_	A/D Channel 2 input.
	C2IN+	AN	_	Comparator C2 positive input.
	VREF-	AN		A/D Negative Voltage Reference input.
	DACOUT	_	AN	Voltage Reference output.
	COM2	_	AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN	_	A/D Channel 3 input.
	C1IN+	AN	—	Comparator C1 positive input.
	VREF+	AN		A/D Voltage Reference input.
	COM3 ⁽³⁾	_	AN	LCD Analog output.
	SEG15	_	AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT	_	CMOS	Comparator C1 output.
	CPS6	AN		Capacitive sensing input 6.
	TOCKI	ST		Timer0 clock input.
	SRQ		CMOS	SR Latch noninverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	—	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG5	AN4	AN	—	A/D Channel 4 input.
	C2OUT	—	CMOS	Comparator C2 output.
	CPS7	AN	_	Capacitive sensing input 7.
	SRNQ	—	CMOS	SR Latch inverting output.
	CS	ST		Client Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1938/9 only).
	SEG5		AN	LCD Analog output.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

 I^2C = Schmitt Trigger input with I^2C levels

Note 1: Pin function is selectable via the APFCON register.

- 2: PIC16F1938/9 devices only.
- 3: PIC16(L)F1938 devices only.

4: PORTD is available on PIC16(L)F1939 devices only.

Name	Function	Input Type	Output Type	Description
RA6/OSC2/CLKOUT/VCAP ⁽²⁾ /	RA6	TTL	CMOS	General purpose I/O.
SEG1	OSC2		XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	—	CMOS	Fosc/4 output.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1938/9 only).
	SEG1	—	AN	LCD Analog output.
RA7/OSC1/CLKIN/SEG2	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).
	CLKIN	CMOS	_	External clock input (EC mode).
	SEG2	—	AN	LCD Analog output.
RB0/AN12/CPS0/CCP4/SRI/INT/ SEG0	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN12	AN	_	A/D Channel 12 input.
	CPS0	AN	_	Capacitive sensing input 0.
	CCP4	ST	CMOS	Capture/Compare/PWM4.
	SRI	_	ST	SR Latch input.
	INT	ST	_	External interrupt.
	SEG0	—	AN	LCD analog output.
RB1/AN10/C12IN3-/CPS1/P1C/ VLCD1	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN10	AN	_	A/D Channel 10 input.
	C12IN3-	AN		Comparator C1 or C2 negative input.
	CPS1	AN	_	Capacitive sensing input 1.
	P1C	—	CMOS	PWM output.
	VLCD1	AN	_	LCD analog input.
RB2/AN8/CPS2/P1B/VLCD2	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN8	AN	_	A/D Channel 8 input.
	CPS2	AN		Capacitive sensing input 2.
	P1B		CMOS	PWM output.
	VLCD2	AN		LCD analog input.
RB3/AN9/C12IN2-/CPS3/ CCP2 ⁽¹⁾ /P2A ⁽¹⁾ /VLCD3	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN9	AN		A/D Channel 9 input.
	C12IN2-	AN		Comparator C1 or C2 negative input.
	CPS3	AN	—	Capacitive sensing input 3.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
	P2A	—	CMOS	PWM output.
	VLCD3	AN		LCD analog input.

TABLE 1-2:	PIC16(L)	-1938/9 PINOUT	DESCRIPTION	(CONTINUED)

egena: AN TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL = Crystal HV = High Voltage I^2C = Schmitt Trigger input with I^2C levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1938/9 devices only.

3: PIC16(L)F1938 devices only.

4: PORTD is available on PIC16(L)F1939 devices only.

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB4/AN11/CPS4/P1D/COM0	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN11	AN	_	A/D Channel 11 input.
	CPS4	AN	_	Capacitive sensing input 4.
	P1D		CMOS	PWM output.
	COM0		AN	LCD Analog output.
RB5/AN13/CPS5/P2B/CCP3 ⁽¹⁾ / P3A ⁽¹⁾ /T1G ⁽¹⁾ /COM1	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN13	AN	_	A/D Channel 13 input.
	CPS5	AN	_	Capacitive sensing input 5.
	P2B		CMOS	PWM output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	P3A		CMOS	PWM output.
	T1G	ST	—	Timer1 Gate input.
	COM1	_	AN	LCD Analog output.
RB6/ICSPCLK/ICDCLK/SEG14	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	ICSPCLK	ST	_	Serial Programming Clock.
	ICDCLK	ST	_	In-Circuit Debug Clock.
	SEG14	_	AN	LCD Analog output.
RB7/ICSPDAT/ICDDAT/SEG13	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	CMOS	In-Circuit Data I/O.
	SEG13		AN	LCD Analog output.
RC0/T1OSO/T1CKI/P2B ⁽¹⁾	RC0	ST	CMOS	General purpose I/O.
	T10S0	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST	—	Timer1 clock input.
	P2B	_	CMOS	PWM output.
RC1/T1OSI/CCP2 ⁽¹⁾ /P2A ⁽¹⁾	RC1	ST	CMOS	General purpose I/O.
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
	P2A	_	CMOS	PWM output.
RC2/CCP1/P1A/SEG3	RC2	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
	P1A	_	CMOS	PWM output.
	SEG3	_	AN	LCD Analog output.
RC3/SCK/SCL/SEG6	RC3	ST	CMOS	General purpose I/O.
	SCK	ST	CMOS	SPI clock.
	SCL	I ² C	OD	l ² C clock.
	SEG6		AN	LCD Analog output.

Note 1: Pin function is selectable via the APFCON register.

- 2: PIC16F1938/9 devices only.
- 3: PIC16(L)F1938 devices only.
- 4: PORTD is available on PIC16(L)F1939 devices only.

Name	Function	Input Type	Output Type	Description		
RC4/SDI/SDA/T1G ⁽¹⁾ /SEG11	RC4	ST	CMOS	General purpose I/O.		
	SDI	ST	—	SPI data input.		
	SDA	l ² C	OD	l ² C data input/output.		
	T1G	ST	_	Timer1 Gate input.		
	SEG11	SEG11 — AN LCD Analog output.				
RC5/SDO/SEG10	RC5	ST	CMOS	General purpose I/O.		
	SDO	_	CMOS	SPI data output.		
	SEG10		AN	LCD Analog output.		
RC6/TX/CK/CCP3/P3A/SEG9	RC6	ST	CMOS	General purpose I/O.		
	TX		CMOS	USART asynchronous transmit.		
	CK	ST	CMOS	USART synchronous clock.		
	CCP3	ST	CMOS	Capture/Compare/PWM3.		
	P3A		CMOS	PWM output.		
	SEG9		AN	LCD Analog output.		
RC7/RX/DT/P3B/SEG8	RC7	ST	CMOS	General purpose I/O.		
	RX	ST	_	USART asynchronous input.		
	DT	ST	CMOS	USART synchronous data.		
	P3B	—	CMOS	PWM output.		
	SEG8		AN	LCD Analog output.		
RD0 ⁽⁴⁾ /CPS8/COM3	RD0	ST	CMOS	General purpose I/O.		
	CPS8	AN	_	Capacitive sensing input 8.		
	COM3		AN	LCD analog output.		
RD1 ⁽⁴⁾ /CPS9/CCP4	RD1	ST	CMOS	General purpose I/O.		
	CPS9	AN	_	Capacitive sensing input 9.		
	CCP4	ST	CMOS	Capture/Compare/PWM4.		
RD2 ⁽⁴⁾ /CPS10/P2B	RD2	ST	CMOS	General purpose I/O.		
	CPS10	AN	_	Capacitive sensing input 10.		
	P2B		CMOS	PWM output.		
RD3 ⁽⁴⁾ /CPS11/P2C/SEG16	RD3	ST	CMOS	General purpose I/O.		
	CPS11	AN	_	Capacitive sensing input 11.		
	P2C		CMOS	PWM output.		
	SEG16	_	AN	LCD analog output.		
RD4 ⁽⁴⁾ /CPS12/P2D/SEG17	RD4	ST	CMOS	General purpose I/O.		
	CPS12	AN	—	Capacitive sensing input 12.		
	P2D	—	CMOS	PWM output.		
	SEG17	_	AN	LCD analog output.		
RD5 ⁽⁴⁾ /CPS13/P1B/SEG18	RD5	ST	CMOS	General purpose I/O.		
	CPS13	AN	_	Capacitive sensing input 13.		
	P1D		CMOS	PWM output.		
	SEG18		AN	LCD analog output.		

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

HV = High Voltage $I^2C = Schmitt Trigger input with I^2C levels$

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1938/9 devices only.

3: PIC16(L)F1938 devices only.

4: PORTD is available on PIC16(L)F1939 devices only.

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RD6 ⁽⁴⁾ /CPS14/P1C/SEG19	RD6	ST	CMOS	General purpose I/O.
	CPS14	AN	_	Capacitive sensing input 14.
	P1C	_	CMOS	PWM output.
	SEG19	_	AN	LCD analog output.
RD7 ⁽⁴⁾ /CPS15/P1D/SEG20	RD7	ST	CMOS	General purpose I/O.
	CPS15	AN		Capacitive sensing input 15.
	P1D	_	CMOS	PWM output.
	SEG20	_	AN	LCD analog output.
RE0 ⁽⁵⁾ /AN5/P3A ⁽¹⁾ /CCP3 ⁽¹⁾ /	RE0	ST	CMOS	General purpose I/O.
SEG21	AN5	AN	_	A/D Channel 5 input.
	P3A	_	CMOS	PWM output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	SEG21	_	AN	LCD analog output.
RE1 ⁽⁵⁾ /AN6/P3B/SEG22	RE1	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	P3B		CMOS	PWM output.
	SEG22	_	AN	LCD analog output.
RE2 ⁽⁵⁾ /AN7/CCP5/SEG23	RE2	ST	CMOS	General purpose I/O.
	AN7	AN	—	A/D Channel 7 input.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG23		AN	LCD analog output.
RE3/MCLR/VPP	RE3	TTL	—	General purpose input.
	MCLR	ST	—	Master Clear with internal pull-up.
	VPP	ΗV	_	Programming voltage.
Vdd	Vdd	Power		Positive supply.
Vss	Vss	Power		Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL = Crystal er input with I²C levels

$$HV = High Voltage$$
 $I^2C = Schmitt Trigge$

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1938/9 devices only.

3: PIC16(L)F1938 devices only.

4: PORTD is available on PIC16(L)F1939 devices only.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

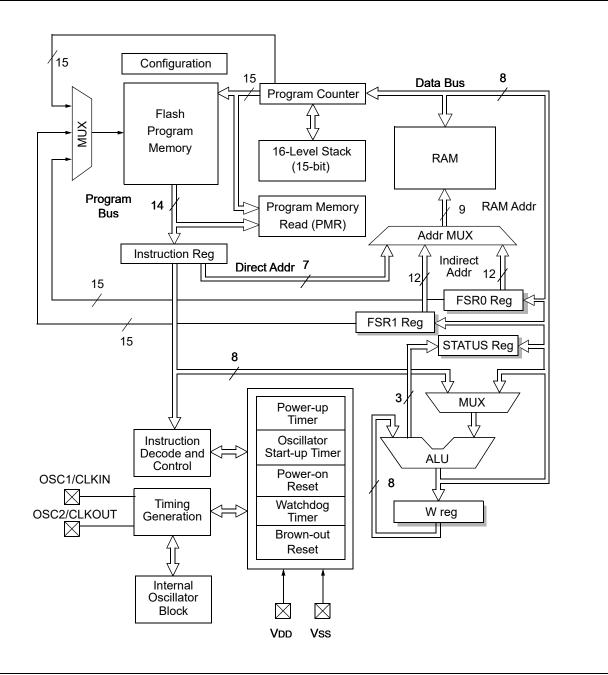
- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See section **Section 3.5 "Stack"** for more details.


2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 29.0 "Instruction Set Summary**" for more details.

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
- Data EEPROM memory⁽¹⁾

Note 1: The Data EEPROM Memory and the method to access Flash memory through the EECON registers is described in Section 11.0 "Data EEPROM and Flash Program Memory Control". The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1938/9 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address
PIC16F1938/PIC16LF1938	16,384	3FFFh
PIC16F1939/PIC16LF1939	16,384	3FFFh

16 KW PARTS

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR

	PC<14:0>	
CAI RETUI Interru	LL, CALLW RN, RETLW pt, RETFIE STACK Level 0 Stack Level 1	
	Stack Level 15	
	Reset Vector	0000h
	•	
	Interrupt Vector	0004h
(Page 0	0005h
	5	07FFh
	Page 1	0800h
		0FFFh
On-chip	Page 2	1000h
Program 〈 Memory	Dara 2	17FFh 1800h
	Page 3	
	Page 4	1FFFh 2000h
	Page 7	0555h
l	Rollover to Page 0	3FFFh 4000h
	Rollovel to Fage 0	400011
	•	
	Rollover to Page 7	7FFFh

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If the code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

Constants								
DW	DATAO	;First constant						
DW	DATA1	;Second constant						
DW	DATA2							
DW	DATA3							
my_functio	n							
; LOTS	OF CODE							
MOVLW	DATA_INDEX							
ADDLW	LOW constants							
MOVWF	FSR1L							
MOVLW	HIGH constants	;MSb is set automatically						
MOVWF	FSR1H							
BTFSC	STATUS,C	;carry from ADDLW?						
INCF	FSR1H,f	;yes						
MOVIW	0[FSR1]							
; THE PROGE	RAM MEMORY IS IN	1 W						

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- · 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See Section 3.6 "Indirect Addressing" for more information.

Data Memory uses a 12-bit address. The upper seven bits of the address define the Bank address and the lower five bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation of the PIC16(L)F1938/9. These registers are listed below:

- INDF0
- INDF1
- PCL
- STATUS
- FSR0 Low
- FSR0 High
- FSR1 Low
- FSR1 High
- BSR
- WREG
- PCLATH
- INTCON

Note: The core registers are the first 12 addresses of every data memory bank.

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 29.0 "Instruction Set Summary").

Note 1: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

3.3 **Register Definitions: Status**

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
_	— — TO			PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

STATUS: STATUS REGISTER **REGISTER 3-1:**

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

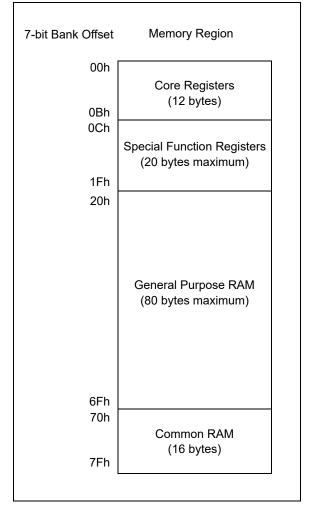
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

3.3.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank.


3.3.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2 "Linear Data Memory"** for more information.

3.3.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

3.3.4 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-2.

TABLE 3-2: MEMORY MAP TABLES

Device	Banks	Table No.					
PIC16F1938	0-7	Table 3-3					
PIC16LF1938	8-15	Table 3-4, Table 3-7					
	16-23	Table 3-5					
	23-31	Table 3-6, Table 3-9					
PIC16F1939	0-7	Table 3-3					
PIC16LF1939	8-15	Table 3-4, Table 3-8					
	16-23	Table 3-5					
	23-31	Table 3-6, Table 3-9					

TABLE 3-3: PIC16(L)F1938/9 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	—	28Ch	—	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	_	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	—	20Eh	—	28Eh	—	30Eh	—	38Eh	—
00Fh	PORTD ⁽¹⁾	08Fh	TRISD ⁽¹⁾	10Fh	LATD ⁽¹⁾	18Fh	ANSELD ⁽¹⁾	20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h	PORTE	090h	TRISE	110h	LATE ⁽¹⁾	190h	ANSELE ⁽¹⁾	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSPBUF	291h	CCPR1L	311h	CCPR3L	391h	—
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSPADD	292h	CCPR1H	312h	CCPR3H	392h	—
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSPMSK	293h	CCP1CON	313h	CCP3CON	393h	—
014h	—	094h	—	114h	CM2CON1	194h	EEDATH	214h	SSPSTAT	294h	PWM1CON	314h	PWM3CON	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSPCON1	295h	CCP1AS	315h	CCP3AS	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSPCON2	296h	PSTR1CON	316h	PSTR3CON	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSPCON3	297h	—	317h	—	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	CCPR2L	318h	CCPR4L	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RC1REG	219h	_	299h	CCPR2H	319h	CCPR4H	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TX1REG	21Ah	—	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	—	29Bh	PWM2CON	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch		19Ch	SPBRGH	21Ch	_	29Ch	CCP2AS	31Ch	CCPR5L	39Ch	_
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh	_	29Dh	PSTR2CON	31Dh	CCPR5H	39Dh	_
01Eh	CPSCON0	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	—	29Eh	CCPTMRS0	31Eh	CCP5CON	39Eh	—
01Fh	CPSCON1	09Fh	—	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	CCPTMRS1	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose	32Fh	Purpose		Purpose
	Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes	330h	Register 80 Bytes		Register 80 Bytes
	00 Dytes		Ut Dytes		of Bytes		of Dytes		of Dytes		U Dytes		00 Dytes		00 Dytes
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h	A	1F0h		270h	A	2F0h		370h	A	3F0h	
	Common RAM		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	
0/111		0111				1 '' ' '' L						5/111			

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Not available on PIC16(L)F1938.

TABLE 3-4: PIC16(L)F1938/9 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	—	48Ch	—	50Ch	—	58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	—
40Dh	—	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh	_	58Eh	_	60Eh		68Eh		70Eh	—	78Eh	-
40Fh	_	48Fh	—	50Fh	_	58Fh	_	60Fh		68Fh		70Fh	—	78Fh	—
410h	_	490h	_	510h	_	590h	_	610h	_	690h	_	710h	—	790h	—
411h	_	491h	_	511h	_	591h	_	611h	_	691h	_	711h	—	791h	
412h	_	492h	—	512h	_	592h		612h		692h		712h	_	792h	
413h	_	493h	—	513h	—	593h		613h	—	693h		713h	—	793h	
414h		494h	—	514h	_	594h		614h		694h		714h	_	794h	
415h	TMR4	495h	_	515h	_	595h	_	615h	_	695h	_	715h	—	795h	
416h	PR4	496h	_	516h	_	596h	_	616h	_	696h	_	716h	_	796h	
417h	T4CON	497h	_	517h	_	597h		617h		697h	—	717h	_	797h	
418h	_	498h	_	518h	_	598h	_	618h		698h		718h	—	798h	
419h	—	499h	—	519h	_	599h	—	619h		699h		719h	—	799h	
41Ah	_	49Ah	_	51Ah		59Ah	_	61Ah		69Ah		71Ah	_	79Ah	See Table 3-7 or
41Bh	-	49Bh	—	51Bh	—	59Bh	—	61Bh	—	69Bh	—	71Bh	—	79Bh	Table 3-8
41Ch	TMR6	49Ch	—	51Ch	_	59Ch	—	61Ch	_	69Ch		71Ch	_	79Ch	
41Dh	PR6	49Dh	_	51Dh		59Dh	_	61Dh		69Dh		71Dh	_	79Dh	
41Eh	T6CON	49Eh	_	51Eh		59Eh	_	61Eh		69Eh	—	71Eh	_	79Eh	
41Fh	—	49Fh 4A0h	_	51Fh		59Fh 5A0h	—	61Fh	—	69Fh 6A0h		71Fh 720h	—	79Fh 7A0h	
420h		4A0n		520h		SAUN		620h	General Purpose	6A01		7200		7 AUN	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		Register 48 Bytes Unimplemented		Unimplemented Read as '0'		Unimplemented Read as '0'		
46Fh		4EFh		56Fh		5EFh		66Fh	Read as '0'	6EFh		76Fh		7EFh	
40Fi		4EF11		570h		5EFI		670h		6F0h		770h		7EFI	
77011	Accesses 70h – 7Fh		Accesses 70h – 7Fh	5701	Accesses 70h – 7Fh	51 011	Accesses 70h – 7Fh	0701	Accesses 70h – 7Fh		Accesses 70h – 7Fh	7701	Accesses 70h – 7Fh		Accesses 70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-5: PIC16(L)F1938/9 MEMORY MAP, BANKS 16-23

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch	_	88Ch	_	90Ch	—	98Ch	_	A0Ch	_	A8Ch	_	B0Ch	-	B8Ch	_
80Dh	_	88Dh	-	90Dh		98Dh	-	A0Dh	—	A8Dh		B0Dh	_	B8Dh	
80Eh	_	88Eh	—	90Eh	—	98Eh	—	A0Eh	—	A8Eh	—	B0Eh	-	B8Eh	_
80Fh	—	88Fh	—	90Fh	—	98Fh	—	A0Fh	_	A8Fh	—	B0Fh	—	B8Fh	_
810h	—	890h	—	910h	—	990h	—	A10h	_	A90h	—	B10h	—	B90h	_
811h	—	891h	_	911h	_	991h	_	A11h	—	A91h	_	B11h	—	B91h	_
812h	_	892h	_	912h	—	992h	_	A12h	_	A92h	_	B12h	-	B92h	_
813h	—	893h	_	913h	_	993h		A13h	—	A93h		B13h	—	B93h	
814h	_	894h	_	914h	—	994h	_	A14h	_	A94h	_	B14h	-	B94h	_
815h	—	895h	—	915h	—	995h	—	A15h	—	A95h	—	B15h	-	B95h	_
816h	—	896h	—	916h	—	996h	—	A16h	—	A96h	—	B16h	—	B96h	
817h	—	897h	—	917h	—	997h	—	A17h	—	A97h	—	B17h	—	B97h	_
818h	—	898h	—	918h	—	998h	—	A18h	—	A98h	—	B18h	—	B98h	_
819h	_	899h	_	919h	—	999h	_	A19h	_	A99h	_	B19h	-	B99h	_
81Ah	_	89Ah	_	91Ah	—	99Ah	_	A1Ah	_	A9Ah	_	B1Ah	-	B9Ah	_
81Bh	—	89Bh	—	91Bh	—	99Bh	—	A1Bh	—	A9Bh	—	B1Bh	-	B9Bh	_
81Ch	—	89Ch	—	91Ch	—	99Ch	—	A1Ch	—	A9Ch	—	B1Ch	—	B9Ch	
81Dh	—	89Dh	—	91Dh	—	99Dh	—	A1Dh	—	A9Dh	—	B1Dh	—	B9Dh	
81Eh	—	89Eh	—	91Eh	—	99Eh	—	A1Eh	—	A9Eh	—	B1Eh	—	B9Eh	_
81Fh	_	89Fh	_	91Fh	—	99Fh	_	A1Fh	_	A9Fh	_	B1Fh	-	B9Fh	_
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BA0h	
	Unimplemented Read as '0'														
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses 70h – 7Fh														
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-6: PIC16(L)F1938/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	—	C8Ch	—	D0Ch		D8Ch	—	E0Ch	—	E8Ch		F0Ch		F8Ch	
C0Dh	—	C8Dh	—	D0Dh		D8Dh	—	E0Dh	—	E8Dh		F0Dh		F8Dh	
C0Eh	—	C8Eh	—	D0Eh	—	D8Eh	—	E0Eh	—	E8Eh	_	F0Eh	—	F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh	—	E8Fh	_	F0Fh	—	F8Fh	
C10h	—	C90h	—	D10h	_	D90h	_	E10h	_	E90h		F10h	_	F90h	
C11h	—	C91h	—	D11h	_	D91h	_	E11h	_	E91h		F11h	_	F91h	
C12h	—	C92h	—	D12h		D92h	—	E12h	—	E92h		F12h		F92h	
C13h	—	C93h	—	D13h	—	D93h	—	E13h	—	E93h	_	F13h	—	F93h	
C14h	—	C94h	—	D14h	—	D94h	—	E14h	—	E94h	_	F14h	—	F94h	
C15h	—	C95h	—	D15h	—	D95h	—	E15h	_	E95h	_	F15h	—	F95h	
C16h	—	C96h	_	D16h	—	D96h	_	E16h	_	E96h	_	F16h	—	F96h	
C17h	—	C97h	_	D17h	—	D97h	_	E17h	_	E97h	_	F17h	—	F97h	
C18h	—	C98h	_	D18h	—	D98h	_	E18h	_	E98h	_	F18h	—	F98h	See Table 3-9
C19h	—	C99h	_	D19h	—	D99h	—	E19h	_	E99h	_	F19h	—	F99h	
C1Ah	—	C9Ah	_	D1Ah	—	D9Ah	_	E1Ah		E9Ah	—	F1Ah	—	F9Ah	
C1Bh	—	C9Bh	_	D1Bh	—	D9Bh	_	E1Bh		E9Bh	—	F1Bh	—	F9Bh	
C1Ch	—	C9Ch	—	D1Ch	—	D9Ch	—	E1Ch		E9Ch	_	F1Ch	—	F9Ch	
C1Dh	—	C9Dh	—	D1Dh	—	D9Dh	—	E1Dh		E9Dh	_	F1Dh	—	F9Dh	
C1Eh	—	C9Eh	_	D1Eh	—	D9Eh	_	E1Eh		E9Eh		F1Eh	—	F9Eh	
C1Fh	—	C9Fh	_	D1Fh	—	D9Fh	_	E1Fh	_	E9Fh		F1Fh	—	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented Read as '0'														
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh												
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-7:PIC16(L)F1938 MEMORY MAP,
BANK 15

		Bank 15	
79	lh	LCDCON	
792		LCDPS	
793	3h	LCDREF	
794		LCDCST	
79		LCDRL	
796		_	
79		_	
798	3h	LCDSE0	
799	9h	LCDSE1	
79/		_	
796		_	
790		_	
79[_	
79		—	
79		_	
7A)h	LCDDATA0	
7A	1h	LCDDATA1	
7A:		—	
7A:		LCDDATA3 LCDDATA4	
7A-			
7A 7A		LCDDATA6	
74		LCDDATA7	
7A	3h	—	
7A9	9h	LCDDATA9	
7A/		LCDDATA10	
7A		—	
7A0		—	
7AI		_	
7A		_	
7A		_	
7B		—	
7B		—	
7B:		_	
7B		_	
7B4		—	
7B	3h		
		Unimplemented Read as '0'	
75	- 6		
7EI	-n		
Legend:	as	= Unimplemented da '0'.	ata memory locations, reac

TABLE 3-8:PIC16(L)F1939 MEMORY MAP,
BANK 15

	Bank 15	
70.41	LCDCON	
791h		
792h	LCDPS	
793h	LCDREF	
794h	LCDCST	
795h	LCDRL	
796h	—	
797h	—	
798h	LCDSE0	
799h	LCDSE1	
79Ah	LCDSE2	
79Bh	_	
79Ch	_	
79Dh	_	
	_	
79Eh	_	
79Fh 7A0h	LCDDATA0	
7A1h	LCDDATA1	
7A2h	LCDDATA2	
7A3h	LCDDATA3	
7A4h	LCDDATA4	
7A5h	LCDDATA5	
7A6h 7A7h	LCDDATA6 LCDDATA7	
7A8h	LCDDATA8	
7A9h	LCDDATA9	
7AAh	LCDDATA10	
7ABh	LCDDATA11	
7ACh	—	
7ADh	—	
7AEh	—	
7AFh	—	
7B0h	_	
7B1h	_	
7B2h	_	
7B3h	_	
7B4h	_	
7B5h	_	
7B5h	_	
7B7h 7B8h		
7880		
	Unimplemented	
	Read as '0'	
7EFh		
Legend:	= Unimplemented d	ata memory locations, read
	ʻ0'.	•

TABLE 3-9:PIC16(L)F1938/9 MEMORY
MAP, BANK 31

		Bank 31	
	F8Ch		
		Unimplemented Read as '0'	
	FE3h		
	FE4h	STATUS_SHAD	
	FE5h	WREG_SHAD	
	FE6h	BSR_SHAD	
	FE7h	PCLATH_SHAD	
	FE8h	FSR0L_SHAD	
	FE9h	FSR0H_SHAD	
	FEAh	FSR1L_SHAD	
	FEBh	FSR1H_SHAD	
	FECh	—	
	FEDh	STKPTR	
	FEEh	TOSL	
	FEFh	TOSH	
Lege		= Unimplemented data '0'.	memory locations, read

3.3.5 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	30
	1	31
	2	32
	3	33
	4	34
	5	35
PIC16(L)F1938/9	6	36
	7	37
	8	38
	9-14	39
	15	40
	16-30	42
	31	43

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
000h ⁽²⁾	INDF0		this location cal register)	uses contents	s of FSR0H/F	SR0L to addro	ess data mei	mory		****	XXXX XXXX
001h ⁽²⁾	INDF1		this location cal register)	uses contents	s of FSR1H/F	SR1L to addro	ess data mei	mory		****	XXXX XXXX
002h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
003h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
004h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ad	ldress 0 Low	Pointer					0000 0000	uuuu uuuu
005h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad	ldress 0 High	Pointer					0000 0000	0000 0000
006h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad	ldress 1 Low	Pointer					0000 0000	uuuu uuuu
007h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad	ldress 1 High	Pointer					0000 0000	0000 0000
008h ⁽²⁾	BSR	—	—	_		I	BSR<4:0>			0 0000	0 0000
009h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
00Ah ^(1, 2)	PCLATH	_	Write Buffer		-000 0000	-000 0000					
00Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
00Ch	PORTA	PORTA Dat	a Latch wher		XXXX XXXX	uuuu uuuu					
00Dh	PORTB	PORTB Da	ta Latch wher		XXXX XXXX	uuuu uuuu					
00Eh	PORTC	PORTC Da	ta Latch whe		XXXX XXXX	uuuu uuuu					
00Fh ⁽³⁾	PORTD	PORTD Da	ta Latch whe	n written: POI	RTD pins whe	en read				XXXX XXXX	uuuu uuuu
010h	PORTE	_	—	—	—	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	uuuu
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	0000 00-0	0000 00-0
013h	PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	_	-000 0-0-	-000 0-0-
014h	—	Unimpleme	nted							_	_
015h	TMR0	Timer0 Mod	lule Register							XXXX XXXX	uuuu uuuu
016h	TMR1L	Holding Re	gister for the	Least Signific	ant Byte of th	e 16-bit TMR	1 Register			XXXX XXXX	uuuu uuuu
017h	TMR1H	Holding Re	gister for the	Most Significa	ant Byte of the	e 16-bit TMR1	Register			XXXX XXXX	uuuu uuuu
018h	T1CON	TMR10	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer 2 Mo	dule Register		0000 0000	0000 0000					
01Bh	PR2	-	iod Register		1111 1111	1111 1111					
01Ch	T2CON	_	-	T2OUT	⊃S<3:0>		TMR2ON	T2CKF	PS<1:0>	-000 0000	-000 0000
01Dh	—	Unimpleme	nted							_	_
01Eh	CPSCON0	CPSON	CPSRM	_	_	CPSRN	G<1:0>	CPSOUT	TOXCS	00 0000	00 0000
01Fh	CPSCON1	_	_	_	_		CPSCH	<3:0>	I	0000	

 ${\rm x}$ = unknown, ${\rm u}$ = unchanged, ${\rm q}$ = value depends on condition, - = unimplemented, read as '0', ${\rm r}$ = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on $\mathsf{PIC16}(\mathsf{L})\mathsf{F1938}$ devices, read as '0'. 3:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
080h ⁽²⁾	INDF0		this location cal register)	uses contents	of FSR0H/F	SR0L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
081h ⁽²⁾	INDF1		this location cal register)	uses contents	s of FSR1H/F	SR1L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
082h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
083h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
084h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ad	dress 0 Low I	Pointer					0000 0000	uuuu uuuu
085h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad	dress 0 High	Pointer					0000 0000	0000 0000
086h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad	dress 1 Low I	Pointer					0000 0000	uuuu uuuu
087h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad	dress 1 High	Pointer					0000 0000	0000 0000
088h ⁽²⁾	BSR	_	BSR<4:0>								0 0000
089h ⁽²⁾	WREG	Working Re	rking Register							0000 0000	uuuu uuuu
08Ah ^(1, 2)	PCLATH	_	Write Buffer	-000 0000	-000 0000						
08Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
08Ch	TRISA	PORTA Dat	a Direction R		1111 1111	1111 1111					
08Dh	TRISB	PORTB Da	ta Direction R		1111 1111	1111 1111					
08Eh	TRISC	PORTC Da	ta Direction R	1111 1111	1111 1111						
08Fh ⁽³⁾	TRISD	PORTD Da	ta Direction R	Register						1111 1111	1111 1111
090h	TRISE	_	_	—	—	(4)	TRISE2 ⁽³⁾	TRISE1(3)	TRISE0(3)	1111	1111
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	0000 00-0	0000 00-0
093h	PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	_	-000 0-0-	-000 0-0-
094h	_	Unimpleme	nted			•	•	•	•	_	_
095h	OPTION_REG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR	00 11qq	qq qquu
097h	WDTCON	_	_		W	/DTPS<4:0>			SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUN<5	:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF	<3:0>		_	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0p0 0p00	dddd ddo-
09Bh	ADRESL	A/D Result	Register Low				•			XXXX XXXX	
09Ch	ADRESH	A/D Result	Register High								uuuu uuuu
09Dh	ADCON0	_		CHS<4:0> GO/DONE ADON							-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPREF1	ADPREF0	0000 -000	0000 -000
09Fh		Unimpleme	nted			1		I	· · · · ·	_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INDF0			uses contents	s of FSR0H/F	SR0L to addr	ess data mer	mory		XXXX XXXX	XXXX XXXX
INDF1			uses contents	s of FSR1H/F	SR1L to addr	ess data mer	mory		XXXX XXXX	XXXX XXXX
PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
STATUS			_	TO	PD	Z	DC	С	1 1000	q quuu
FSR0L	Indirect Dat	a Memory Ad	dress 0 Low	Pointer	•	•	•	•	0000 0000	uuuu uuuu
FSR0H	Indirect Dat	a Memory Ad	dress 0 High	Pointer					0000 0000	0000 0000
FSR1L	Indirect Dat	a Memory Ad	dress 1 Low	Pointer					0000 0000	uuuu uuuu
FSR1H	Indirect Dat	a Memory Ad	dress 1 High	Pointer					0000 0000	0000 0000
BSR	_		—		I	BSR<4:0>			0 0000	0 0000
WREG	Working Re	gister							0000 0000	uuuu uuuu
PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
LATA	PORTA Dat	a Latch		XXXX XXXX	uuuu uuuu					
LATB	PORTB Da	ta Latch		XXXX XXXX	uuuu uuuu					
LATC	PORTC Da	ta Latch		XXXX XXXX	uuuu uuuu					
LATD	PORTD Da	ta Latch							XXXX XXXX	uuuu uuuu
LATE	_	_	_	_	_	LATE2 ⁽³⁾	LATE1 ⁽³⁾	LATE0 ⁽³⁾	xxx	uuu
CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NC	H<1:0>	000000	000000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NC	H<1:0>	000000	000000
CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00	00
BORCON	SBOREN	_	_	_	_	_	_	BORRDY	1 q	uu
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFV	R<1:0>	0q00 0000	0q00 0000
DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	000- 00-0	000- 00-0
DACCON1					D	ACR<4:0>		•	0 0000	0 0000
SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
—	Unimplemented								_	_
APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	-000 0000	-000 0000
_	Unimpleme	nted					1	1	_	_
	Unimpleme								_	_
	INDF0 INDF1 PCL STATUS FSR0L FSR0H FSR1L FSR1H BSR WREG PCLATH INTCON LATA LATB LATC LATD LATE CM1CON0 CM1CON1 CM2CON0 CM2CON1 CM0UT BORCON DACCON1 SRCON0 SRCON1 —	INDF0Addressing (not a physic)INDF1Addressing (not a physic)PCLProgram CollSTATUS—FSR0LIndirect DateFSR0LIndirect DateFSR1HIndirect DateFSR1HIndirect DateFSR1HIndirect DateFSR1HIndirect DateFSR1HIndirect DateBSR—WREGWorking ReePCLATH—INTCONGIELATAPORTA DateLATCPORTD DateLATE—CM1CON0C10NCM1CON1C11NTPCM2CON1C20NCM2CON1C21NTPCMOUT—BORCONSBORENFVRCONFVRENDACCON0DACENDACCON1SRCON0SRLENSRCON1SRSPE—UnimplemeAPFCON——Unimpleme	INDF0 Addressing this location (not a physical register) INDF1 Addressing this location (not a physical register) PCL Program Counter (PC) L STATUS — — FSR0L Indirect Data Memory Ad FSR1L Indirect Data Memory Ad FSR1L Indirect Data Memory Ad FSR1L Indirect Data Memory Ad FSR1H Indirect Data Memory Ad FSR1H Indirect Data Memory Ad BSR — — VREG Working Register PCLATH — Write Buffer INTCON GIE PEIE LATA PORTA Data Latch LATB PORTD Data Latch LATE — — CM1CON0 C10N C10UT CM1CON0 C10N C10UT CM1CON1 C1INTP C1INTN CM0UT — — BORCON SBOREN — FVRCON FVREN FVRRDY DACCON0 DACEN DACLPS DACCON1 SRSPE SRSCKE	INDF0 Addressing this location uses contents (not a physical register) INDF1 Addressing this location uses contents (not a physical register) PCL Program Counter (PC) Least Significal STATUS STATUS	INDF0 Addressing this location uses contents of FSR0H/F (not a physical register) INDF1 Addressing this location uses contents of FSR1H/F (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — FSR0L Indirect Data Memory Address 0 Low Pointer FSR0L Indirect Data Memory Address 1 Low Pointer FSR1L Indirect Data Memory Address 1 Low Pointer FSR1L Indirect Data Memory Address 1 High Pointer FSR1L Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer BSR — — WREG Working Register PCLATH — Write Buffer for the upper 7 bits of the F INTCON GIE PEIE TMR0IE LATA PORTA Data Latch INTE LATA PORTD Data Latch LATC LATE — — — CM1CON0 C10N C10UT C10E C1POL CM1CON1 C1INTP C1INTN C1PCH1 C1PCH0 CM2CON0 C2ON C2OUT C2OE C2POL <td>INDF0 Addressing this location uses contents of FSR0H/FSR0L to addr (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to addr (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — TO PD FSR0L Indirect Data Memory Address 0 Low Pointer FSR0H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H FSR1H Indirect Data Memory Address 1 High Pointer BSR — — — — </td> <td>INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data mere (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data mere (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — FSR0L Indirect Data Memory Address 0 Low Pointer FSR0H Indirect Data Memory Address 0 Low Pointer FSR1L Indirect Data Memory Address 1 Low Pointer FSR1H Indirect Data Memory Address 1 High Pointer BSR — — PCLATH — Write Buffer for the upper 7 bits of the Program Counter INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF LATA PORTA Data Latch LATE — — — — — — — — — — — [M10F0 CISP CM1/F DATA PORTA Data Latch LATE UATE [CM1CON0 C10N C10UT C10E C1POL — — — — — — — — — — — [M10F0 [M10F0 [M10F0 [M10F0</td> <td>INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — — FSR0L Indirect Data Memory Address 0 Low Pointer FSR0H FSR0H Indirect Data Memory Address 1 Low Pointer FSR1H FSR1H Indirect Data Memory Address 1 Low Pointer BSR FSR1H Indirect Data Memory Address 1 Low Pointer BSR FSR1H Indirect Data Memory Address 1 Low Pointer BSR FSR1H Indirect Data Memory Address 1 Lingh Pointer BSR BSR — — — WREG Working Register UNTE IOCIE PCLATH — Write Buffer for the upper 7 bits of the Program Counter INTROIN INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF LATA PORTB Data Latch LATA LATE(3) LATE(3) LATE(3) LATE(3) LATE — — — — —</td> <td>INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — TO PD Z DC C FSR0L Indirect Data Memory Address 0 High Pointer — — TO PD Z DC C FSR0H Indirect Data Memory Address 1 High Pointer — — BSR — — — BSR<4:0> WREG Working Register — — — BSR<4:0> UNTE INTE IOCIE TMR0IF INTF IOCIE IN</td> <td>Name Bit 7 Bit 8 Bit 3 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) XXXX XXXX INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) XXXX XXXX PCL Program Couter (PC) Least Significant Byte 0000 0000 STATUS — — — TO PD Z DC C 1 1000 0000 FSR0L Indirect Data Memory Address 0 Low Pointer 0000<!--</td--></td>	INDF0 Addressing this location uses contents of FSR0H/FSR0L to addr (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to addr (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — TO PD FSR0L Indirect Data Memory Address 0 Low Pointer FSR0H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H Indirect Data Memory Address 1 High Pointer FSR1H FSR1H Indirect Data Memory Address 1 High Pointer BSR — — — —	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data mere (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data mere (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — FSR0L Indirect Data Memory Address 0 Low Pointer FSR0H Indirect Data Memory Address 0 Low Pointer FSR1L Indirect Data Memory Address 1 Low Pointer FSR1H Indirect Data Memory Address 1 High Pointer BSR — — PCLATH — Write Buffer for the upper 7 bits of the Program Counter INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF LATA PORTA Data Latch LATE — — — — — — — — — — — [M10F0 CISP CM1/F DATA PORTA Data Latch LATE UATE [CM1CON0 C10N C10UT C10E C1POL — — — — — — — — — — — [M10F0 [M10F0 [M10F0 [M10F0	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — — FSR0L Indirect Data Memory Address 0 Low Pointer FSR0H FSR0H Indirect Data Memory Address 1 Low Pointer FSR1H FSR1H Indirect Data Memory Address 1 Low Pointer BSR FSR1H Indirect Data Memory Address 1 Low Pointer BSR FSR1H Indirect Data Memory Address 1 Low Pointer BSR FSR1H Indirect Data Memory Address 1 Lingh Pointer BSR BSR — — — WREG Working Register UNTE IOCIE PCLATH — Write Buffer for the upper 7 bits of the Program Counter INTROIN INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF LATA PORTB Data Latch LATA LATE(3) LATE(3) LATE(3) LATE(3) LATE — — — — —	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) PCL Program Counter (PC) Least Significant Byte STATUS — — TO PD Z DC C FSR0L Indirect Data Memory Address 0 High Pointer — — TO PD Z DC C FSR0H Indirect Data Memory Address 1 High Pointer — — BSR — — — BSR<4:0> WREG Working Register — — — BSR<4:0> UNTE INTE IOCIE TMR0IF INTF IOCIE IN	Name Bit 7 Bit 8 Bit 3 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) XXXX XXXX INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) XXXX XXXX PCL Program Couter (PC) Least Significant Byte 0000 0000 STATUS — — — TO PD Z DC C 1 1000 0000 FSR0L Indirect Data Memory Address 0 Low Pointer 0000 </td

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 3												
180h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addro	ess data me	mory		XXXX XXXX	XXXX XXXX	
181h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addro	ess data me	mory		XXXX XXXX	XXXX XXXX	
182h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000	
183h ⁽²⁾	STATUS	—	_	—	TO	PD	Z	DC	С	1 1000	q quuu	
184h ⁽²⁾	FSR0L	Indirect Da	ta Memory Ac	dress 0 Low	Pointer		•	•		0000 0000	uuuu uuuu	
185h ⁽²⁾	FSR0H	Indirect Da	ta Memory Ad		0000 0000	0000 0000						
186h ⁽²⁾	FSR1L	Indirect Da	ta Memory Ac	ldress 1 Low	Pointer					0000 0000	uuuu uuuu	
187h ⁽²⁾	FSR1H	Indirect Da	ta Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000	
188h ⁽²⁾	BSR	_	_	_			3SR<4:0>			0 0000	0 0000	
189h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu	
18Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	iter			-000 0000	-000 0000	
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000	
18Ch	ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111	
18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111	
18Eh	_	Unimpleme	Jnimplemented							_	_	
18Fh ⁽³⁾	ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111	
190h ⁽³⁾	ANSELE	—	_	—	—	_	ANSE2	ANSE1	ANSE0	111	111	
191h	EEADRL	EEPROM /	Program Me	mory Address	Register Lov	v Byte				0000 0000	0000 0000	
192h	EEADRH	(4)	EEPROM / F	Program Mem	ory Address I	Register High	Byte			1000 0000	1000 0000	
193h	EEDATL	EEPROM /	Program Me	mory Read Da	ata Register L	ow Byte				XXXX XXXX	uuuu uuuu	
194h	EEDATH	—	—	EEPROM / F	Program Mem	ory Read Dat	a Register H	ligh Byte		xx xxxx	uu uuuu	
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 x000	0000 q000	
196h	EECON2	EEPROM of	control registe	r 2						0000 0000	0000 0000	
197h	_	Unimpleme	ented							_	_	
198h	_	Unimpleme	ented							_	_	
199h	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000	
19Ah	TXREG	USART Tra	insmit Data R	egister						0000 0000	0000 0000	
19Bh	SPBRGL				BRG<	7:0>				0000 0000	0000 0000	
19Ch	SPBRGH				BRG<1	5:8>				0000 0000	0000 0000	
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x	
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010	
19Fh	BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	01-0 0-00		

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
200h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								XXXX XXXX	****
201h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)									XXXX XXXX
202h ⁽²⁾	PCL	Program Counter (PC) Least Significant Byte									0000 0000
203h ⁽²⁾	STATUS	<u>TO</u> <u>PD</u> Z DC C									q quuu
204h ⁽²⁾	FSR0L	Indirect Data Memory Address 0 Low Pointer									uuuu uuuu
205h ⁽²⁾	FSR0H	Indirect Dat	Indirect Data Memory Address 0 High Pointer								0000 0000
206h ⁽²⁾	FSR1L	Indirect Data Memory Address 1 Low Pointer								0000 0000	uuuu uuuu
207h ⁽²⁾	FSR1H	Indirect Dat	Indirect Data Memory Address 1 High Pointer								
208h ⁽²⁾	BSR	—	— — — BSR<4:0>								0 0000
209h ⁽²⁾	WREG	Working Register								0000 0000	uuuu uuuu
20Ah ^(1, 2)	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
20Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
20Ch	—	Unimplemented								_	_
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	—	Unimplemented								_	_
20Fh	_	Unimplemented								_	_
210h	WPUE	—	_	—	_	WPUE3	_	—	—	1	1
211h	SSPBUF	Synchrono	Synchronous Serial Port Receive Buffer/Transmit Register								uuuu uuuu
212h	SSPADD	ADD<7:0>								0000 0000	0000 0000
213h	SSPMSK	MSK<7:0>								1111 1111	1111 1111
214h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSPCON1	WCOL	SSPOV	SSPEN	СКР		SSPM	<3:0>		0000 0000	0000 0000
216h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h	_	Unimpleme	nted							_	_
219h	_	Unimplemented							_	_	
21Ah	_	Unimpleme	Unimplemented							_	_
21Bh	_	Unimpleme	Unimplemented							_	_
21Ch	_	-	Unimplemented								_
21Dh	_	Unimpleme	Unimplemented								_
21Eh	_	- · · · · · · · · · · · · · · · · · · ·	Unimplemented								_
21Fh		Unimplemented									

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 5											
280h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								****	****
281h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)									****
282h ⁽²⁾	PCL	Program Counter (PC) Least Significant Byte									0000 0000
283h ⁽²⁾	STATUS	<u> </u>								1 1000	q quuu
284h ⁽²⁾	FSR0L	Indirect Data Memory Address 0 Low Pointer									uuuu uuuu
285h ⁽²⁾	FSR0H	Indirect Data Memory Address 0 High Pointer								0000 0000	0000 0000
286h ⁽²⁾	FSR1L	Indirect Data Memory Address 1 Low Pointer								0000 0000	uuuu uuuu
287h ⁽²⁾	FSR1H	Indirect Data Memory Address 1 High Pointer									0000 0000
288h ⁽²⁾	BSR	BSR<4:0>								0 0000	0 0000
289h ⁽²⁾	WREG	Working Register								0000 0000	uuuu uuuu
28Ah ^(1, 2)	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
28Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
28Ch	—	Unimplemented								_	_
28Dh	—	Unimplemented								_	_
28Eh	—	Unimplemented								_	_
28Fh	_	Unimplemented								_	_
290h	_	Unimpleme	Unimplemented								_
291h	CCPR1L	Capture/Compare/PWM Register 1 (LSB)								XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Compare/PWM Register 1 (MSB)								XXXX XXXX	uuuu uuuu
293h	CCP1CON	P1M<1:0> DC1B<1:0> CCP1M<3:0>							0000 0000	0000 0000	
294h	PWM1CON	P1RSEN			P	1DC<6:0>				0000 0000	0000 0000
295h	CCP1AS	CCP1ASE	CCP1AS2	CCP1AS1	CCP1AS0	PSS1A	C<1:0>	PSS1B	D<1:0>	0000 0000	0000 0000
296h	PSTR1CON	_	_	_	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001	0 0001
297h	—	Unimplemented							_	_	
298h	CCPR2L	Capture/Compare/PWM Register 2 (LSB)							XXXX XXXX	uuuu uuuu	
299h	CCPR2H	Capture/Compare/PWM Register 2 (MSB)							XXXX XXXX	uuuu uuuu	
29Ah	CCP2CON	P2M<1:0> DC2B<1:0> CCP2M<3:0>							0000 0000	0000 0000	
29Bh	PWM2CON	P2RSEN P2DC<6:0>							0000 0000	0000 0000	
29Ch	CCP2AS	CCP2ASE	CCP2AS2	CCP2AS1	CCP2AS0	PSS2AC<1:0> PSS2BD<1:0>			0000 0000	0000 0000	
29Dh	PSTR2CON	_	_	_	STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001	0 0001
29Eh	CCPTMRS0	C4TSEL1	C4TSEL0	C3TSEL1	C3TSEL0	C2TSEL1	C2TSEL0	C1TSEL1	C1TSEL0	0000 0000	0000 0000
29Fh	CCPTMRS1								L<1:0>	00	00

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6											
300h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX
301h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX
302h ⁽²⁾	PCL	Program Counter (PC) Least Significant Byte									0000 0000
303h ⁽²⁾	STATUS	— — — <u>TO</u> <u>PD</u> Z DC C								1 1000	q quuu
304h ⁽²⁾	FSR0L	Indirect Data Memory Address 0 Low Pointer									uuuu uuuu
305h ⁽²⁾	FSR0H	Indirect Data Memory Address 0 High Pointer								0000 0000	0000 0000
306h ⁽²⁾	FSR1L	Indirect Data Memory Address 1 Low Pointer								0000 0000	uuuu uuuu
307h ⁽²⁾	FSR1H	Indirect Data Memory Address 1 High Pointer								0000 0000	0000 0000
308h ⁽²⁾	BSR	BSR<4:0>								0 0000	0 0000
309h ⁽²⁾	WREG	Working Register								0000 0000	uuuu uuuu
30Ah ^(1, 2)	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
30Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
30Ch	_	Unimplemented								—	_
30Dh	_	Unimplemented								—	_
30Eh		Unimplemented								_	
30Fh	—	Unimplemented								_	_
310h	—	Unimplemented								_	_
311h	CCPR3L	Capture/Compare/PWM Register 3 (LSB)								XXXX XXXX	uuuu uuuu
312h	CCPR3H	Capture/Compare/PWM Register 3 (MSB)								XXXX XXXX	uuuu uuuu
313h	CCP3CON	P3M<1:0> DC3B<1:0> CCP3M<1:0>							0000 0000	0000 0000	
314h	PWM3CON	P3RSEN			Р	3DC<6:0>				0000 0000	0000 0000
315h	CCP3AS	CCP3ASE	CCP3AS2	CCP3AS1	CCP3AS0	PSS3A	C<1:0>	PSS3B	D<1:0>	0000 0000	0000 0000
316h	PSTR3CON	_	—	_	STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001	0 0001
317h	_	Unimpleme	nted							—	_
318h	CCPR4L	Capture/Compare/PWM Register 4 (LSB)							XXXX XXXX	uuuu uuuu	
319h	CCPR4H	Capture/Compare/PWM Register 4 (MSB)							XXXX XXXX	uuuu uuuu	
31Ah	CCP4CON	— — DC4B<1:0> CCP4M<3:0>							00 0000	00 0000	
31Bh	—	Unimplemented							-	—	
31Ch	CCPR5L	Capture/Compare/PWM Register 5 (LSB)							**** ****	uuuu uuuu	
31Dh	CCPR5H	Capture/Compare/PWM Register 5 (MSB)							XXXX XXXX	uuuu uuuu	
31Eh	CCP5CON	—	DC5B<1:0> CCP5M<3:0>						00 0000	00 0000	
31Fh		Unimplemented							_		

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
Bank 7							•	•					
380h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addro	ess data mei	mory		XXXX XXXX	****		
381h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addro	ess data mei	mory		XXXX XXXX	****		
382h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000		
383h ⁽²⁾	STATUS	_	—	_	TO	PD	Z	DC	С	1 1000	q quuu		
384h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ad	dress 0 Low	Pointer	•		•		0000 0000	uuuu uuuu		
385h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad		0000 0000	0000 0000							
386h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad		0000 0000	uuuu uuuu							
387h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad		0000 0000	0000 0000							
388h ⁽²⁾	BSR	_	BSR<4:0>								0 0000		
389h ⁽²⁾	WREG	Working Re	Vorking Register								uuuu uuuu		
38Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	iter			-000 0000	-000 0000		
38Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000		
38Ch	_	Unimpleme	nted							_	_		
38Dh	—	Unimpleme	Unimplemented										
38Eh	—	Unimpleme	nted							_	_		
38Fh	—	Unimpleme	nted							_	_		
390h	_	Unimpleme	nted							_	_		
391h	_	Unimpleme	nted							_	_		
392h	_	Unimpleme	nted							_	_		
393h	_	Unimpleme	nted							_	_		
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000		
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000		
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000		
397h	—	Unimpleme	nted							_	_		
398h	—	Unimpleme	nted							_	_		
399h	—	Unimpleme	Unimplemented										
39Ah	—	Unimpleme	nted		_	_							
39Bh	_	Unimpleme	nted							_	_		
39Ch	_	Unimpleme	nted							_	_		
39Dh	_	Unimpleme	nted							_	_		
39Eh	_	Unimpleme	nted							_	_		
39Fh	_	Unimpleme	nted							_	_		

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Unimplemented, read as '1'. 4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
400h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data mei	mory		XXXX XXXX	XXXX XXXX
401h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addr	ess data mei	mory		XXXX XXXX	XXXX XXXX
402h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	int Byte					0000 0000	0000 0000
403h ⁽²⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
404h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ad	ldress 0 Low	Pointer					0000 0000	uuuu uuuu
405h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad		0000 0000	0000 0000					
406h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad		0000 0000	uuuu uuuu					
407h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad		0000 0000	0000 0000					
408h ⁽²⁾	BSR	—	— — — BSR<4:0>								0 0000
409h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
40Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the I	Program Cour	nter			-000 0000	-000 0000
40Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
40Ch	_	Unimpleme	nted					•		_	_
40Dh	_	Unimpleme	Unimplemented								
40Eh	_	Unimpleme	nted							_	_
40Fh	_	Unimpleme	nted							_	_
410h	_	Unimpleme	nted							_	_
411h	_	Unimpleme	nted							_	_
412h	_	Unimpleme	nted							_	_
413h	_	Unimpleme	nted							_	_
414h	_	Unimpleme	nted							_	_
415h	TMR4	Timer 4 Mo	dule Register							0000 0000	0000 0000
416h	PR4	Timer 4 Per	riod Register							1111 1111	1111 1111
417h	T4CON	_		T4OUT	PS<3:0>		TMR4ON	T4CK	PS<1:0>	-000 0000	-000 0000
418h	_	Unimpleme	nted							_	_
419h	_	Unimpleme	nted							_	_
41Ah	_	Unimpleme	nted							_	_
41Bh	_	Unimpleme	Jnimplemented								_
41Ch	TMR6	Timer 6 Mo	Timer 6 Module Register								0000 0000
41Dh	PR6	-	Timer 6 Period Register								1111 1111
41Eh	T6CON	_	0	T6OUT	PS<3:0>		TMR6ON	T6CK	PS<1:0>	-000 0000	-000 0000
41Fh	_	Unimpleme	nted						-	_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Unimplemented, read as '1'. 4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banks 9	-14										
x00h/ x80h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
x00h/ x81h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
x02h/ x82h ⁽²⁾	PCL	Program Co	ogram Counter (PC) Least Significant Byte								0000 0000
x03h/ x83h (2)	STATUS	-	—	—	TO	PD	Z	DC	С	1 1000	q quuu
x04h/ x84h ⁽²⁾	FSR0L	Indirect Dat	Indirect Data Memory Address 0 Low Pointer								uuuu uuuu
x05h/ x85h (2)	FSR0H	Indirect Dat	Indirect Data Memory Address 0 High Pointer								
x06h/ x86h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad	ldress 1 Low	Pointer					0000 0000	uuuu uuuu
x07h/ x87h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad	ldress 1 High	Pointer					0000 0000	0000 0000
x08h/ x88h (2)	BSR	-	—	—		I	BSR<4:0>			0 0000	0 0000
x09h/ x89h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
x0Ah/ x8Ah ^{(1),(2)}	PCLATH	—	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
x0Bh/ x8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
x0Ch/ x8Ch x1Fh/ x9Fh	_	Unimpleme	nted							—	_

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as `0', r = reserved.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

4: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 15	-	-									
780h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addre	ess data me	mory		XXXX XXXX	XXXX XXXX
781h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addre	ess data me	mory		XXXX XXXX	**** ****
782h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	int Byte					0000 0000	0000 0000
783h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
784h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ac	dress 0 Low	Pointer	•	•	•	•	0000 0000	uuuu uuuu
785h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
786h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ac	Idress 1 Low	Pointer					0000 0000	uuuu uuuu
787h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ac		0000 0000	0000 0000					
788h ⁽²⁾	BSR	_	_		0 0000	0 0000					
789h ⁽²⁾	WREG	Working Re	edister		0000 0000	uuuu uuuu					
78Ah ^(1, 2)	PCLATH		Write Buffer		-000 0000	-000 0000					
78Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTE	IOCIF	0000 0000	0000 0000
-	INTCON	-		TWRUE		IOCIE	TIVIRUIF	INTE	IUCIF	0000 0000	0000 0000
78Ch			Inimplemented								_
78Dh	—	Unimpleme									_
78Eh	—	Unimpleme									
78Fh	—	Unimpleme								-	—
790h	—	Unimplemented								_	—
791h	LCDCON	LCDEN SLPEN WERR - CS<1:0> LMUX<1:0>							000- 0011	000- 0011	
792h	LCDPS	WFT	BIASMD	LCDA	WA	LP<3:0>				0000 0000	0000 0000
793h	LCDREF	LCDIRE	LCDIRS	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	—	000- 000-	000- 000-
794h	LCDCST	—	—	_	—	—	L	CDCST<2:0	>	000	000
795h	LCDRL	LRLA	P<1:0>	LRLBI	P<1:0>	—		LRLAT<2:0>		0000 -000	0000 -000
796h	—	Unimpleme	ented							_	_
797h	—	Unimpleme	ented							_	_
798h	LCDSE0				SE<7	:0>				0000 0000	uuuu uuuu
799h	LCDSE1				SE<1	5:8>				0000 0000	uuuu uuuu
79Ah	LCDSE2 ⁽³⁾				SE<23	:16>				0000 0000	uuuu uuuu
79Bh		Unimpleme	ented							_	_
79Ch	_	Unimpleme								_	_
79Dh		Unimpleme								_	_
79Eh		Unimpleme								_	
79Fh		Unimpleme								<u> </u>	
7A0h	LCDDATA0	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	 	
		COM0	COM0	COM0	COM0	COM0	COM0	COM0	COM0		uuuu uuuu
7A1h	LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	**** ****	uuuu uuuu
7A2h	LCDDATA2 ⁽³⁾	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	**** ****	uuuu uuuu
7A3h	LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	XXXX XXXX	սսսս սսսս
7A4h	LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	XXXX XXXX	սսսս սսսս
7A5h	LCDDATA5 ⁽³⁾	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	XXXX XXXX	սսսս սսսս

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are

transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

4: Unimplemented, read as '1'.

IADLL	0 10. 01											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 15	Bank 15 (Continued)											
7A6h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	սսսս սսսս	
7A7h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	uuuu uuuu	
7A8h	LCDDATA8 ⁽³⁾	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	uuuu uuuu	
7A9h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	uuuu uuuu	
7AAh	LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	uuuu uuuu	
7ABh	LCDDATA11 ⁽³⁾	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	XXXX XXXX	uuuu uuuu	
7ACh	—	Unimpleme	ented							—	_	
 7EFh												

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are Note 1: transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

Unimplemented, read as '1'. 4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	ot	on all her sets
Banks 1	6-30												
x00h/ x80h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data mei	mory		XXXX	XXXX	XXXX	XXXX
x00h/ x81h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addr	ess data mei	mory		XXXX	XXXX	XXXX	XXXX
x02h/ x82h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	int Byte					0000	0000	0000	0000
x03h/ x83h ⁽²⁾	STATUS	-	—	—	TO	PD	Z	DC	С	1	1000	d	quuu
x04h/ x84h ⁽²⁾	FSR0L	Indirect Dat	Indirect Data Memory Address 0 Low Pointer								0000	uuuu	uuuu
x05h/ x85h ⁽²⁾	FSR0H	Indirect Dat	Indirect Data Memory Address 0 High Pointer								0000	0000	0000
x06h/ x86h ⁽²⁾	FSR1L	Indirect Dat	ndirect Data Memory Address 1 Low Pointer									uuuu	uuuu
x07h/ x87h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ad	ldress 1 High	Pointer					0000	0000	0000	0000
x08h/ x88h ⁽²⁾	BSR	—	—	—			BSR<4:0>			0	0000	0	0000
x09h/ x89h ⁽²⁾	WREG	Working Re	egister		•					0000	0000	uuuu	uuuu
x0Ah/ x8Ah ^{(1),(2)}	PCLATH	—	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000	0000	-000	0000
x0Bh/ x8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000	0000	0000	0000
x0Ch/ x8Ch	—	Unimpleme	Unimplemented								_	-	_
x1Fh/ x9Fh													

 $Legend: \qquad x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

4: Unimplemented, read as '1'.

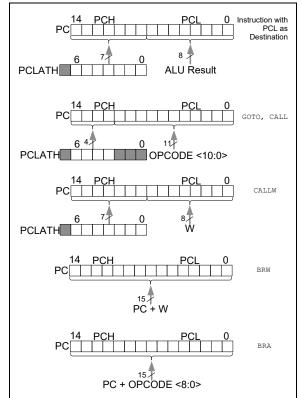
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 31	•			•		•	•	•			•
F80h ⁽²⁾	INDF0		this location ical register)	uses content	s of FSR0H/F	SR0L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
F81h ⁽²⁾	INDF1		this location ical register)	uses content	s of FSR1H/F	SR1L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
F82h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	ant Byte					0000 0000	0000 0000
F83h ⁽²⁾	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000	q quuu
F84h ⁽²⁾	FSR0L	Indirect Da	ta Memory Ac	dress 0 Low	Pointer					0000 0000	uuuu uuuu
F85h ⁽²⁾	FSR0H	Indirect Da	ta Memory Ad	ldress 0 High	Pointer					0000 0000	0000 0000
F86h ⁽²⁾	FSR1L	Indirect Da	ta Memory Ac	ldress 1 Low	Pointer					0000 0000	uuuu uuuu
F87h ⁽²⁾	FSR1H	Indirect Da	ta Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
F88h ⁽²⁾	BSR	_	— — — BSR<4:0>								0 0000
F89h ⁽²⁾	WREG	Working Re	egister	0000 0000	uuuu uuuu						
F8Ah ^{(1),(2})	PCLATH	-	Write Buffer for the upper 7 bits of the Program Counter								
F8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
F8Ch	—	Unimpleme	ented		_	_					
 FE3h											
FE4h	STATUS						Z SHAD	DC -	C SHAD	xxx	uuu
	SHAD						-	SHAD	-		
FE5h	WREG_	Working Re	egister Norma	l (Non-ICD) S	Shadow					XXXX XXXX	uuuu uuuu
	SHAD										
FE6h	BSR_				Bank Select	Register Nori	mal (Non-ICI	D) Shadow		x xxxx	u uuuu
	SHAD										
FE7h	PCLATH_		Program Co	unter Latch H	ligh Register I	Normal (Non-I	ICD) Shadov	v		-xxx xxxx	uuuu uuuu
	SHAD										
FE8h	FSR0L_	Indirect Da	ta Memory Ac	ldress 0 Low	Pointer Norm	al (Non-ICD)	Shadow			XXXX XXXX	uuuu uuuu
	SHAD										
FE9h	FSR0H_	Indirect Da	ta Memory Ac	ldress 0 High	Pointer Norm	nal (Non-ICD)	Shadow			XXXX XXXX	uuuu uuuu
	SHAD										
FEAh	FSR1L_	Indirect Da	ta Memory Ac	ldress 1 Low	Pointer Norm	al (Non-ICD)	Shadow			XXXX XXXX	uuuu uuuu
	SHAD										
FEBh	FSR1H_	Indirect Da	ta Memory Ac	ldress 1 High	Pointer Norm	nal (Non-ICD)	Shadow			XXXX XXXX	uuuu uuuu
	SHAD										
FECh	—	Unimpleme	ented							-	-
FEDh	STKPTR	—	—	—	Current Stac	k pointer				1 1111	1 1111
FEEh	TOSL	Top of Stac	k Low byte							XXXX XXXX	uuuu uuuu
FEFh	тоѕн	—	— Top of Stack High byte								-uuu uuuu

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are Note 1: transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.


These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS

3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

3.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 3-1). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is 5 bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.


During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

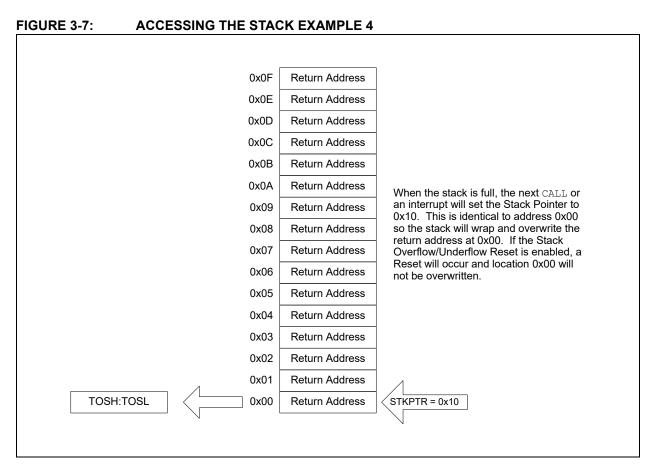

Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack.

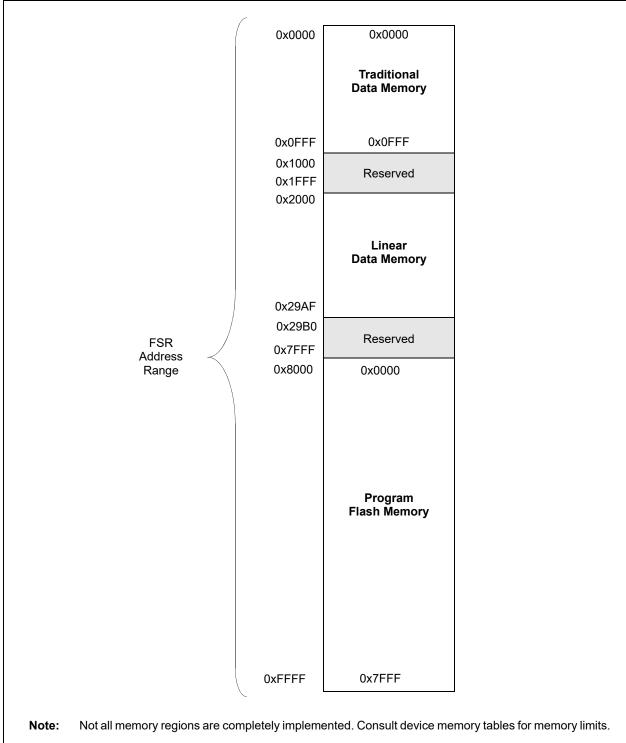
FIGURE 3-4: ACCESSING THE STACK EXAMPLE 1

TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
0x0E	
0x0D	
0x0C	
0x0B	
0x0A	la iti al Ota ala O an Fananati an
0x09	Initial Stack Configuration:
0x08	After Reset, the stack is empty. The empty stack is initialized so the Stack
0x07	Pointer is pointing at 0x1F. If the Stack Overflow/Underflow Reset is enabled, the
0x06	TOSH/TOSL registers will return '0'. If the Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL registers will return the contents of stack address 0x0F.
0x04	
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F Stack Reset Enabled (STVREN = 1)

FIGURE 3-5: ACCESSING THE STACK EXAMPLE 2

3.5.2 OVERFLOW/UNDERFLOW RESET

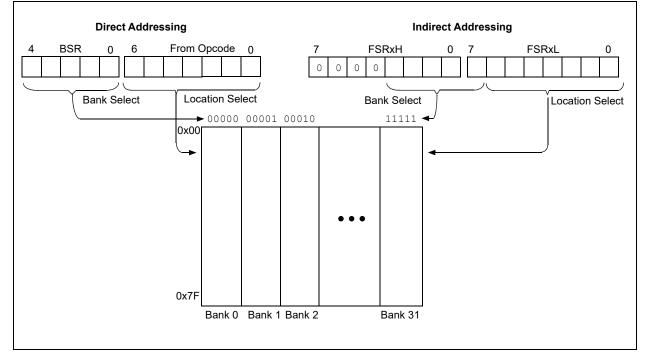
If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.


3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

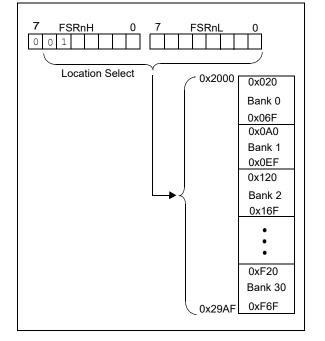
The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory



3.6.1 TRADITIONAL DATA MEMORY

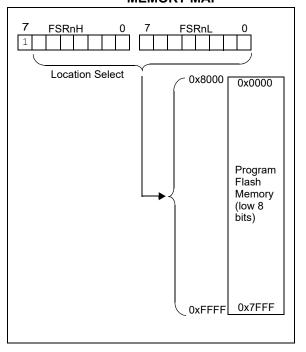
The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.


3.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.


FIGURE 3-10: LINEAR DATA MEMORY MAP

3.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH MEMORY MAP

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

4.2 Register Definitions: Configuration

REGISTER 4-1: CONFIGURATION WORD 1

		R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD
		bit 13					bit 8
R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>	
bit7							bit (
Legend:							
R = Readable bit		P = Programma	able bit	U = Unimpleme	nted hit read a	ac '1'	
'0' = Bit is cleared		'1' = Bit is set		-n = Value wher			
0 – Bit is cleared		I – DILIS SEL				DUIK EIASE	
bit 13	1 = Fail-Safe Clo	fe Clock Monitor E ock Monitor is ena ock Monitor is disa	bled				
bit 12	1 = Internal/Exte	xternal Switchove rnal Switchover m rnal Switchover m	ode is enabled				
bit 11	1 = CLKOUT fu	ock Out Enable bit Inction is disabled Inction is enabled	. I/O or oscillato	r function on RA6/ JT	CLKOUT		
bit 10-9	11 = BOR enabl 10 = BOR enabl	ed during operation	on and disabled				
bit 8	1 = Data memor	e Protection bit ⁽²⁾ y code protection y code protection					
bit 7		ction bit ⁽³⁾ mory code protect mory code protect					
bit 6	MCLRE: RE3/M If LVP bit = 1: This bit is ig If LVP bit = 0: 1 = RE3/MC	CLR/VPP Pin Fund nored. CLR/VPP pin functio	ction Select bit on is MCLR; Wea	a <u>k pull-</u> up enabled. MCLR internally d	isabled; Weak p	oull-up under con	trol of WPUE;
bit 5			bit ⁽¹⁾				
bit 4-3	11 = WDT enab 10 = WDT enab	led while running olled by the SWD	and disabled in				

- 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
- **3:** The entire program memory will be erased when the code protection is turned off.

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0
- FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 110 = ECM: External Clock, Medium-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 101 = ECL: External Clock, Low-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 100 = INTOSC oscillator: I/O function on RA7/OSC1/CLKIN
 - 011 = EXTRC oscillator: RC function on RA7/OSC1/CLKIN
 - 010 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 000 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
- Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

REGISTER 4-2: CONFIGURATION WORD 2

		R/P-1/1	R/P-1/1	U-1	R/P-1/1	R/P-1/1	R/P-1/1
		LVP ⁽¹⁾	DEBUG ⁽³⁾	_	BORV	STVREN	PLLEN
		bit 13					bit 8
U-1	U-1	R/P-1/1	R/P-1/1	U-1	U-1	R/P-1/1	R/P-1/1
		VCAPE	:N<1:0> ⁽²⁾	—	—	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Readable		P = Program		•	mented bit, rea		
'0' = Bit is clea	ared	'1' = Bit is se	et	-n = Value w	hen blank or a	fter Bulk Erase	
L:1 1 0			ing Frable bit	(1)			
bit 13	1 = Low-voltag		ning Enable bit ⁽ g enabled	(•)			
			PP must be use	ed for program	ming		
bit 12	DEBUG: In-Ci						
						e general purpo	
				CLK and RB/	/ICSPDAT are	dedicated to the	he debugger
bit 11	Unimplement			(4)			
bit 10			age Selection		utrin naint aal	atad	
			(VBOR – see T (VBOR – see T				
bit 9		-	derflow Reset	, -	,		
2.1.0	-		flow will cause				
	0 = Stack Ove	rflow or Under	flow will not cau	use a Reset			
bit 8	PLLEN: PLL E						
	1 = 4xPLL ena						
h# 7 C	0 = 4xPLL disa		3				
bit 7-6	Unimplement				2)		
bit 5-4	00 = VCAP fur		ulator Capacito	or Enable bits	_,		
	01 = VCAP fur						
	10 = VCAP fur	nctionality is en	abled on RA6				
	11 = No capa	-					
bit 3-2	Unimplement	ed: Read as '1					
bit 1-0			elf-Write Prote	ction bits			
	<u>16 kW Flash n</u>	<u>nemory</u> : te protection of	f				
		•		0h to 3EEEh n	nav be modifie	d by EECON c	ontrol
						ified by EECON	
	000 = 000	h to 3FFFh wri	te-protected, n	o addresses n	nay be modifie	d by EECON c	ontrol
Note 1: Th	e LVP bit cannot b	pe programme	d to '0' when Pi	rogramming m	ode is entered	l via LVP.	
2: Re	ads as '11' on PI	C16LF193X on	ly.				
3: Th	e DEBUG bit in C	onfiguration W	ords is manage	ed automatica	lly by device d	evelopment too	ols including

debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

4: See Table 30-5, VBOR parameter, for specific trip point voltages.

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal access to the program memory and data EEPROM are unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See Section 4.4 "Write Protection" for more information.

4.3.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the \overline{CPD} bit. When $\overline{CPD} = 0$, external reads and writes of data EEPROM are inhibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 4.6 "Device ID and Revision ID**" for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification*" (DS41397).

4.6 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See Section 11.5 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device ID

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

'1' = Bit is set

		R	R	R	R	R	R
		DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
		bit 13					bit 8
R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:

R = Readable bit

'0' = Bit is cleared

-n = Value when blank or after Bulk Erase

bit 13-5 **DEV<8:0>:** Device ID bits

DEVICE	DEVICEID<13:0>					
DEVICE	DEV<8:0>	REV<4:0>				
PIC16F1938	10 0011 101	X XXXX				
PIC16F1939	10 0011 110	X XXXX				
PIC16LF1938	10 0100 101	X XXXX				
PIC16LF1939	10 0100 110	X XXXX				

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision (see the table under DEV<8:0> above).

Note 1: This location cannot be written.

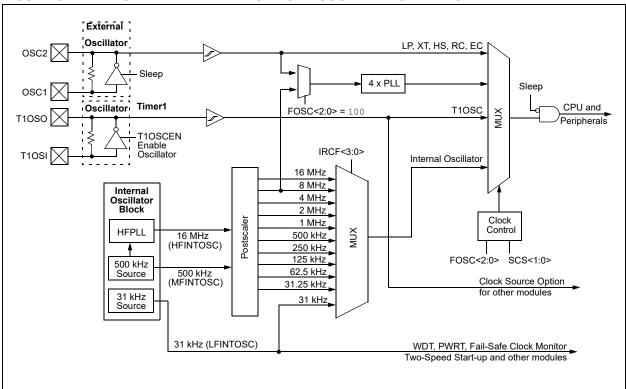
5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources


The oscillator module can be configured in one of eight clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. RC External Resistor-Capacitor (RC)
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz)

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The RC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces low, medium, and high frequency clock sources, designated LFINTOSC, MFINTOSC, and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

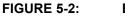
The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See Section 5.3 "Clock Switching" for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

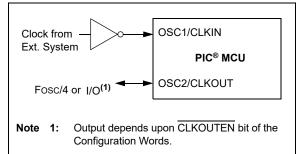
An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.


5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has three power modes to select from through Configuration Words:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

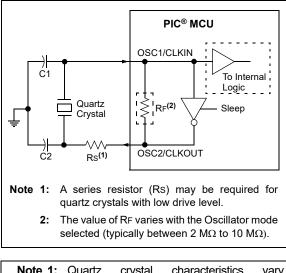
The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

: EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).


XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 5-3:


QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION

(XT OR HS MODE)

- **2:** The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ).
- **3:** An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

5.2.1.3 Oscillator Start-up Timer (OST)

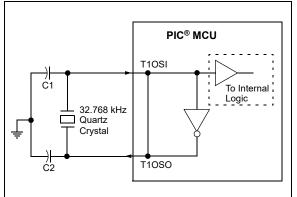
If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 5.4 "Two-Speed Clock Start-up Mode").

5.2.1.4 4X PLL

The oscillator module contains a 4X PLL that can be used with both external and internal clock sources to provide a system clock source. The input frequency for the 4X PLL must fall within specifications. See the PLL Clock Timing Specifications in the applicable Electrical Specifications Chapter.

The 4X PLL may be enabled for use by one of two methods:

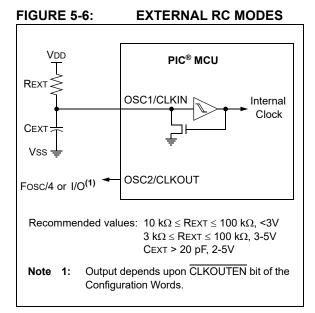

- 1. Program the PLLEN bit in Configuration Words to a '1'.
- Write the SPLLEN bit in the OSCCON register to a '1'. If the PLLEN bit in Configuration Words is programmed to a '1', then the value of SPLLEN is ignored.

5.2.1.5 TIMER1 Oscillator

The Timer1 Oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 Oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 5.3 "Clock Switching**" for more information.

FIGURE 5-5: QUARTZ CRYSTAL OPERATION (TIMER1 OSCILLATOR)


- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - 3: For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

5.2.1.6 External RC Mode

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required.

The RC circuit connects to OSC1. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. The function of the OSC2/CLKOUT pin is determined by the state of the CLKOUTEN bit in Configuration Words.

Figure 5-6 shows the external RC mode connections.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- · threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 5.3 "Clock Switching"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 2. The **MFINTOSC** (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast startup oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The Low Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- HFINTOSC
 - 32 MHz (requires 4X PLL)
 - 16 MHz
 - 8 MHz
 - 4 MHz
 - 2 MHz
 - 1 MHz
 - 500 kHz (Default after Reset)
 - 250 kHz
 - 125 kHz
 - 62.5 kHz
 - 31.25 kHz
- LFINTOSC

- 31 kHz

Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4X PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4xPLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4xPLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables in the applicable Electrical Specifications Chapter.

IGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC/→ MFINTOSC	LFINTOSC (FSCM and WDT disabled)
HFINTOSC/ MFINTOSC	Oscillator Delay ⁽¹⁾ 2-cycle Sync Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
HFINTOSC/ MFINTOSC	LFINTOSC (Either FSCM or WDT enabled)
HFINTOSC/ MFINTOSC	2-cycle Sync
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
lfintosc 🛶	HFINTOSC/MFINTOSC
	LFINTOSC turns off unless WDT or FSCM is enabled
LFINTOSC	Osoillator Delay ⁽¹⁾ 2-cycle Sync Running
HFINTOSC/ MFINTOSC	Osoillator Delay ⁽¹⁾ 2-cycle Sync Running
IRCF <3:0>	= 0 X ≠ 0
System Clock	
Note 1: See T	able 5-1, Oscillator Switching Delays, for more information.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<2:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.
 - Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bits of the OSCCON register. The user can monitor the OSTS bit of the OSCSTAT register to determine the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the Timer1 oscillator.

5.3.3 TIMER1 OSCILLATOR

The Timer1 oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 oscillator is enabled using the T1OSCEN control bit in the T1CON register. See Section 21.0 "Timer1 Module with Gate Control" for more information about the Timer1 peripheral.

5.3.4 TIMER1 OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the Timer1 Oscillator is ready to be used before it is selected as a system clock source. The Timer1 Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the Timer1 oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the Timer1 oscillator.

5.3.5 CLOCK SWITCHING BEFORE SLEEP

When clock switching from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock Status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT, or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

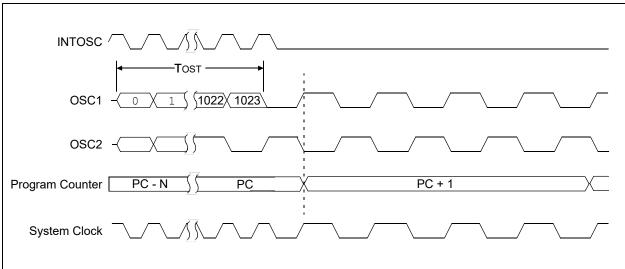
- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 5-1: OSCILLATOR SWITCHING DELAYS
--

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 cycles
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)


Note 1: PLL inactive.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

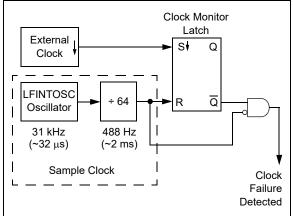


FIGURE 5-8: TWO-SPEED START-UP

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Timer1 Oscillator and RC).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

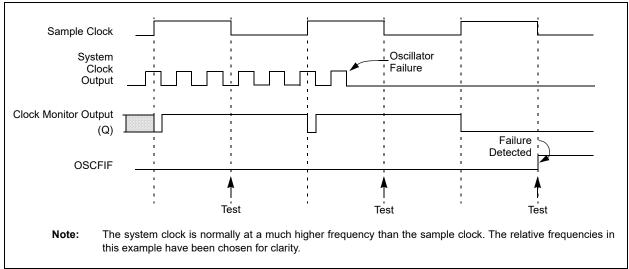
The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 5-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING


The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note:	Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the Status bits in the OSCSTAT register to verify the oscillator start-up and that the system clock switchover has successfully completed
	completed.

FIGURE 5-10: FSCM TIMING DIAGRAM

5.6 Register Definitions: Oscillator Control

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/	0 R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0	
SPLLE	N	IRCF<3:0>			_	SCS	<1:0>	
bit 7							bit C	
Legend:								
R = Read	able bit	W = Writable	W = Writable bit U = Unimplemented bit			id as '0'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and B	OR/Value at all	other Resets	
'1' = Bit is	set	'0' = Bit is clea	ared					
bit 7	<u>If PLLEN in 0</u> SPLLEN bit <u>If PLLEN in 0</u> 1 = 4x PLL		ords = <u>1:</u> _L is always e	nabled (subject	t to oscillator re	equirements)		
bit 6-3	1111 = 16 M 1110 = 8 M 1101 = 4 M 1100 = 2 M 1011 = 1 M 1010 = 500 1001 = 250 1000 = 125 0111 = 500 0110 = 250 0101 = 125 0100 = 62.5 0011 = 31.2	0 = 4x PLL is disabled IRCF<3:0>: Internal Oscillator Frequency Select bits 1111 = 16 MHz HF 1110 = 8 MHz or 32 MHz HF (see Section 5.2.2.1 "HFINTOSC") 1101 = 4 MHz HF 1100 = 2 MHz HF 1010 = 2 MHz HF 1011 = 1 MHz HF 1010 = 500 kHz HF ⁽¹⁾ 1001 = 250 kHz HF ⁽¹⁾ 1000 = 125 kHz HF ⁽¹⁾ 0111 = 500 kHz MF (default upon Reset) 0110 = 250 kHz MF 0101 = 125 kHz MF 0100 = 62.5 kHz MF 0111 = 31.25 kHz HF ⁽¹⁾ 0110 = 31.25 kHz MF						
bit 2 bit 1-0	Unimpleme SCS<1:0>: \$ 1x = Interna 01 = Timer1	nted: Read as ' System Clock Se I oscillator block oscillator	elect bits	Configuration V	Vords			

Note 1: Duplicate frequency derived from HFINTOSC.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/q	R-0/q	
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit			mented bit, read			
u = Bit is uncl	0	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cleared		q = Condition	al			
bit 7	<u>If T1OSCEN</u> 1 = Timer1 0 = Timer1 <u>If T1OSCEN</u>	oscillator is rea oscillator is not	dy ready					
bit 6	PLLR 4x PLL Ready bit 1 = 4x PLL is ready 0 = 4x PLL is not ready							
bit 5	OSTS: Oscillator Start-up Time-out Status bit 1 = Running from the clock defined by the FOSC<2:0> bits of the Configuration Words 0 = Running from an internal oscillator (FOSC<2:0> = 100)							
bit 4	HFIOFR: High-Frequency Internal Oscillator Ready bit 1 = HFINTOSC is ready 0 = HFINTOSC is not ready							
bit 3	 HFIOFL: High-Frequency Internal Oscillator Locked bit 1 = HFINTOSC is at least 2% accurate 0 = HFINTOSC is not 2% accurate 							
bit 2	MFIOFR: Medium-Frequency Internal Oscillator Ready bit 1 = MFINTOSC is ready 0 = MFINTOSC is not ready							
bit 1	LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready							
bit 0	HFIOFS: High-Frequency Internal Oscillator Stable bit 1 = HFINTOSC is at least 0.5% accurate 0 = HFINTOSC is not 0.5% accurate							

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	—		TUN<5:0>						
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Rese					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits						
	100000 = M	inimum frequer	ncy						
	•								
	•								
	111111 =								
		scillator module	e is running at	the factory-calil	prated frequen	cy.			
	000001 =								
	•								
	•								
	011110 =								
	011111 = M	aximum freque	ency						

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRCF	<3:0>		_	SCS<1:0>		71	
OSCSTAT	T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	72	
OSCTUNE	_	_		TUN<5:0>						
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE ⁽¹⁾	89	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	-	CCP2IF ⁽¹⁾	92	
T1CON	TMR1C	MR1CS<1:0> T1CKPS<1:0>			T1OSCEN	T1SYNC		TMR10N	188	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources. Note 1: PIC16F1934 only.

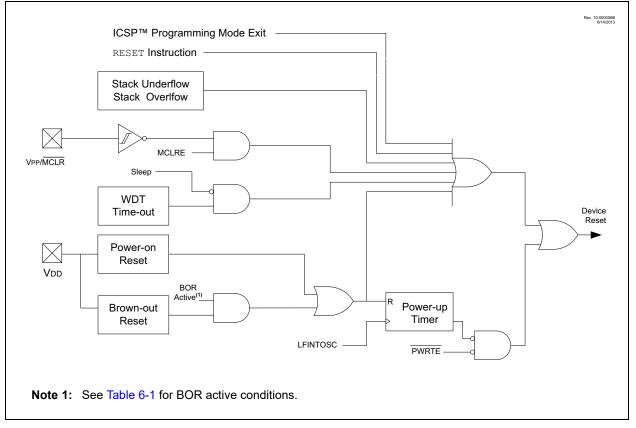
TABLE 5-3:	SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES
IADLE 3-3.	JUNIMART OF CONFIGURATION WORD WITH CLOCK JOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2 Bit 9/1		Bit 8/0	Register on Page
	13:8		_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		FOSC<2:0>			52
	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	54
CONFIG2	7:0	_	_	VCAPEN<1:0>(1)			— WRT<1:0>		<1:0>	54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F193X only.

6.0 RESETS


There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- · Stack Underflow
- · Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 6-1.

FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

6.1 **Power-on Reset (POR)**

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

6.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- BOR is always on
- · BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 6-3 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Device Operation upon release of POR	Device Operation upon wake- up from Sleep
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾	
1.0		Awake	Active	Moite for I	20D ready
10	Х	Sleep	Disabled	Waits for BOR ready	
0.1	1	х	Active	Begins immediately	
01	0	~	Disabled	Begins immediately	
00	Х	х	Disabled	Begins immediately	

TABLE 6-1:BOR OPERATING MODES

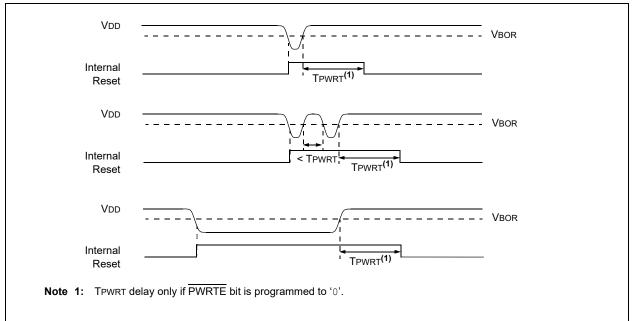
Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP


When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device startup is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 6-2: BROWN-OUT SITUATIONS

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	α = The Dresser cut Decet circuit is in estimated

0 = The Brown-out Reset circuit is inactive

6.4 MCLR

The MCLR is an optional external input that can reset the device. The MCLR function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

TABLE 6-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR	
0	0	Disabled	
1	0	Enabled	
x	1	Enabled	

6.4.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.4.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See Section 12.11 "PORTE Registers" for more information.

6.5 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See Section 10.0 "Watchdog Timer" for more information.

6.6 RESET Instruction

A RESET instruction will cause a device Reset. The RI bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.7 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2** "**Overflow/Underflow Reset**" for more information.

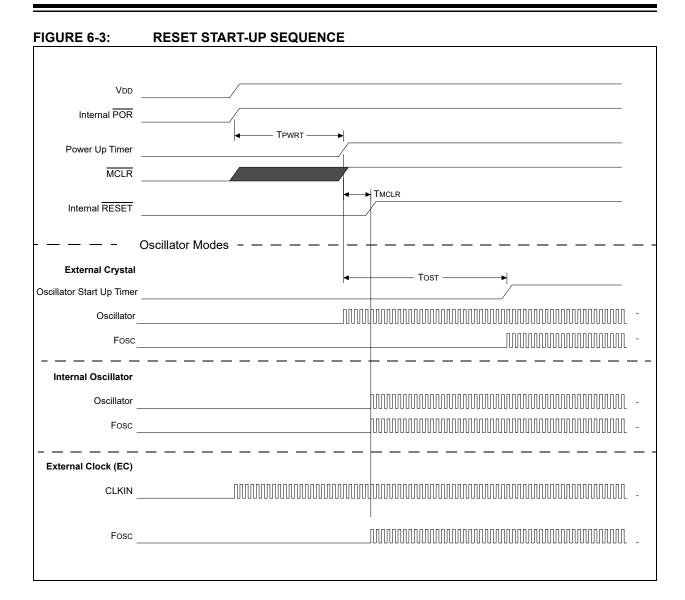
6.8 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.9 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the PWRTE bit of Configuration Words.


6.10 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	0	х	1	1	Power-on Reset
0	0	1	1	0	х	0	х	Illegal, TO is set on POR
0	0	1	1	0	х	х	0	Illegal, PD is set on POR
0	0	1	1	u	0	1	1	Brown-out Reset
u	u	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

6.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

6.13 Register Definitions: Power Control (PCON)

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	—	RMCLR	RI	POR	BOR
bit 7	•						bit 0

Legend:		
HC = Bit is cleared by hardw	vare	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or set to '0' by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or set to '0' by firmware
bit 5-4	Unimplemented: Read as '0'
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

IADLE 0-	ABLE 6-5: SUMMART OF REGISTERS ASSOCIATED WITH RESETS											
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
BORCON	SBOREN				_		_	BORRDY	76			
PCON	STKOVF	STKUNF	_	—	RMCLR	RI	POR	BOR	80			
STATUS	—	_		TO	PD	Z	DC	С	22			
WDTCON	—	_	WDTPS<4:0>					SWDTEN	100			

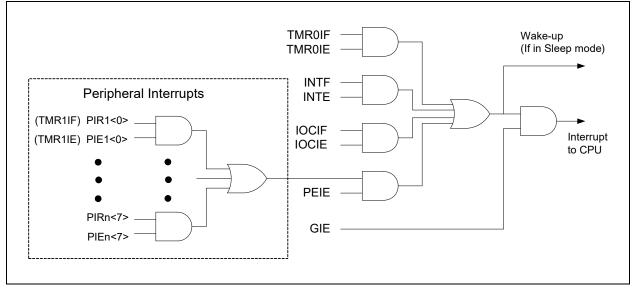
TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

FIGURE 7-1: INTERRUPT LOGIC

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

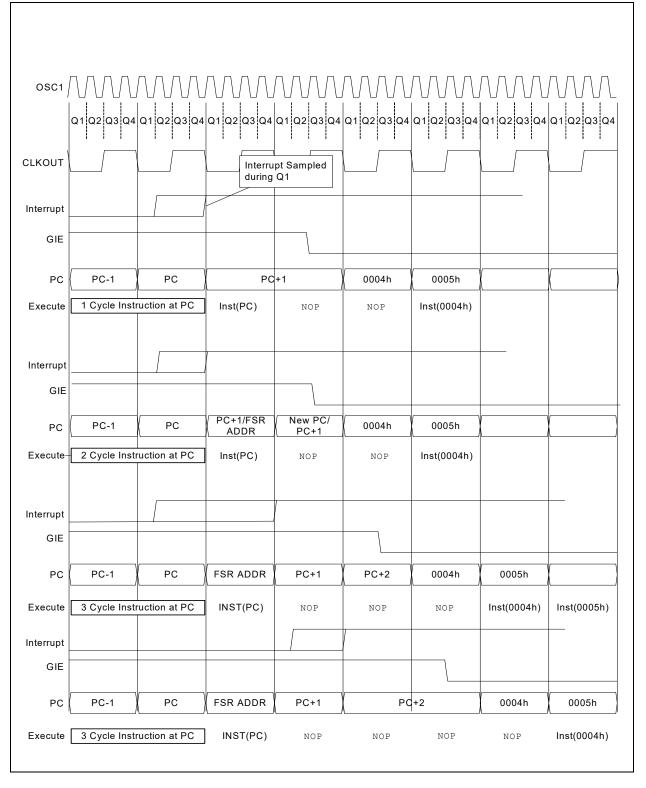
The following events happen when an interrupt event occurs while the GIE bit is set:

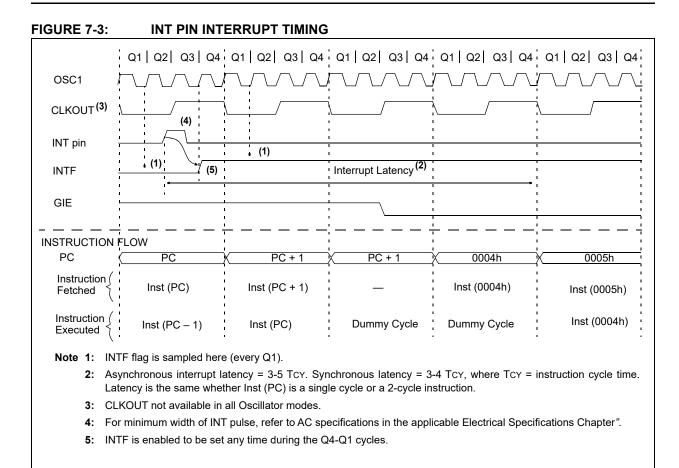
- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.


Note 1:	Individual	inte	rrupt	flag	bit	s are	e set,
	regardless enable bits		the	state	of	any	other


2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 9.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

7.6 Register Definitions: Interrupt Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0				
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF				
bit 7		·					bit				
Legend:											
R = Readable		W = Writable			nented bit, read						
u = Bit is unch	anged	x = Bit is unkı		-n/n = Value a	at POR and BO	R/Value at all of	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	GIE: Global I	nterrupt Enable	e bit								
	1 = Enables	all active interru									
	0 = Disables	•									
bit 6		eral Interrupt E all active periph									
		all peripheral ir		>							
bit 5		ner0 Overflow Ir	-	e bit							
		1 = Enables the Timer0 interrupt									
		the Timer0 inte	•								
bit 4	INTE: INT External Interrupt Enable bit										
	 Enables the INT external interrupt Disables the INT external interrupt 										
bit 3		upt-on-Change	•								
		the interrupt-on									
		the interrupt-or	-								
bit 2		er0 Overflow Ir		it							
		gister has overl gister did not ov									
bit 1		ternal Interrupt									
bit i		external interru									
		external interru		ır							
bit 0		upt-on-Change									
		least one of the the interrupt-on									
		ine interrupt-on	-change pins i	lave changed	รเลเษ						

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Note 1: The IOCIF Flag bit is read-only and cleared when all the Interrupt-on-Change flags in the IOCBF register have been cleared by software.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE					
bit 7							bit					
Legend:												
R = Readable	hit	W = Writable	hit	II = Unimpler	nented bit, read	as '0'						
u = Bit is unchanged x = Bit is unknow				•			ther Resets					
'1' = Bit is set			x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets 0' = Bit is cleared									
bit 7	TMR1GIE: Ti	mer1 Gate Inte	errupt Enable b	oit								
	1 = Enables the Timer1 Gate Acquisition interrupt											
		= Disables the Timer1 Gate Acquisition interrupt										
bit 6	ADIE: A/D Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt											
		the ADC interru										
bit 5		T Receive Inter	-	it								
		he USART rec										
		the USART red	•									
bit 4	TXIE: USART Transmit Interrupt Enable bit											
	 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt 											
bit 3					e bit							
-	SSPIE: Synchronous Serial Port (MSSP) Interrupt Enable bit 1 = Enables the MSSP interrupt											
	0 = Disables the MSSP interrupt											
bit 2		P1 Interrupt En										
	 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt 											
bit 1		R2 to PR2 Mat	-	nable bit								
	 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt 											
bit 0	TMR1IE: Timer1 Overflow Interrupt Enable bit											
		he Timer1 ove	•									
		the Timer1 ove										

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0					
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE					
bit 7							bit 0					
Legend:												
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'												
u = Bit is uncl	•	x = Bit is unkı		-n/n = Value a	at POR and BOF	R/Value at all	other Resets					
'1' = Bit is set		'0' = Bit is cle	ared									
L:4 7		U										
bit 7		OSFIE: Oscillator Fail Interrupt Enable bit 1 = Enables the Oscillator Fail interrupt										
		the Oscillator										
bit 6												
	C2IE: Comparator C2 Interrupt Enable bit 1 = Enables the Comparator C2 interrupt											
	0 = Disables	the Comparate	or C2 interrupt	:								
bit 5	C1IE: Compa	arator C1 Interr	upt Enable bit									
		the Comparato										
L:1 4	0 = Disables the Comparator C1 interrupt											
bit 4	EEIE: EEPROM Write Completion Interrupt Enable bit 1 = Enables the EEPROM Write Completion interrupt											
	1 = Enables the EEPROM write Completion interrupt 0 = Disables the EEPROM Write Completion interrupt											
bit 3	BCLIE: MSS	P Bus Collision	Interrupt Ena	ble bit								
	1 = Enables	1 = Enables the MSSP Bus Collision Interrupt										
	0 = Disables the MSSP Bus Collision Interrupt											
bit 2		Module Interru	•									
		 1 = Enables the LCD module interrupt 0 = Disables the LCD module interrupt 										
bit 1		nted: Read as '	-									
bit 0	•	P2 Interrupt En										
		the CCP2 inter										
		the CCP2 inte										
Note: Bit	PEIE of the IN	ITCON register	must be									
	t to enable any											

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0						
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res '1' = Bit is set '0' = Bit is cleared bit 7 Unimplemented: Read as '0' bit 6 CCP5IE: CCP5 Interrupt 0 = Disables the CCP5 interrupt 0 = Disables the CCP5 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Ma					1 1 1									
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res '1' = Bit is set '0' = Bit is cleared bit 7 Unimplemented: Read as '0' bit 6 CCPSIE: CCP5 Interrupt Enable bit 1 = Enables the CCP5 interrupt 0 = Disables the CCP5 interrupt 0 = Disables the CCP4 Interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt <td>bit 7</td> <td></td> <td>001412</td> <td></td> <td>TWITCHE</td> <td></td> <td></td> <td>bit</td>	bit 7		001412		TWITCHE			bit						
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Ress '1' = Bit is set '0' = Bit is cleared bit 7 Unimplemented: Read as '0' bit 6 CCP5IE: CCP5 Interrupt Enable bit 1 = Enables the CCP5 interrupt 0 = Disables the CCP5 interrupt 0 = Disables the CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the								Dit t						
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res '1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Res bit 7 Unimplemented: Read as '0'	Legend:													
'1' = Bit is set '0' = Bit is cleared bit 7 Unimplemented: Read as '0' bit 6 CCP5IE: CCP5 Interrupt Enable bit 1 = Enables the CCP5 interrupt 0 = Disables the CCP5 interrupt bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP3 interrupt bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables	R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'							
bit 7 Unimplemented: Read as '0' bit 6 CCP5IE: CCP5 Interrupt Enable bit 1 = Enables the CCP5 interrupt 0 = Disables the CCP5 interrupt bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0'	u = Bit is un	changed	x = Bit is unki	nown	-n/n = Value a	at POR and BC	R/Value at all ot	her Resets						
bit 6 CCPSIE: CCP5 Interrupt Enable bit 1 = Enables the CCP5 interrupt 0 = Disables the CCP5 interrupt bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt	'1' = Bit is se	et	'0' = Bit is cle	ared										
bit 6 CCP5IE: CCP5 Interrupt Enable bit 1 = Enables the CCP5 interrupt 0 = Disables the CCP5 interrupt bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt 0 = Disables the CCP4 interrupt bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the INTCON														
1 = Enables the CCP5 interrupt 0 = Disables the CCP4 interrupt bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP4 interrupt bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0'	bit 7	Unimplemer	nted: Read as '	0'										
0 = Disables the CCP5 interrupt bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP3 Interrupt bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match Interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt 1 = Enables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt	bit 6		•											
bit 5 CCP4IE: CCP4 Interrupt Enable bit 1 = Enables the CCP4 interrupt 0 = Disables the CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR6 to PR6 Match Interrupt 0 = Disables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt														
1 = Enables the CCP4 interrupt 0 = Disables the CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt 0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrup	L:1 C			•										
0 = Disables the CCP4 interrupt bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Wote: Bit PEIE of the INTCON register must be	DIT 5													
bit 4 CCP3IE: CCP3 Interrupt Enable bit 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be														
0 = Disables the CCP3 interrupt bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be	bit 4	·												
bit 3 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match Interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be														
1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be														
0 = Disables the TMR6 to PR6 Match interrupt bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be	bit 3	TMR6IE: TM	TMR6IE: TMR6 to PR6 Match Interrupt Enable bit											
bit 2 Unimplemented: Read as '0' bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be														
bit 1 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be	1.11.0				errupt									
1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be		•												
0 = Disables the TMR4 to PR4 Match interrupt bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be	bit 1													
bit 0 Unimplemented: Read as '0' Note: Bit PEIE of the INTCON register must be														
Note: Bit PEIE of the INTCON register must be	bit 0				ondpt									
		opionici		~										
	Netes 7			manual ha										
			•											

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

R/W-0/0	0 R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0						
TMR1GI	F ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF						
bit 7	·						bit (
Legend:													
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'							
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets						
'1' = Bit is :	set	'0' = Bit is cle	ared										
bit 7		imer1 Gate Inte	arrunt Elag hit										
	1 = Interrupt		indprinag bir										
	•	is not pending											
bit 6	ADIF: A/D C	converter Interru	pt Flag bit										
	1 = Interrupt	= Interrupt is pending											
	•	is not pending											
bit 5		RT Receive Inter	rrupt Flag bit										
	1 = Interrupt	t is pending											
bit 4	•	T Transmit Inte	rrunt Elag bit										
	1 = Interrupt		indprindg bir										
		is not pending											
bit 3	SSPIF: Syno	SSPIF: Synchronous Serial Port (MSSP) Interrupt Flag bit											
		1 = Interrupt is pending											
	-	is not pending											
bit 2		P1 Interrupt Fla	ag bit										
	1 = Interrupt	is pending											
bit 1	•	ner2 to PR2 Inte	errunt Flag hit										
	1 = Interrupt		indprindg bir										
		is not pending											
bit 0	TMR1IF: Tin	ner1 Overflow Ir	nterrupt Flag I	bit									
	1 = Interrupt												
	0 = Interrupt	is not pending											
Note:	Interrupt flag bits	are set when ar	interrupt										
	condition occurs,												
	its corresponding Enable bit, GIE,												
	User software	should ens											
	appropriate interre		clear prior										
	to enabling an inte	errupt.											

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0				
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF				
bit 7							bit (
Legend:						(0)					
R = Readabl		W = Writable			mented bit, read						
u = Bit is und	0	x = Bit is unk		-n/n = Value a	at POR and BOF	R/Value at all	other Resets				
'1' = Bit is se	et	'0' = Bit is cle	ared								
bit 7	OSFIF: Osci	OSFIF: Oscillator Fail Interrupt Flag									
	1 = Interrupt										
bit 6	•	arator C2 Interr	unt Elog								
DILO	1 = Interrupt		upt Flag								
	•	is not pending									
bit 5	C1IF: Compa	arator C1 Interr	upt Flag								
	1 = Interrupt 0 = Interrupt	is pending is not pending									
bit 4	-	OM Write Com	pletion Interru	pt Flag bit							
	1 = Interrupt										
		is not pending									
bit 3		P Bus Collisior	Interrupt Flag	g bit							
	1 = Interrupt	is pending is not pending									
bit 2			ot Flag bit								
		CDIF: LCD Module Interrupt Flag bit = Interrupt is pending									
		is not pending									
bit 1	Unimpleme	n ted: Read as '	0'								
bit 0	CCP2IF: CC	P2 Interrupt Fla	ag bit								
	1 = Interrupt										
	0 = Interrupt	is not pending									
Note: Ir	nterrupt flag bits a	are set when an	interrupt								
	ondition occurs,										
	s corresponding										
	nable bit, GIE, Iser software	of the INTCON should ens	0								
-	ppropriate interru										
			•								

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

to enabling an interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—					
bit 7							bit 0					
1												
Legend: R = Reada	bla bit	W = Writable	hit	II – Unimplor	nented bit, read	l ee '0'						
u = Bit is u		x = Bit is unki		•	at POR and BO		ther Resets					
'1' = Bit is s	•	'0' = Bit is cle				N value at all 0						
bit 7	Unimplemer	nted: Read as '	0'									
bit 6	-	P5 Interrupt Fla										
	1 = Interrupt											
	•	is not pending										
bit 5		P4 Interrupt Fla	ıg bit									
		1 = Interrupt is pending 0 = Interrupt is not pending										
bit 4	-	P3 Interrupt Fla	a hit									
		1 = Interrupt is pending										
		= Interrupt is not pending										
bit 3	TMR6IF: TM	TMR6IF: TMR6 to PR6 Match Interrupt Flag bit										
	1 = Interrupt 0 = Interrupt	is pending is not pending										
bit 2	Unimplemer	nted: Read as '	0'									
bit 1	TMR4IF: TM	R4 to PR4 Mate	ch Interrupt Fla	ag bit								
	1 = Interrupt 0 = Interrupt	is pending is not pending										
bit 0	Unimplemer	nted: Read as '	0'									
	Interrupt flag bits a											
	condition occurs, r its corresponding	U U										
	Enable bit, GIE, o											
	User software											
	appropriate interru to enabling an inte		ciear prior									
		n apu										

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
OPTION_REG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		179
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE		CCP2IE	89
PIE3		CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF	92
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF		TMR4IF	_	93

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupts.

8.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F193X has an internal Low Dropout Regulator (LDO) which provides operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The PIC16LF193X operates at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The VCAPEN<1:0> bits of Configuration Words determines which pin is assigned as the VCAP pin. Refer to Table 8-1.

 VCAPEN<1:0>
 Pin

 00
 RA0

 01
 RA5

 10
 RA6

 11
 No VCAP

TABLE 8-1:VCAPEN<1:0> SELECT BITS

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in Section 30.0 "Electrical Specifications".

TABLE 8-2:SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	LVP	LVP DEBUG		BORV	STVREN	PLLEN	F 4
CONFIG2	7:0			VCAPEN<1:0> ⁽¹⁾				WRT1	WRT0	54

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

Note 1: PIC16F193X only.

9.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 oscillator is unaffected and peripherals that operate from it may continue operation in Sleep.
- 7. ADC is unaffected, if the dedicated FRC clock is selected.
- 8. Capacitive Sensing oscillator is unaffected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 10. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- · I/O pins should not be floating
- · External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- · Modules using Timer1 oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.11** "**Determining the Cause of a Reset**".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

FIGURE 9-1:

- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

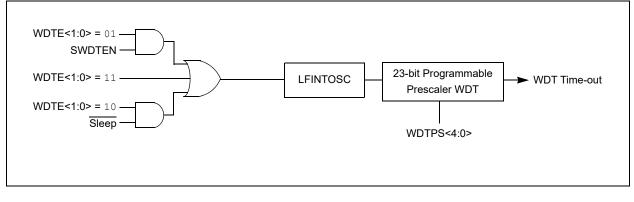
OSC1 ⁽¹⁾ CLKOUT ⁽²	1 1	Q1 Q2 Q3 Q4 -\\\		Tost ⁽³⁾		Q1 Q2 Q3 Q4 /~_/~_/~_/ \/	Q1 Q2 Q3 Q4 /~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q1 Q2 Q3 Q4
Interrupt flag			/	4	Interrupt Laten	cy ⁽⁴⁾		i
GIE bit (INTCON reg	.) .) 		Processor in		' <u>'</u> '' '			
nstruction Flov PC	v X <u>PC</u> X	PC + 1	Х РС	+ 2	X PC + 2	PC+2	X <u>0004h</u> X	0005h
Instruction {	Inst(PC) = Sleep	Inst(PC + 1)	1		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
	XT, HS or LP Oscilla CLKOUT is not avai TOST = 1024 TOSC. "Two-Speed Clock GIE = 1 assumed. II	lable in XT, HS, o This delay does Start-up Mode "	or LP Oscillato not apply to E ').	C, RC ar	nd INTOSC Oscilla	tor modes or Two	-Speed Start-up (se	

WAKE-UP FROM SLEEP THROUGH INTERRUPT

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	140
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	140
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	140
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	89
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	92
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93
STATUS	—	—	—	TO	PD	Z	DC	С	22
WDTCON	_	_		١	•	SWDTEN	100		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.


10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- · Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See the Electrical Specifications Chapters for the LFINTOSC tolerances.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
1.0	37	Awake	Active
10	Х	Sleep	Disabled
0.1	1	х	Active
01	0	~	Disabled
00	Х	Х	Disabled

TABLE 10-2: WDT CLEARING CONDITIONS

10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail
- WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register are changed to indicate the event. See **Section 3.0** "Memory Organization" and STATUS register (Register 3-1) for more information.

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

10.6 Register Definitions: Watchdog Control

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0	
	_			WDTPS<4:0	>		SWDTEN	
bit 7							bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is und	changed	x = Bit is unkr	nown	-m/n = Value	at POR and BO	DR/Value at all	other Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared					
bit 7-6	Unimpleme	ented: Read as '	0'					
bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits								
		Prescale Rate						
	00000 = 1	:32 (Interval 1 m	s typ)					
		:64 (Interval 2 m						
		:128 (Interval 4 r						
		:256 (Interval 8 r						
		:512 (Interval 16 :1024 (Interval 3						
		:2048 (Interval 6						
		:4096 (Interval 1	21.7					
		:8192 (Interval 2						
		:16384 (Interval	•••					
		:32768 (Interval :65536 (Interval		at value)				
		:131072 (2 ¹⁷) (Ir						
	01101 = 1	:262144 (2 ¹⁸) (Ir	nterval 8s typ)					
		:524288 (2 ¹⁹) (Ir						
	01111 = 1	:1048576 (2 ²⁰) (Interval 32s ty	/p)				
	10000 = 1	:2097152 (2 ²¹) (:4194304 (2 ²²) (Interval 64s ty	/p)				
	10001 = 1 10010 = 1	:4194304 (2 ⁻²) (:8388608 (2 ²³) (Interval 128s	typ) typ)				
		. , ,		,				
	10011 = F	Reserved. Result	s in minimum	interval (1:32)				
	•							
	•							
	11111 = F	Reserved. Result	s in minimum	interval (1:32)				
bit 0	SWDTEN: S	Software Enable	/Disable for W	/atchdog Timer	bit			
	If WDTE<1:	<u>0> = 00</u> :						
	This bit is ig							
	If WDTE<1:							
	1 = WDT is							
	0 = WDT is <u>If WDTE<1</u> :							
	This bit is ig							

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			—	SCS<1:0>		71
STATUS	—	—	—	TO	PD	Z	DC	С	22
WDTCON	—	_			WDTPS<4:0>	>		SWDTEN	100

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8		_	FCMEN	IESO CLKOUTEN		BOREN<1:0>		CPD	50
CONFIGI	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		FOSC<2:0>			52

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The Data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- · EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EED-ATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Words, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

11.2 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. Refer to Section 30.0 "Electrical Specifications". If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

11.2.1 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD and CFGS control bits of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 11-1: DATA EEPROM READ

BANKSEL	EEADRL		;
MOVLW	DATA_EE	ADDR	;
MOVWF	EEADRL		;Data Memory
			;Address to read
BCF	EECON1,	CFGS	;Deselect Config space
BCF	EECON1,	EEPGI	;Point to DATA memory
BSF	EECON1,	RD	;EE Read
MOVF	EEDATL,	W	;W = EEDATL

Note: Data EEPROM can be read regardless of the setting of the CPD bit.

11.2.2 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set the WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

11.2.3 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- Software Malfunction

11.2.4 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the \overline{CPD} bit in the Configuration Words to '0'.

When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from replacing your program with a program that will access the contents of the data EEPROM.

EXAMPLE 11-2: DATA EEPROM WRITE

		DATA_EE EEADRL DATA_EE EEDATL EECON1, EECON1,	DATA CFGS EEPGD	
Required Sequence	MOVWF MOVLW MOVWF BSF BSF BCF	55h EECON2 OAAh EECON2 EECON1, INTCON, EECON1,	WR GIE WREN	;Disable INTs. ; ;Write 55h ; ;Write AAh ;Set WR bit to begin write ;Enable Interrupts ;Disable writes ;Wait for write to complete ;Done

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 0	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Flash ADDR	 (PC + 1	EEADRH,EEADRL	PC + 3	PC + 4	PC + 5
Flash Data	INSTR (PC) INSTR (PC + 1) EEDATH,EEDATL INSTR (PC + 3) INSTR (PC + 4)					
	INSTR(PC - 1) executed here	BSF EECON1,RD executed here	INSTR(PC + 1) executed here	Forced NOP executed here	INSTR(PC + 3) executed here	INSTR(PC + 4) executed here
RD bit	 		, 		 	
EEDATH EEDATL Register	 			Χ		

11.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash Program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Words.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion			
	of a previously programmed row, then the			
	contents of the entire row must be read			
	and saved in RAM prior to the erase.			

The number of data write latches may not be equivalent to the number of row locations. During programming, user software may need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write latches may vary by device. See Table 11-1 for details.

11.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the Least and Most Significant address bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD control bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPs. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - 2: Flash program memory can be read regardless of the setting of the CP bit.

TABLE 11-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/Boundary	Number of Write Latches/Boundary
PIC16(L)F1938 PIC16(L)F1939	32 words, EEADRL<4:0> = 00000	32 words, EEADRL<4:0> = 00000

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI: PROG ADDR LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSELEEADRL; Select Bank for EEPROM registersMOVLWPROG_ADDR_LO;MOVWFEEADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWLEEADRH; Store MSB of address
          EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
   BSF
              INTCON,GIE ; Disable interrupts
EECON1,RD ; Initiate read
   BCF
   BSF
   NOP
                                   ; Executed (Figure 11-1)
   NOP
                                   ; Ignored (Figure 11-1)
   BSF INTCON,GIE ; Restore interrupts
   MOVF EEDATL,W
                                 ; Get LSB of word
   MOVWF PROG_DATA_LO ; Store in user location
           EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
   MOVE
   MOVWF
```

11.3.2 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the EEADRH:EEADRL register pair with the address of new row to be erased.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD, FREE, and WREN bits of the EECON1 register.
- 4. Write 55h, then AAh, to EECON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the EECON1 register to begin the erase operation.
- 6. Poll the FREE bit in the EECON1 register to determine when the row erase has completed.

See Example 11-4.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

11.3.3 WRITING TO FLASH PROGRAM MEMORY

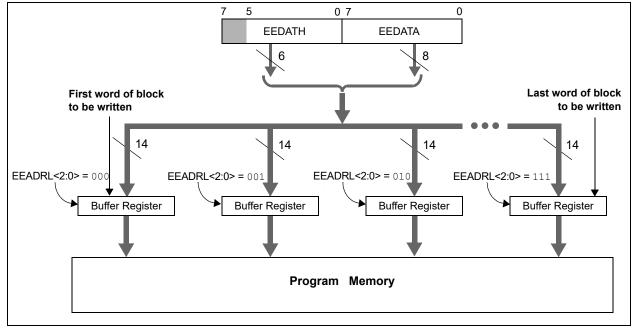
Program memory is programmed using the following steps:

- 1. Load the starting address of the word(s) to be programmed.
- 2. Load the write latches with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-2 (block writes to program memory with 8 write latches) for more details. The write latches are aligned to the address boundary defined by EEADRL as shown in Table 11-1. Write operations do not cross these boundaries. At the completion of a program memory write operation, the write latches are reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a block of program memory. These steps are divided into two parts. First, all write latches are loaded with data except for the last program memory location. Then, the last write latch is loaded and the programming sequence is initiated. A special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. This unlock sequence should not be interrupted.

- 1. Set the EEPGD and WREN bits of the EECON1 register.
- 2. Clear the CFGS bit of the EECON1 register.
- Set the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the EEADRH:EEADRL register pair with the address of the location to be written.
- 5. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 6. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The write latch is now loaded.
- 7. Increment the EEADRH:EEADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 11. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The entire latch block is now written to Flash program memory.


It is not necessary to load the entire write latch block with user program data. However, the entire write latch block will be written to program memory.

An example of the complete write sequence for eight words is shown in Example 11-5. The initial address is loaded into the EEADRH:EEADRL register pair; the eight words of data are loaded using indirect addressing.

Note: The code sequence provided in Example 11-5 must be repeated multiple times to fully program an erased program memory row. After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the write operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the write takes place (i.e., the last word of the block write). This is not Sleep mode as the clocks and peripherals will

continue to run. The processor does not stall when LWLO = 1, loading the write latches. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

EXAM	EXAMPLE 11-4: ERASING ONE ROW OF PROGRAM MEMORY							
; This	row erase i	routine assumes	the following:					
; 1. A	valid addre	ess within the	erase block is loaded in ADDRH:ADDRL					
; 2. A	DDRH and ADI	ORL are located	in shared data memory 0x70 – 0x7F (common RAM)					
	BCF BANKSEL MOVF MOVWF MOVF BSF BCF BSF	EEADRL ADDRL,W EEADRL ADDRH,W EEADRH EECON1,EEPGD EECON1,CFGS	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Point to program memory ; Not configuration space ; Specify an erase operation</pre>					
	BSF		; Enable writes					
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor ; halts to begin erase sequence ; Processor will stop here and wait for erase complete. ; after erase processor continues with 3rd instruction</pre>					
	BCF BSF		; Disable writes ; Enable interrupts					

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

; 1. Th ; 2. Ea ; st ; 3. A	e 16 bytes ch word of		following: ded, starting at the address in DATA_ADDR ten is made up of two adjacent bytes in DATA ADDR,
; 2. Ea ; st ; 3. A	ch word of		
; st ; 3. A		data to be writt	and when is made up of two adjacent bytes in DAWA APAR
; st ; 3. A			CON TO WARE AN OT CMO ANJACCHE DYCCO TH DATA ADDA!
; 3. A		ttle endian forma	
			e least significant bits = 000) is loaded in ADDRH:ADDRL
		-	in shared data memory 0x70 - 0x7F (common RAM)
;			
	BCF	INTCON, GIE	; Disable ints so required sequences will execute properly
	BANKSEL	EEADRH	; Bank 3
	MOVE	ADDRH,W	; Load initial address
	MOVWF	EEADRH	:
	MOVE	ADDRL,W	;
	MOVWF	EEADRL	
	MOVLW		, ; Load initial data address
	MOVUE	FSROL	, Load Initial data address
			· . Tood initial data address
	MOVLW	_	; Load initial data address
	MOVWF	FSROH	;
	BSF		; Point to program memory
	BCF		; Not configuration space
	BSF		; Enable writes
	BSF	EECON1,LWLO	; Only Load Write Latches
LOOP			
	MOVIW	FSR0++	; Load first data byte into lower
	MOVWF	EEDATL	;
	MOVIW	FSR0++	; Load second data byte into upper
	MOVWF	EEDATH	;
	MOVF	EEADRL,W	; Check if lower bits of address are '000'
	XORLW	0x07	; Check if we're on the last of 8 addresses
	ANDLW	0x07	;
	BTFSC	STATUS,Z	; Exit if last of eight words,
	GOTO	START WRITE	;
		-	
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
(1)	MOVLW	0AAh	;
nce	MOVWF	EECON2	; Write AAh
•≡ o	BSF	EECON1,WR	; Set WR bit to begin write
Sec.	NOP		; Any instructions here are ignored as processor
ш о			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write to complete.
	1401		, recessor wire scop here and ware for write to complete.
L			· After write processor continues with and instruction
			; After write processor continues with 3rd instruction.
	TNCE		· Ctill loading latabas Transmit address
	INCF	EEADRL,F	; Still loading latches Increment address
	GOTO	LOOP	; Write next latches
START_W			
	BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program
			; memory write
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
g ad	MOVLW	0AAh	;
uire	MOVWF	EECON2	; Write AAh
Required Sequence	BSF	EECON1,WR	; Set WR bit to begin write
м "	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write complete.
			<u>.</u>
			; after write processor continues with 3rd instruction
	BCF	EECON1,WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts
			, 100110p00

11.4 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.
- 8. Repeat steps 6 and 7 as many times as required to reprogram the erased row.

11.5 User ID, Device ID and Configuration Word Access

Instead of accessing program memory or EEPROM data memory, the User IDs, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the EECON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-2.

When read access is initiated on an address outside the parameters listed in Table 11-2, the EEDATH:EEDATL register pair is cleared.

	,			, j
Addre	ss	Function	Read Access	Write Access
8000h-8	003h	User IDs	Yes	Yes
8006	h D	evice ID/Revision ID	Yes	No
8007h-8	008h Confi	guration Words 1 and 2	Yes	No

TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

EXAMPLE 11-3: CONFIGURATION WORD AND DEVICE ID ACCESS

* [* *	This code block will read 1 word of program memory at the memory address: PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; PROG_DATA_HI, PROG_DATA_LO						
	BANKSEL	EEADRL	; Select correct Bank				
	MOVLW	PROG ADDR LO	;				
	MOVWF	EEADRL	; Store LSB of address				
	CLRF	EEADRH	; Clear MSB of address				
	BSF	EECON1,CFGS	; Select Configuration Space				
	BCF	INTCON, GIE	; Disable interrupts				
	BSF	EECON1,RD	; Initiate read				
	NOP		; Executed (See Figure 11-1)				
	NOP		; Ignored (See Figure 11-1)				
	BSF	INTCON, GIE	; Restore interrupts				
	MOVF		; Get LSB of word				
	MOVWF		; Store in user location				
	MOVF		; Get MSB of word				
	MOVWF	PROG_DATA_HI	; Store in user location				
L							

11.6 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEI	L EEDATL	;
MOVF	EEDATL, W	;EEDATL not changed
		;from previous write
BSF	EECON1, R	D ;YES, Read the
		;value written
XORWF	EEDATL, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue

11.7 Register Definitions: EEPROM and Flash Control

REGISTER 11-1: EEDATL: EEPROM DATA LOW-BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchan	ged	x = Bit is unknow	n	-n/n = Value at	POR and BOR/V	alue at all other f	Resets
'1' = Bit is set		'0' = Bit is cleared	1				

bit 7-0 EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH-BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	_		EEDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-0	EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS LOW-BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
EEADR<7:0>								
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH-BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	EEADR<14:8>						
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit C
Legend:							
R = Readable		W = Writable		•	nented bit, read		
S = Bit can on	ly be set	x = Bit is unkı			at POR and BO		other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cl	eared by hardw	are	
bit 7	EEPGD: Flas	h Program/Dat	a EEPROM M	emory Select	bit		
		s program spa s data EEPRO	ce Flash memo M memory	ory			
bit 6			EEPROM or C	Configuration S	Select bit		
		-	, User ID and I	-			
	0 = Accesses	s Flash Progra	m or data EEP	ROM Memory	,		
bit 5		Write Latches					
		-			EPGD = 1 (proc	,	
	1 = The upda		mand does no	ot initiate a w	rite; only the p	rogram memo	ry latches are
			nand writes a v	value from EE	DATH:EEDATL	into program m	emorv latches
					program memo		, ,
	<u> If CFGS = 0 a</u>	and EEPGD =	<u>o:</u> (Accessing o	data EEPROM)		
	LWLO is igno	red. The next \	VR command i	initiates a write	e to the data EE	EPROM.	
bit 4	•	am Flash Erase					
	,	-			EPGD = 1 (prog	,	<i>.</i> .
		orms an erase of erase).	operation on t	he next WR co	ommand (cleare	ed by hardware	after comple
			peration on the	next WR com	mand.		
			<u>0:</u> (Accessing o VR command v		l) h a erase cycle	and a write cyc	cle.
bit 3	WRERR: EEF	PROM Error FI	ag bit				
					sequence atte	mpt or termina	tion (bit is se
			t attempt (write				
hit 0			peration comp	neted normally			
bit 2	-	ram/Erase Ena rogram/erase c					
				am Flash and	data EEPROM		
bit 1	WR: Write Co						
	1 = Initiates a	a program Flas	h or data EEP	ROM program	/erase operatio	n.	
					hardware once	operation is co	mplete.
			set (not cleare			and inactive	
hit 0	0 = Program/ RD: Read Co	•	II IO IIE FIASI		OM is complete	anu mactive.	
bit 0	-		lash or data E		I. Read takes	one cycle DD	is cleared in
			an only be set			one cycle. ND	is cicaled li
	0 = Does not						

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ntrol Register 2			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
S = Bit can only	/ be set	et x = Bit is unknown		-n/n = Value at POR and BOR/Value at all o			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-6: EECON2: EEPROM CONTROL 2 REGISTER

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	114
EECON2	ON2 EEPROM Control Register 2 (not a physical register)								102*
EEADRL	L EEADRL<7:0>							113	
EEADRH	(1) EEADRH<6:0							113	
EEDATL	EEDATL<7:0>							113	
EEDATH	— — EEDATH<5:0>						113		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	89
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	92

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by data EEPROM module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

12.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

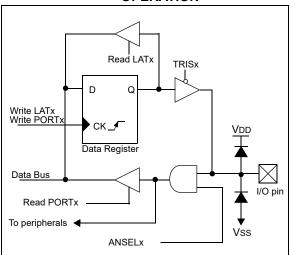
- ANSELx (analog select)
- WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 12-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC
PIC16F1933	•	•	
PIC16F1934	•	•	•

TABLE 12-2: PORT AVAILABILITY PER DEVICE


Device	PORTA	PORTB	PORTC	PORTD	PORTE
PIC16(L)F1938	٠	٠	٠		•
PIC16(L)F1939	٠	٠	٠	٠	•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT OPERATION

EXAMPLE 12-1: INITIALIZING PORTA

; This code example illustrates ; initializing the PORTA register. The ; other ports are initialized in the same ; manner.

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- CS (Client Select)
- P2B output
- CCP2/P2A output
- CCP3/P3A output
- Timer1 Gate
- SR Latch SRNQ output
- Comparator C2 output

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

12.2 Register Definitions: Alternate Pin Function Control

REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	-	nented bit, read				
u = bit is uncl	•	x = Bit is unki		-n/n = Value a	at POR and BOI	R/Value at all o	other Resets		
'1' = Bit is set	t	'0' = Bit is cle	ared						
bit 7	Unimplement	ed: Read as '0	,						
bit 6		CP3 Input/Out		ion bit					
		<u>evices</u> (PIC16F							
		3A function is o			EG9				
	1 = CCP3/P3	3A function is o	n RB5/AN13/	CPS5/CCP3/P	3A/T1G/COM1				
		<u>evices</u> (PIC16F							
		BA function is o							
L# F		3A function is o			SA/TIG/CONT				
bit 5	T1GSEL : Timer1 Gate Input Pin Selection bit 0 = T1G function is on RB5/AN13/CPS5/CCP3/P3A/T1G/COM1								
		ction is on RC4/SDI/SDA/T1G/SEG11							
bit 4	_	P2 PWM B Ou							
		evices (PIC16F	-						
		tion is on RC0							
	1 = P2B func	ction is on RB5	/AN13/P2B/CI	PS5/T1G/COM	1				
	<u>For 40-Pin De</u>	<u>evices</u> (PIC16F	1934/1937/19	939 <u>)</u> :					
	0 = P2B function is on RC0/T1OSO/T1CKI/P2B 1 = P2B function is on RD2/CPS10/P2B								
bit 3		SR Latch nQ O	•						
					PS7/SEG5/VCAF nQ/SS/SEG12/V				
bit 2		Comparator C				CAF			
		-	-		CPS7/SEG5/Vc/	٩P			
					RnQ/SS/SEG12				
bit 1	SSSEL: SS II	nput Pin Select	tion bit						
		ion is on RA5/A							
	$1 = \overline{SS}$ function	ion is on RA0/A	N0/C12IN0-/	C2OUT/SRNQ	/SS/SEG12/Vca	P			
bit 0		CP2 Input/Out							
		2A function is o							
	1 = CCP2/P2	2A function is o	n RB3/AN9/C	12IN2-/CPS3/0	CCP2/P2A/VLCI	23			

12.3 PORTA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 12-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 12-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.3.1 ANSELA REGISTER

The ANSELA register (Register 12-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog						
	mode after Reset. To use any pins as						
	digital general purpose or peripheral						
	inputs, the corresponding ANSEL bits						
	must be initialized to '0' by user software.						

12.3.2 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-3.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 12-3.

TABLE 12-3:	PORTA OUTPUT PRIORITY
-------------	-----------------------

Pin Name	Function Priority ⁽¹⁾
RA0	VCAP SEG12 (LCD) SRNQ (SR Latch) C2OUT (Comparator) RA0
RA1	SEG7 (LCD) RA1
RA2	COM2 (LCD) DACOUT (DAC) RA2
RA3	COM3 (LCD) 28-pin only SEG15 RA3
RA4	SEG4 (LCD) SRQ (SR Latch) C1OUT (Comparator) CCP5, 28-pin only RA4
RA5	VCAP (enabled by Config. Word) SEG5 (LCD) SRNQ (SR Latch) C2OUT (Comparator) RA5
RA6	VCAP (enabled by Config. Word) OSC2 (enabled by Config. Word) CLKOUT (enabled by Config. Word) SEG1 (LCD) RA6
RA7	OSC1/CLKIN (enabled by Config. Word) SEG2 (LCD) RA7

Note 1: Priority listed from highest to lowest.

12.4 Register Definitions: PORTA Control

REGISTER 12-2: PORTA: PORTA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7		•				•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RA<7:0>**: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared			ared					

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSA<5:0>: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	150
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	F<1:0>	151
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	121
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	169
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	169
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>		—	C1NCI	H<1:0>	170
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_	_	C2NCH<1:0>		170
CPSCON0	CPSON	CPSRM	—	—	CPSRN	IG<1:0>	CPSOUT	TOXCS	310
CPSCON1	_	—	_	_		CPSCH<3:0			311
DACCON0	DACEN	DACLPS	DACOE		DACPS	SS<1:0>		DACNSS	162
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	120
LCDCON	LCDEN	SLPEN	WERR	_	CS<	:1:0>	LMUX	(<1:0>	315
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	319
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	319
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		179
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	120
SRCON0	SRLEN		SRCLK<2:0>	>	SRQEN	SRNQEN	SRPS	SRPR	175
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	1<3:0>		272
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120

TABLE 12-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA. Note 1: PIC16F193X only.

TABLE 12-5	SUMMARY OF CONFIGURATION WORD WITH PORTA
IADLL 12-J.	

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8		—	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		52
0015100	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	54
CONFIG2	7:0	_	_	VCAPEN	l<1:0> ⁽¹⁾	_	_	WRT	<1:0>	54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

Note 1: PIC16F193X only.

12.5 PORTB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The TRISB register (Register 12-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.5.1 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-10). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

12.5.2 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference Section 13.0 "Interrupt-On-Change" for more information.

12.5.3 ANSELB REGISTER

The ANSELB register (Register 12-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

12.5.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-6.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RB0	SEG0 (LCD) CCP4, 28-pin only RB0
RB1	P1C (ECCP1), 28-pin only RB1
RB2	P1B (ECCP1), 28-pin only RB2
RB3	CCP2/P2A RB3
RB4	COM0 P1D, 28-pin only RB4
RB5	COM1 P2B, 28-pin only CCP3/P3A RB5
RB6	ICSPCLK (Programming) ICDCLK (enabled by Config. Word) SEG14 (LCD) RB6
RB7	ICSPDAT (Programming) ICDDAT (enabled by Config. Word) SEG13 (LCD) RB7

TABLE 12-6: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.6 Register Definitions: PORTB Control

REGISTER 12-6: PORTB: PORTB REGISTER

6 RB5	RB4	RB3	DDO				
		TKB0	RB2	RB1	RB0		
					bit 0		
W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'0' = Bit is cle	'0' = Bit is cleared						
	x = Bit is unk		x = Bit is unknown -n/n = Value a	x = Bit is unknown -n/n = Value at POR and BOI	x = Bit is unknown -n/n = Value at POR and BOR/Value at all o		

bit 7-0 **RB<7:0>:** PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 12-7: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 12-8: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 12-9: ANSELB: PORTB ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSB<5:0>**: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-10: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0				CHS<4:0	>		GO/DONE	ADON	150
ANSELB	_		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
APFCON		CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
CCPxCON	PxM≤	<1:0>	DCxB	<1:0>		CCPxM<	:3:0>		218
CPSCON0	CPSON	CPSRM	_	_	CPSRNG	<1:0>	CPSOUT	T0XCS	310
CPSCON1		_	_	_	CPSCH<3:>			311	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	140
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	140
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	140
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	125
LCDCON	LCDEN	SLPEN	WERR	_	CS<1:	0>	LMUX	<1:0>	315
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	319
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	319
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		179
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	125
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	189
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	126

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

12.7 PORTC Registers

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 12-12). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 12-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The TRISC register (Register 12-12) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.7.1 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-8.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in priority list.

Pin Name	Function Priority ⁽¹⁾
RC0	T1OSO (Timer1 Oscillator) CCP2/P2B RC0
RC1	T1OSI (Timer1 Oscillator) CCP2/P2A RC1
RC2	SEG3 (LCD) CCP1/P1A RC2
RC3	SEG6 (LCD) SCL (MSSP) SCK (MSSP) RC3
RC4	SEG11 (LCD) SDA (MSSP) RC4
RC5	SEG10 (LCD) SDO (MSSP) RC5
RC6	ISEG9 (LCD) TX (EUSART) CK (EUSART) CCP3/P3A, 28-pin only RC6
RC7	SEG8 (LCD) DT (EUSART) CCP3/P3B, 28 pin only RC7

TABLE 12-8: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.8 Register Definitions: PORTC Control

REGISTER 12-11: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0

RC<7:0>: PORTC General Purpose I/O Pin bits 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 12-12: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 12-13: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
CCPxCON	PxM	<1:0>	DCxB	<1:0>		CCPxN	/<3:0>		218
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	129
LCDCON	LCDEN	SLPEN	WERR	—	CS<	1:0>	LMUX	<1:0>	315
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	319
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	319
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	129
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM<3:0>				272
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	271
T1CON	TMR10	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	188
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	285
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
Legend:	x = unknown,	u = unchange	ed, - = unimp	lemented loc	ations read a	s '0'. Shadeo	l cells are no	t used by PO	RTC.

TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

12.9 PORTD Registers (PIC16(L)F1939 only)

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 12-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 12-14) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

Note:	PORTD is	available	on	PIC16(L)F1939
	only.			

The TRISD register (Register 12-15) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.9.1 ANSELD REGISTER

The ANSELD register (Register 12-17) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELD bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.9.2 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-10.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in priority list.

Pin Name	Function Priority ⁽¹⁾
RD0	COM3 (LCD) RD0
RD1	CCP4 (CCP) RD1
RD2	P2B (CCP) RD2
RD3	SEG16 (LCD) P2C (CCP) RD3
RD4	SEG17 (LCD) P2D (CCP) RD4
RD5	SEG18 (LCD) P1B (CCP) RD5
RD6	SEG19 (LCD) P1C (CCP) RD6
RD7	SEG20 (LCD) P1D (CCP) RD7

TABLE 12-10: PORTD OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.10 Register Definitions: PORTD Control

REGISTER 12-14: PORTD: PORTD REGISTER⁽¹⁾

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RD<7:0>**: PORTD General Purpose I/O Pin bits 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: PORTD is not implemented on PIC16(L)F1938 devices, read as '0'.

REGISTER 12-15: TRISD: PORTD TRI-STATE REGISTER⁽¹⁾

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISD<7:0>:** PORTD Tri-State Control bits 1 = PORTD pin configured as an input (tri-stated) 0 = PORTD pin configured as an output

- . _____
- Note 1: TRISD is not implemented on PIC16(L)F1938 devices, read as '0'.
 - 2: PORTD implemented on PIC16(L)F1939 devices only.

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits^(1,2)

- **Note 1:** Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is return of actual I/O pin values.
 - 2: PORTD implemented on PIC16(L)F1939 devices only.

REGISTER 12-17: ANSELD: PORTD ANALOG SELECT REGISTER⁽²⁾

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELD register is not implemented on the PIC16(L)F1938. Read as '0'.
 - 3: PORTD implemented on PIC16(L)F1939 devices only.

TABLE 12-11: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD⁽¹⁾

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	133
CCPxCON	PxM≤	<1:0>	DCxB	<1:0>		CCPxM<3:0>			
CPSCON0	CPSON	CPSRM	_	_	CPSRN	IG<1:0>	CPSOUT	T0XCS	310
CPSCON1	_	_	_	_		311			
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	133
LCDCON	LCDEN	SLPEN	WERR	—	CS<1:0> LMUX<1:0>		315		
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	319
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	132
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	132

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.**Note 1:**These registers are not implemented on the PIC16(L)F1938 devices, read as '0'.

12.11 PORTE Registers

PORTE is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The exception is RE3, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTE register (Register 12-18) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE). RE3 reads '0' when MCLRE = 1.

Note:	RE<2:0>	and	TRISE<2:0>	pins	are				
	available on PIC16(L)F1939 only.								

12.11.1 ANSELE REGISTER

The ANSELE register (Register 12-21) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELE bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELE bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

The TRISE register (Register 12-19) controls the PORTE pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISE register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSELE bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.11.2 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each PORTE pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-12.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in priority list.

Function Priority ⁽¹⁾
SEG21 (LCD) CCP3/P3A (CCP) RE0
SEG22 (LCD) P3B (CCP) RE1
SEG23 (LCD) CCP5 (CCP) RE2

TABLE 12-12: PORTE OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.12 Register Definitions: PORTE Control

REGISTER 12-18: PORTE: PORTE REGISTER

U-0	U-0	U-0	U-0	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
_	_	_	-	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RE<3:0>: PORTE I/O Pin bits ⁽¹⁾
	1 = Port pin is > Vін
	0 = Port pin is < Vı∟

Note 1: RE<2:0> are not implemented on the PIC16(L)F1938. Read as '0'.

REGISTER 12-19: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1 ⁽²⁾	R/W-1	R/W-1	R/W-1
	_	_	_	-	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3	Unimplemented: Read as '1'
-------	----------------------------

bit 2-0 TRISE<2:0>: RE<2:0> Tri-State Control bits⁽¹⁾

- 1 = PORTE pin configured as an input (tri-stated)
- 0 = PORTE pin configured as an output

Note 1: TRISE<2:0> are not implemented on the PIC16(L)F1938. Read as '0'.

2: Unimplemented, read as '1'.

REGISTER 12-20: LATE: PORTE DATA LATCH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	
			_	_	LATE2 ⁽²⁾	LATE1 ⁽²⁾	LATE0 ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read a			as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				

bit 7-4 Unimplemented: Read as '0'

'1' = Bit is set

bit 3-0 LATE<3:0>: PORTE Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

2: LATE register is not implemented on the PIC16(L)F1938. Read as '0'

REGISTER 12-21: ANSELE: PORTE ANALOG SELECT REGISTER

'0' = Bit is cleared

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
_	_	_	—	—	ANSE2 ⁽²⁾	ANSE1 ⁽²⁾	ANSE0 ⁽²⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 **ANSE<2:0>**: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

2: ANSELE register is not implemented on the PIC16(L)F1938. Read as '0'

REGISTER 12-22: WPUE: WEAK PULL-UP PORTE REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	U-0	U-0	U-0		
_	_			WPUE3	—	_	_		
bit 7	·						bit 0		
Legend:									
R = Readable bit W = Writable I		bit	U = Unimplemented bit, read as '0'						
u = Bit is un	u = Bit is unchanged x = Bit is unknow		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is s	et	'0' = Bit is clea	ared						
bit 7-4	Unimpleme	nted: Read as '	0'						
bit 3	bit 3 WPUE: Weak Pull-up Register bit								
	1 = Pull-up e 0 = Pull-up c								
h:+ 0 0	•	nted: Deed as f	01						

bit 2-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0		CHS<4:0>				GO/DONE	ADON	150	
ANSELE	_			_	_	ANSE2 ⁽¹⁾	ANSE1 ⁽¹⁾	ANSE0 ⁽¹⁾	136
CCPxCON	PxM≪	<1:0>	DCxB<1:0>		CCPxI		xM<3:0>		218
LATE	_	_	_	_	_	LATE2 ⁽¹⁾	LATE1 ⁽¹⁾	LATE0 ⁽¹⁾	136
LCDCON	LCDEN	SLPEN	WERR	—	CS<	:1:0>	LMUX	<1:0>	315
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	319
PORTE	—			—	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	135
TRISE	_			_	(2)	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	135
WPUE	_	_	_	_	WPUE3	_	_	_	137

TABLE 12-13: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: These bits are not implemented on the PIC16(L)F1938 devices, read as '0'.

2: Unimplemented, read as '1'.

13.0 INTERRUPT-ON-CHANGE

The PORTB pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORT IOC pin, or combination of PORT IOC pins, can be configured to generate an interrupt. The Interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Host Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual PORTB pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each PORTB pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCBPx bit of the IOCBP register is set. To enable a pin to detect a falling edge, the associated IOCBNx bit of the IOCBN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCBPx bit and the IOCBNx bit of the IOCBP and IOCBN registers, respectively.

13.3 Interrupt Flags

The IOCBFx bits located in the IOCBF register are status flags that correspond to the Interrupt-on-change pins of PORTB. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCBFx bits.

13.4 Clearing Interrupt Flags

The individual status flags, (IOCBFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 13-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCBF, W ANDWF IOCBF, F

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCBF register will be updated prior to the first instruction executed out of Sleep.

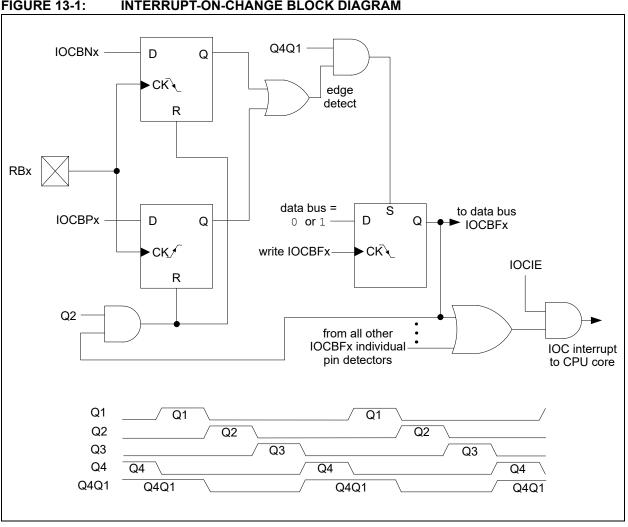


FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM

13.6 Register Definitions: Interrupt-On-Change

REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0		
bit 7				•		•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0

IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0 IOCBF<7:0>: Interrupt-on-Change Flag bits

1 = An enabled change was detected on the associated pin.

- Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
ANSELB	_	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87		
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	140		
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	140		
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	140		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125		

 TABLE 13-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupt-on-Change.

14.0 FIXED VOLTAGE REFERENCE (FVR)

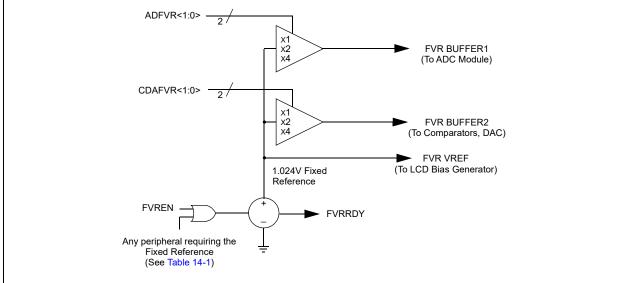
The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter (DAC)
- · Capacitive Sensing (CPS) module
- · LCD bias generator

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, DAC and CPS is routed through two independent programmable gain amplifiers. Each amplifier can be configured to amplify the reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.


The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC, CPS and Comparator module. Reference Section 17.0 "Digital-to-Analog Converter (DAC) Module", Section 18.0 "Comparator Module" and Section 26.0 "Capacitive Sensing (CPS) Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See in the applicable Electrical Specifications Chapter for the minimum delay requirement.

14.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF	/R<1:0>	ADFV	R<1:0>
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncł	•	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	1 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit			
bit 6	1 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is rea		enabled		
bit 5	1 = Tempera	erature Indicato ture Indicator i ture Indicator i	s enabled)			
bit 4	1 = VOUT = V	perature Indica /DD - 4V⊤ (Higł /DD - 2V⊤ (Low	n Range)	lection bit ⁽³⁾			
bit 3-2 bit 1-0	11 = Compar 10 = Compar 01 = Compar 00 = Compar	ator and DAC ator and DAC ator and DAC ator and DAC	and CPS Fixe and CPS Fixe and CPS Fixe and CPS Fixe	d Voltage Refe d Voltage Refe d Voltage Refe	ference Selection rence Periphera rence Periphera rence Periphera rence Periphera sit	al output is 4x (al output is 2x (al output is 1x (2.048V) ⁽²⁾
DIL I-U	11 = ADC Fix 10 = ADC Fix 01 = ADC Fix	ked Voltage Re ked Voltage Re ked Voltage Re	ference Peripl ference Peripl ference Peripl	neral output is neral output is neral output is neral output is	4x (4.096∨) ⁽²⁾ 2x (2.048∨) ⁽²⁾ 1x (1.024∨)		
	RRDY is always and Voltage Refe			,			

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

3: See Section 16.0 "Temperature Indicator Module" for additional information.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFV	२<1:0>	143

Legend: Shaded cells are not used with the Fixed Voltage Reference.

15.0 ANALOG-TO-DIGITAL **CONVERTER (ADC) MODULE**

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 15-1: ADC BLOCK DIAGRAM

VREF-ADNREF = 1 ADNREF = 0 Vss Vdd ADPREF = 00 ADPREF = 11 VREF+ ADPREF = 10 AN0 00000 00001 AN1 VREF-/AN2 00010 VREF+/AN3 00011 AN4 00100 AN5⁽²⁾ 00101 AN6(2) 00110 AN7⁽²⁾ Ref+ Ref 00111 AN8 01000 ADC AN9 01001 10 GO/DONE -AN10 01010 0 = Left Justify AN11 01011 ADFM 1 = Right Justify AN12 01100 ADON⁽¹⁾ 16 AN13 01101 . ADRESH ADRESL

٠

11101

11110 11111

CHS<4:0>

2: Not available on PIC16(L)F1938.

Note 1: When ADON = 0, all multiplexer inputs are disconnected.

Vs

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Temperature Indicator

DAC_output

FVR Buffer1

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined as a digital input may cause the input buf-
	fer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are up to 17 channel selections available:

- AN<13:0> pins
- Temperature Indicator
- DAC Output
- FVR (Fixed Voltage Reference) Output

Refer to Section 16.0 "Temperature Indicator Module", Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation**" for more information.

Note: It is recommended that when switching from an ADC channel of a higher voltage to a channel of a lower voltage, the user Vss channel selects the before connecting to the channel with the lower voltage. If the ADC does not have a dedicated Vss input channel, the Vss selection (DACR<4:0> = b'00000') through the DAC output channel can be used. If the DAC is in use, a free input channel can be connected to Vss, and can be used in place of the DAC.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more details on the fixed voltage reference.

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

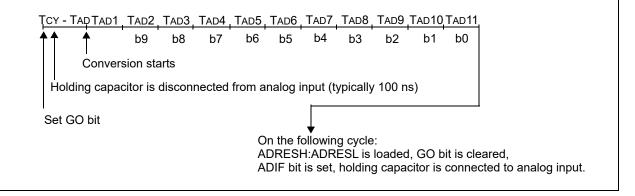
For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in the applicable Electrical Specifications Chapter for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock Period (TAD)		Device Frequency (Fosc) Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾	
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾	
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	

Legend: Shaded cells are outside of recommended range.


Note 1: The FRC source has a typical TAD time of 1.6 μs for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

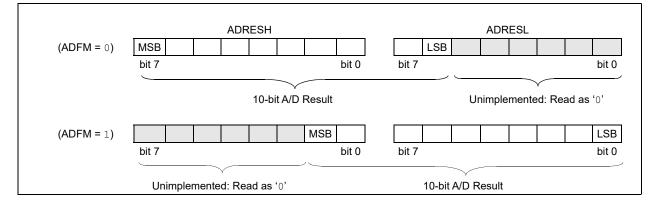
FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.
	or not the Abo interrupt is chabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the <u>ADCON0</u> register must be set to a '1'. Setting the GO/<u>DONE</u> bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.6 "A/D Conver-
	sion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 15-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F193X	CCP5

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 23.0 "Capture/Compare/PWM Modules" for more information.

15.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - · Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.4 "A/D Acquisition Requirements".

EXAMPLE 15-1: A/D CONVERSION

;This code block configures the ADC ;for polling, Vdd and Vss references, Frc ;clock and ANO input. ; ;Conversion start & polling for completion ; are included. ; BANKSEL ADCON1 ; MOVLW B'11110000' ;Right justify, Frc

DIMINOLL	11200111	,
MOVLW	B'11110000'	;Right justify, Frc ;clock
MOVWF	ADCON1	;Vdd and Vss Vref
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RA0 to input
BANKSEL	ANSEL	;
BSF	ANSEL,0	;Set RA0 to analog
BANKSEL	WPUA	;
BCF	WPUA,0	;Disable weak
		;pull-up on RAO
BANKSEL	ADCON0	;
MOVLW	B'00000001'	;Select channel AN0
MOVWF	ADCON0	;Turn ADC On
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0, ADGO	;Start conversion
BTFSC	ADCON0, ADGO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRESH	;
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	;store in GPR space
BANKSEL	ADRESL	;
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	;Store in GPR space

15.3 Register Definitions: ADC Control

REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
oit 7							bit (
ogondi							
Legend: R = Readab	ala hit	\\/ = \\/ritabla	h:t		nantad hit rad	d aa (0)	
		W = Writable			nented bit, rea		
u = Bit is un	0		x = Bit is unknown		at POR and BO	OR/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	-	Analog Channe					
		R (Fixed Voltage		Buffer 1 Output ⁽	2)		
	11110 = DA		,				
		mperature Indica					
	11100 = Re	served. No chai	nnel connected	d.			
	•						
	•						
	01110 = Re	served. No char	nnel connected	ł.			
	01101 = AN						
	01100 = AN	12					
	01011 = AN	11					
	01010 = AN						
	01001 = AN						
	01000 = AN 00111 = AN						
	00111 – AN						
	00101 = AN						
	00100 = AN						
	00011 = AN	3					
	00010 = AN						
	00001 = AN	-					
	000 <u>00 = AN</u>						
bit 1		A/D Conversion					
		version cycle in					
					e A/D convers	ion has complet	ed.
		version complet	ea/not in progi	ress			
bit 0	ADON: ADO						
	1 = ADC is e	isabled and cor		arating current			
			-	-			
	See Section 17.0	-	-			information.	
	See Section 14.0	-					
	See Section 16.0	•			information.		
4 : N	Not available on t	the PIC16(L)F1	933/1936/1938	3.			

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0> — ADNREF		ADPREF<1:0>			
bit 7	·				•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7 bit 6-4	 ADFM: A/D Result Format Select bit 1 = Right justified. Six Most Significant bits of ADRESH are set to '0' when the conversion result loaded. 0 = Left justified. Six Least Significant bits of ADRESL are set to '0' when the conversion result loaded. 						
DIL 0-4	ADCS<2:0>: A/D Conversion Clock Select bits 111 = FRc (clock supplied from a dedicated RC oscillator) 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 011 = FRc (clock supplied from a dedicated RC oscillator) 010 = Fosc/32 001 = Fosc/8 000 = Fosc/2						
bit 3	Unimpleme	nted: Read as '	0'				
bit 2	ADNREF: A/D Negative Voltage Reference Configuration bit 1 = VREF- is connected to external VREF- pin ⁽¹⁾ 0 = VREF- is connected to Vss						
bit 1-0	ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module ⁽¹⁾ 10 = VREF+ is connected to external VREF+ pin ⁽¹⁾ 01 = Reserved 00 = VREF+ is connected to VDD						

Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See the applicable Electrical Specifications Chapter for details.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 15-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | 6<1:0> | — | — | _ | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

REGISTER 15-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	_	—	—	ADRES	S<9:8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-2 **Reserved**: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 15-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | 6<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

15.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V VDD$
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

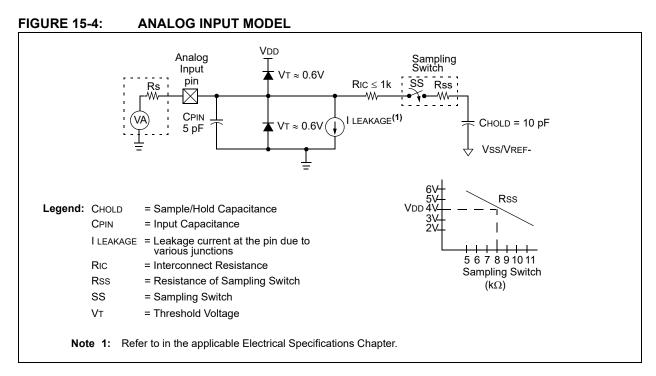
The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

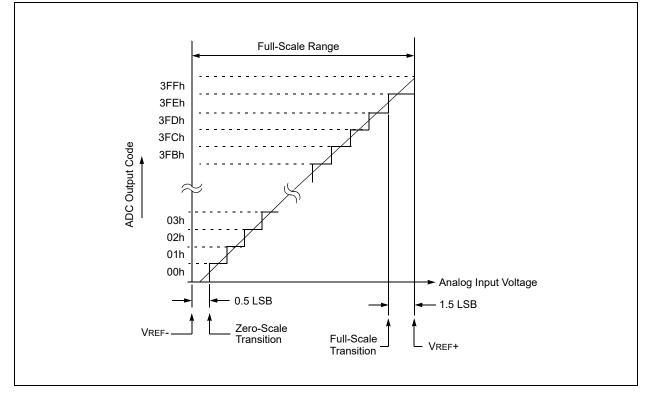
$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number *of bits of the ADC.*

Solving for TC:


$$T_{C} = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/2047)$$
$$= -13.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$
$$= 1.20 \mu s$$

Therefore:


$$TACQ = 2\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	150
ADCON1	ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>	151
ADRESH	A/D Result I	Register High	ı						152
ADRESL	A/D Result I	Register Low							152
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	121
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
ANSELE	—	_	_	_	_	ANSE2	ANSE1	ANSE0	136
CCP1CON	P1M	<1:0>	DC1E	8<1:0>		218			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISE	—	_	—	—	(2)	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	135
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF\	/R<1:0>	ADFV	R<1:0>	143
DACCON0	DACEN	DACLPS	DACOE	—	DACPS	SS<1:0>	—	DACNSS	162
DACCON1	_	—	—			DACR<4:0>			162

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

2: Unimplemented, read as '1'.

16.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, "Use and Calibration of the Internal Temperature Indicator" (DS01333) for more details regarding the calibration process.

16.1 Circuit Operation

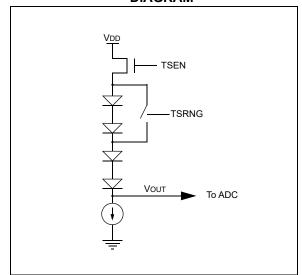
Figure 16-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 16-1 describes the output characteristics of the temperature indicator.

EQUATION 16-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)**" for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 16-1: TEMPERATURE CIRCUIT DIAGRAM

16.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 16-1 shows the recommended minimum VDD vs.range setting.

TABLE 16-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

16.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 15.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

16.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

TABLE 16-2:	SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFVF	२<1:0>	118

Legend: Shaded cells are unused by the temperature indicator module.

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin
- Capacitive Sensing module (CPS)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$\frac{IF DACEN = 1}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE \frac{IF DACEN = 0 \& DACLPS = 1 \& DACR[4:0] = 11111}{VOUT} = VSOURCE +$ $\frac{IF DACEN = 0 \& DACLPS = 0 \& DACR[4:0] = 00000}{VOUT} = VSOURCE -$

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE - = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Section 30.0 "Electrical Specifications".

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equations:

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

FIGURE 17-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

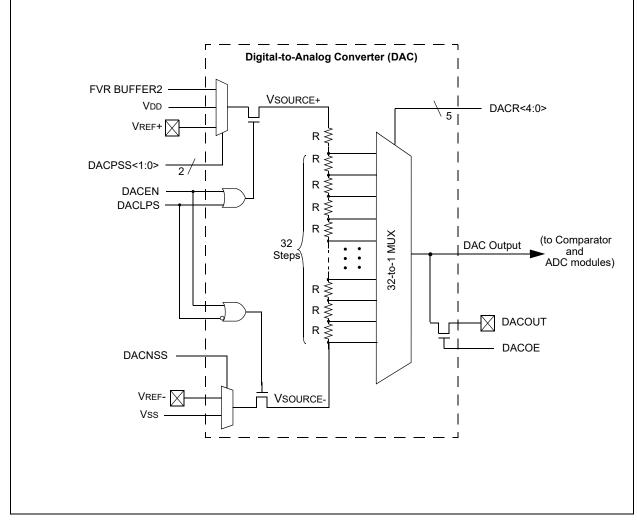
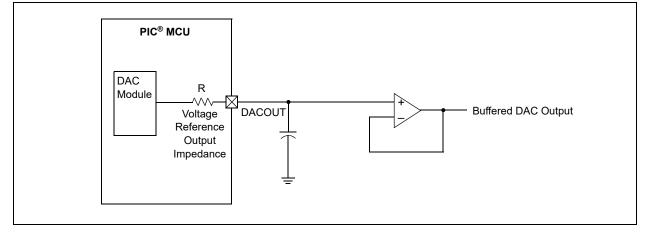



FIGURE 17-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

17.4 Low-Power Voltage State

In order for the DAC module to consume the least amount of power, one of the two voltage reference input sources to the resistor ladder must be disconnected. Either the positive voltage source, (VSOURCE+), or the negative voltage source, (VSOURCE-) can be disabled.

The negative voltage source is disabled by setting the DACLPS bit in the DACCON0 register. Clearing the DACLPS bit in the DACCON0 register disables the positive voltage source.

17.4.1 OUTPUT CLAMPED TO POSITIVE VOLTAGE SOURCE

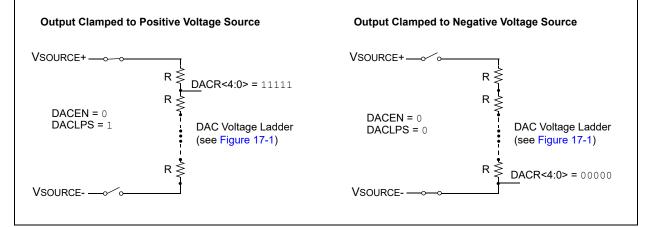
The DAC output voltage can be set to VSOURCE+ with the least amount of power consumption by performing the following:

- · Clearing the DACEN bit in the DACCON0 register.
- Setting the DACLPS bit in the DACCON0 register.
- Configuring the DACPSS bits to the proper positive source.
- Configuring the DACR<4:0> bits to '11111' in the DACCON1 register.

This is also the method used to output the voltage level from the FVR to an output pin. See **Section 17.5 "Operation During Sleep"** for more information.

Reference Figure 17-3 for output clamping examples.

17.4.2 OUTPUT CLAMPED TO NEGATIVE VOLTAGE SOURCE


The DAC output voltage can be set to VSOURCE- with the least amount of power consumption by performing the following:

- · Clearing the DACEN bit in the DACCON0 register.
- Clearing the DACLPS bit in the DACCON0 register.
- Configuring the DACNSS bits to the proper negative source.
- Configuring the DACR<4:0> bits to '00000' in the DACCON1 register.

This allows the comparator to detect a zero-crossing while not consuming additional current through the DAC module.

Reference Figure 17-3 for output clamping examples.

FIGURE 17-3: OUTPUT VOLTAGE CLAMPING EXAMPLES

17.5 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

17.6 Effects of a Reset

A device Reset affects the following:

- · DAC is disabled.
- DAC output voltage is removed from the DACOUT pin.
- The DACR<4:0> range select bits are cleared.
- © 2011-2021 Microchip Technology Inc. and its subsidiaries

17.7 Register Definitions: DAC Control REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0		
DACEN	DACLPS	DACOE	—	DACP	SS<1:0>	—	DACNSS		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'			
u = Bit is unch	nanged	x = Bit is unknow	n	•			Resets		
'1' = Bit is set	0	'0' = Bit is cleare							
bit 7	DACEN: DAC 1 = DAC is er 0 = DAC is di	nabled							
bit 6	1 = DAC Pos	C Low-Power Volta itive reference sou ative reference sou	rce selected	ect bit					
bit 5	1 = DAC volta	Voltage Output Er age level is also an age level is disconr	output on the	•					
bit 4	Unimplement	ed: Read as '0'							
bit 3-2	DACPSS<1:0: 11 = Reserver 10 = FVR Bu 01 = VREF+ p 00 = VDD	ffer2 output	ource Select b	its					
bit 1	Unimplement	ed: Read as '0'							
bit 0 DACNSS: DAC Negative Source Select bits 1 = VREF- 0 = VSS									

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

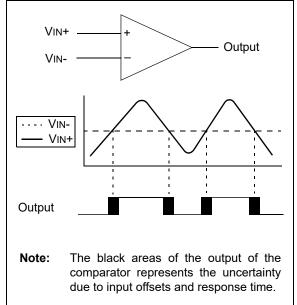
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

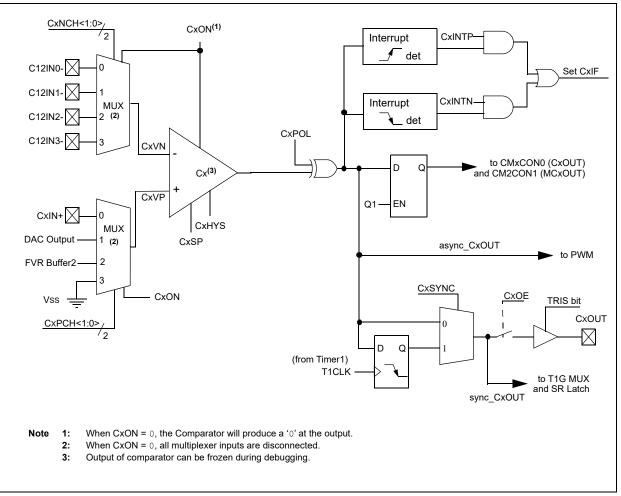
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	۲<1:0>	143
DACCON0	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>	_	DACNSS	162
DACCON1	_		_	DACR<4:0>					162

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

18.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:


- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- · Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference


18.1 Comparator Overview

A single comparator is shown in Figure 18-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 18-1:

SINGLE COMPARATOR

FIGURE 18-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

18.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 18-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 18-2) contain Control bits for the following:

- Interrupt enable
- Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

 Table 18-1
 shows
 the
 output
 state
 versus
 input

 conditions, including polarity control.

 <td

TABLE 18-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 21.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 21-1) for more information.

18.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a Falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- · CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

18.6 Comparator Positive Input Selection

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- · DAC Output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

18.7 Comparator Negative Input Selection

The CxNCH<1:0> bits of the CMxCON0 register direct one of four analog pins to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog
	input, the appropriate bits must be set in
	the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

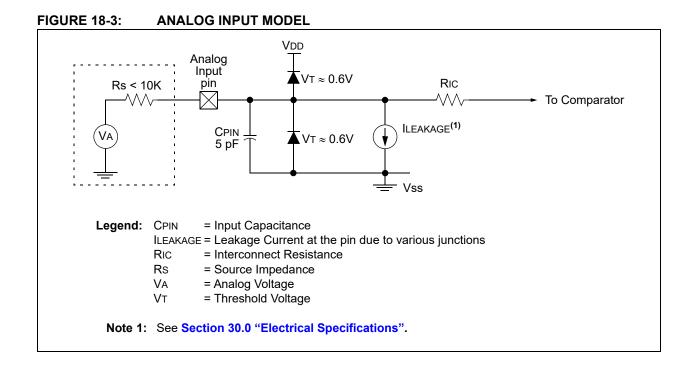
18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Section 30.0 "Electrical Specifications" for more details.

18.9 Interaction with ECCP Logic

The C1 and C2 comparators can be used as general purpose comparators. Their outputs can be brought out to the C1OUT and C2OUT pins. When the ECCP Auto-Shutdown is active it can use one or both comparator signals. If auto-restart is also enabled, the comparators can be configured as a closed loop analog feedback to the ECCP, thereby, creating an analog controlled PWM.

Note: When the Comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.


18.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

18.11 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR CX CONTROL REGISTER 0

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0				
CxON	CxOUT	CxOE	CxPOL	_	CxSP	CxHYS	CxSYNC				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
u = Bit is unc	hanged	x = Bit is unkı	nown	-	at POR and BC		other Resets				
'1' = Bit is set	t	'0' = Bit is cle	ared								
bit 7	CxON: Com	parator Enable	bit								
		ator is enabled									
		0 = Comparator is disabled and consumes no active power									
bit 6		nparator Output									
	<u>If CxPOL = 1 (inverted polarity):</u> 1 = CxVP < CxVN										
	0 = CxVP > CxVN										
	$\frac{ f CxPOL = 0 \text{ (non-inverted polarity)}}{ f = CxV/D \ge CxV/D }$										
	1 = CxVP > CxVN $0 = CxVP < CxVN$										
bit 5	CxOE: Comparator Output Enable bit										
-	-	-		Requires that t	he associated T	RIS bit be clea	red to actually				
	drive the pin. Not affected by CxON.										
1.1.4		is internal only									
bit 4		CxPOL: Comparator Output Polarity Select bit									
	 Comparator output is inverted Comparator output is not inverted 										
bit 3	-	nted: Read as '									
bit 2	CxSP: Comp	parator Speed/F	Power Select b	it							
	•	1 = Comparator operates in normal power, higher speed mode									
	-	0 = Comparator operates in low-power, low-speed mode									
bit 1		nparator Hyster		t							
	 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled 										
bit 0	•	omparator Outp		ıs Mode hit							
			-		onous to chang	des on Timer1	clock source				
	Output u	pdated on the	falling edge of	Timer1 clock s	source.						
	0 = Compara	ator output to T	imer1 and I/O	pin is asynchro	onous.						

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
CxINTP	CxINTP CxINTN CxPCH<1:0>				_	CxNC	H<1:0>			
bit 7	•					1	bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	CxINTP: Con	nparator Interru	ipt on Positive	Going Edge E	nable bits					
	1 = The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit									
				ve going edge	• •					
bit 6	CxINTN: Comparator Interrupt on Negative Going Edge Enable bits									
	1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit									
	0 = No interr	upt flag will be	set on a nega	tive going edge	of the CxOUT	bit				
bit 5-4	CxPCH<1:0>	PCH<1:0>: Comparator Positive Input Channel Select bits								
	11 = CxVP connects to Vss									
	10 = CxVP connects to FVR Voltage Reference									
	01 = CxVP connects to DAC Voltage Reference									
		onnects to CxII								
bit 3-2	Unimplemen	ted: Read as '	0'							
bit 1-0	CxNCH<1:0>: Comparator Negative Input Channel Select bits									
	11 = CxVN c	onnects to C12	2IN3- pin							
		onnects to C12								
		onnects to C12								
	$00 = \mathbf{C} \mathbf{X} \mathbf{V} \mathbf{N} \mathbf{C}$	onnects to C12	linu- pin							

REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	—	_	—	_	_	MC2OUT	MC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC10UT: Mirror Copy of C10UT bit

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C10UT	C10E	C1POL		C1SP	C1HYS	C1SYNC	169
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	169
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	_	_	C1NCI	C1NCH<1:0>	
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_	—	C2NCI	170	
CMOUT	_	_	_	_	_	_	MC2OUT	MC10UT	170
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0> ADFVR<1:0>				143
DACCON0	DACEN	DACLPS	DACOE	_	DACPSS<1:0> — DACNSS				162
DACCON1	_	_	_	DACR<4:0>					162
INTCON	GIE	PEIE	TMR0IE	INTE IOCIE TMR0IF INTE IOCIF				87	
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	89
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	92
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	121
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126

TABLE 18-2:	SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

19.0 SR LATCH

The module consists of a single SR Latch with multiple Set and Reset inputs as well as separate latch outputs. The SR Latch module includes the following features:

- Programmable input selection
- SR Latch output is available externally
- Separate Q and \overline{Q} outputs
- · Firmware Set and Reset

The SR Latch can be used in a variety of analog applications, including oscillator circuits, one-shot circuit, hysteretic controllers, and analog timing applications.

19.1 Latch Operation

The latch is a Set-Reset Latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be Set or Reset by:

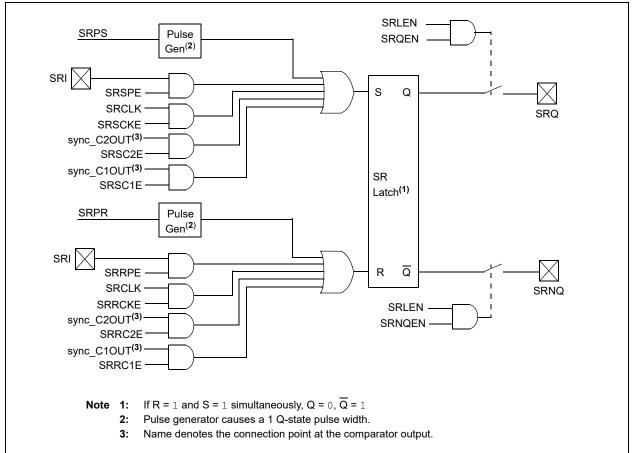
- Software control (SRPS and SRPR bits)
- Comparator C1 output (sync_C1OUT)
- Comparator C2 output (sync_C2OUT)
- SRI pin
- Programmable clock (SRCLK)

The SRPS and the SRPR bits of the SRCON0 register may be used to Set or Reset the SR Latch, respectively. The latch is Reset-dominant. Therefore, if both Set and Reset inputs are high, the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

The output from Comparator C1 or C2 can be used as the Set or Reset inputs of the SR Latch. The output of either Comparator can be synchronized to the Timer1 clock source. See **Section 18.0 "Comparator Module"** and **Section 21.0 "Timer1 Module with Gate Control"** for more information.

An external source on the SRI pin can be used as the Set or Reset inputs of the SR Latch.

An internal clock source is available that can periodically Set or Reset the SR Latch. The SRCLK<2:0> bits in the SRCON0 register are used to select the clock source period. The SRSCKE and SRRCKE bits of the SRCON1 register enable the clock source to Set or Reset the SR Latch, respectively.


19.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the Q and \overline{Q} latch outputs. Both of the SR Latch outputs may be directly output to an I/O pin at the same time. The \overline{Q} latch output pin function can be moved to an alternate pin using the SRNQSEL bit of the APFCON register.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

19.3 Effects of a Reset

Upon any device Reset, the SR Latch output is not initialized to a known state. The user's firmware is responsible for initializing the latch output before enabling the output pins.

FIGURE 19-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

TABLE 19-1: SRCLK FREQUENCY TABLE

19.4 Register Definitions: SR Latch Control

REGISTER 19-1: SRCON0: SR LATCH CONTROL 0 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read a	as '0'	
u = Bit is unch		x = Bit is unkno		•	it POR and BOR		er Resets
'1' = Bit is set	0	'0' = Bit is clear		S = Bit is set o			
bit 7	SRLEN: SR 1 = SR Latc 0 = SR Latc						
bit 6-4	111 = Gener 110 = Gener 101 = Gener 100 = Gener 011 = Gener 010 = Gener 001 = Gener	>: SR Latch Clock rates a 1 Fosc wid rates a 1 Fosc wid	le pulse every le pulse every le pulse every le pulse every le pulse every le pulse every le pulse every	256th Fosc cyc 128th Fosc cyc 64th Fosc cycl 32nd Fosc cyc 16th Fosc cycl 8th Fosc cycle	cle clock cle clock e clock le clock e clock clock		
bit 3	<u>If SRLEN = 1</u> 1 = Q is	s present on the S ernal Q output is <u>)</u> :	RQ pin				
bit 2	SR Latch is disabled SRNQEN: SR Latch \overline{Q} Output Enable bit <u>If SRLEN = 1</u> : 1 = \overline{Q} is present on the SRnQ pin 0 = External \overline{Q} output is disabled <u>If SRLEN = 0</u> : SR Latch is disabled						
bit 1	1 = Pulse se	e Set Input of the s et input for 1 Q-clo ct on set input.					
	SRPR: Pulse						

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'					
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	SRSPE: SR I	_atch Periphera	al Set Enable b	bit							
		n is set when th									
		has no effect or	•	of the SR Latcl	n						
bit 6		SRSCKE: SR Latch Set Clock Enable bit									
		of SR Latch is			h						
bit 5		CLK has no effect on the set input of the SR Latch : SR Latch C2 Set Enable bit									
DIT 5	1 = SR Latch is set when the C2 Comparator output is high										
	0 = C2 Comparator output has no effect on the set input of the SR Latch										
bit 4		Latch C1 Set		•							
	1 = SR Latch	1 = SR Latch is set when the C1 Comparator output is high									
	0 = C1 Comparator output has no effect on the set input of the SR Latch										
bit 3	SRRPE: SR I	Latch Periphera	al Reset Enabl	e bit							
	1 = SR Latch is reset when the SRI pin is high.										
		nas no effect or	•		tch						
bit 2	SRRCKE: SR Latch Reset Clock Enable bit										
		out of SR Latch			tab						
L :1	 SRCLK has no effect on the reset input of the SR Latch SRRC2E: SR Latch C2 Reset Enable bit 										
bit 1				ratar autaut ia	high						
		n is reset when				tch					
bit 0	 0 = C2 Comparator output has no effect on the reset input of the SR Latch SRRC1E: SR Latch C1 Reset Enable bit 										
~	SRRC1E: SR	Latch C1 Res	et Enable bit	·····							
	-	R Latch C1 Res n is reset when			hiah						

REGISTER 19-2: SRCON1: SR LATCH CONTROL 1 REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	121
SRCON0	SRLEN	SRCLK<2:0>			SRQEN	SRNQEN	SRPS	SRPR	175
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	176
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the SR Latch module.

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- · Programmable external clock edge selection
- Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

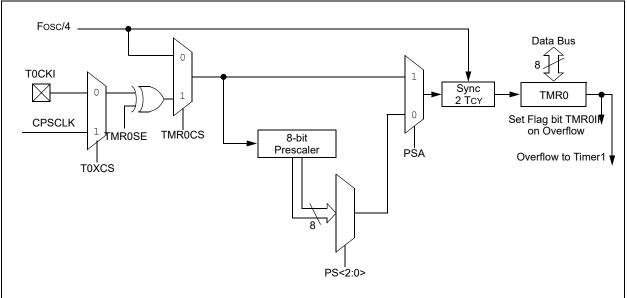
20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION REG register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.


20.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

20.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own						
independent prescaler.							

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

20.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the						
	processor from Sleep since the timer is						
	frozen during Sleep.						

20.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Section 30.0 "Electrical Specifications".

20.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

20.2 Register Definitions: Timer0 Control

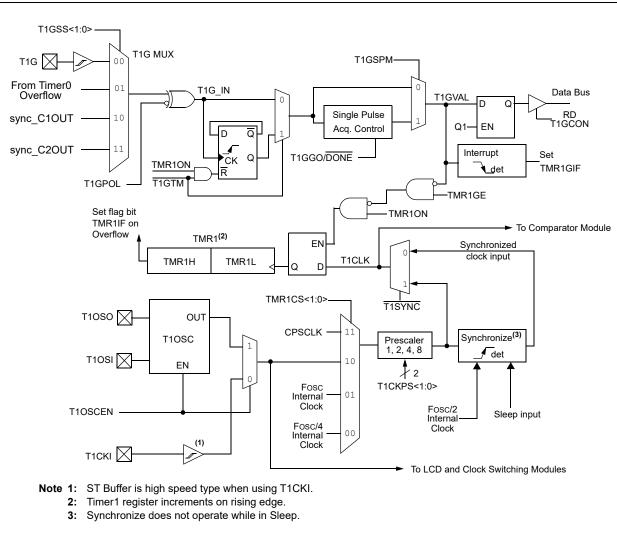
R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>					
bit 7			•				bit				
Legend:											
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is cleared									
bit 7	WPUEN: We	eak Pull-up Ena	ble bit								
	1 = All weak pull-ups are disabled (except $\overline{\text{MCLR}}$, if it is enabled)										
	0 = Weak pull-ups are enabled by individual WPUx latch values										
bit 6	INTEDG: Interrupt Edge Select bit										
	1 = Interrupt on rising edge of INT pin										
	0 = Interrupt on falling edge of INT pin										
bit 5	TMR0CS: Timer0 Clock Source Select bit										
	1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)										
bit 4	TMR0SE: Timer0 Source Edge Select bit										
	1 = Increment on high-to-low transition on T0CKI pin										
	0 = Increment on low-to-high transition on T0CKI pin										
bit 3	PSA: Prescaler Assignment bit										
	 1 = Prescaler is not assigned to the Timer0 module 0 = Prescaler is assigned to the Timer0 module 										
bit 2-0	PS<2:0>: Prescaler Rate Select bits										
	Bit	Value Timer0	Rate								
		000 1:2									
		001 1:4 010 1:8									
		011 1:1									
		100 1:3	2								
		101 1:6									
		110 1:1 111 1:2									

REGISTER 20-1: OPTION_REG: OPTION REGISTER

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CPSCON0	CPSON	CPSRM	—	—	CPSRN	G<1:0>	CPSOUT	T0XCS	310
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		179		
TMR0	Timer0 Module Register							177*	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.


* Page provides register information.

21.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- · Programmable internal or external clock source
- 2-bit prescaler
- Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- · Time base for the Capture/Compare function
- Special Event Trigger (with CCP/ECCP)
- Selectable Gate Source Polarity

- Gate Toggle mode
- · Gate Single-pulse mode
- · Gate Value Status
- · Gate Event Interrupt
- Figure 21-1 is a block diagram of the Timer1 module.

FIGURE 21-1: TIMER1 BLOCK DIAGRAM

21.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 21-1 displays the Timer1 enable selections.

TABLE 21-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

21.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 21-2 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1
 gate
- C1 or C2 comparator input to Timer1 gate

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI or the capacitive sensing oscillator signal. Either of these external clock sources can be synchronized to the microcontroller system clock or they can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TMR1CS<1:0>	T1OSCEN	Clock Source
11	Х	Capacitive Sensing Oscillator, CPSCLK
10	0	External Clocking on T1CKI Pin
01	Х	System Clock (Fosc)
00	х	Instruction Clock (Fosc/4)

TABLE 21-2: CLOCK SOURCE SELECTIONS

21.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OS-CEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
1	0	0	Counts
\uparrow	0	1	Holds Count
1	1	0	Holds Count
1	1	1	Counts

21.6.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 21-4. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 21-4:	TIMER1 GATE SOURCES
-------------	---------------------

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Comparator 1 Output sync_C1OUT (optionally Timer1 synchronized output)
11	Comparator 2 Output sync_C2OUT (optionally Timer1 synchronized output)

21.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

21.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

21.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see Section 18.4.1 "Comparator Output Synchronization".

21.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 gate control. The Comparator 2 output (sync_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 18.4.1 "Comparator Output Synchronization**".

21.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 21-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time
	as changing the gate polarity may result in
	indeterminate operation.

21.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 21-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 Gate source to be measured. See Figure 21-6 for timing details.

21.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

21.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

21.7 **Timer1** Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

21.8 **Timer1 Operation During Sleep**

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- · TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

21.9 ECCP/CCP Capture/Compare Time Base

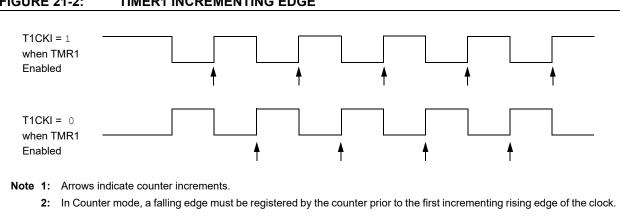
The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

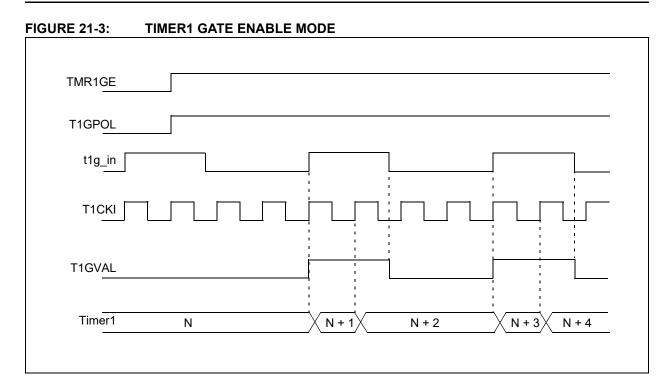
For more information, see Section 23.0 "Capture/Compare/PWM Modules".

21.10 ECCP/CCP Special Event Trigger


When any of the CCPs are configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.


In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 15.2.5 "Special Event Trigger".

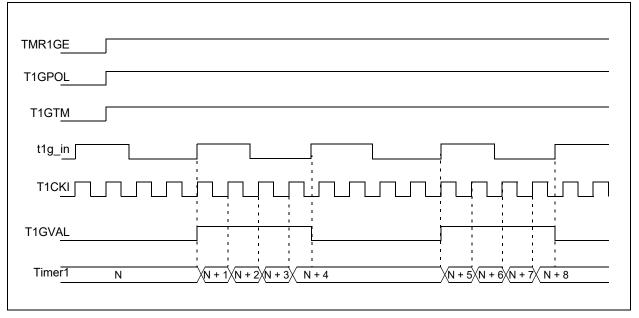


FIGURE 21-2: TIMER1 INCREMENTING EDGE

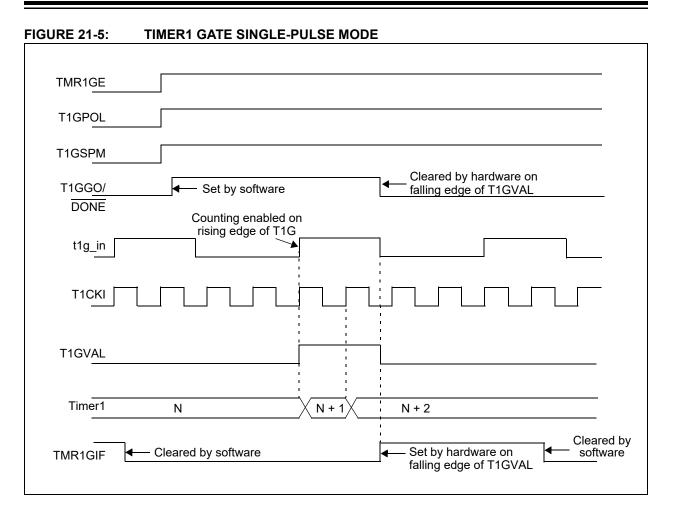

PIC16(L)F1938/9

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

PIC16(L)F1938/9

FIGURE 21-6:	TIMER1 GATE SINGLE-PULSE AND TOGGL	E COMBINED MODE
TMR1GE		
TIGP <u>OL</u>		
T1GTM		Cleared by hardware on
T1GG <u>O/</u> DONE	 ✓ Set by software Counting enabled on 	falling edge of T1GVAL
t1g_in	rising edge of T1G	
Т1СКІ		
T1GV <u>AL</u>		
Timer1	N $(N+1)$ $(N+2)$ $(N+2)$	
TMR1GIF	Set by hardwa — Cleared by software falling edge of T10	are on Cleared by GVAL → software

21.11 Register Definitions: Timer1 Control

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	
TMR1C	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit U = Unimplen						as '0'		
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at al	l other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	TMR1CS<1:	0>: Timer1 Cloo	k Source Sele	ect bits				
		clock source is			(CPSCLK)			
		clock source is		-	()			
		<u>CEN = 0</u> :						
		l clock from T10	CKI pin (on the	e rising edge)				
		<u>CEN = 1</u> : oscillator on T1	091/T1090 n	ine				
		clock source is						
		clock source is instruction clock (FOSC/4)						
bit 5-4	T1CKPS<1:	0>: Timer1 Inpu	t Clock Presca	ale Select bits				
	11 = 1:8 Pre	scale value						
	10 = 1:4 Pre							
	01 = 1:2 Prescale value 00 = 1:1 Prescale value							
bit 3	••••••	_P Oscillator En	able Control h	iit				
		ed Timer1 oscilla						
		ed Timer1 oscill						
bit 2	T1SYNC: Tir	ner1 Synchroni	zation Control	bit				
	1 = Do not synchronize asynchronous clock input							
	0 = Synchronize asynchronous clock input with system clock (Fosc)							
bit 1	Unimpleme							
bit 0	TMR1ON: Ti	mer1 On bit						
	1 = Enables	Timer1						
	0 = Stops Ti							
	Clears T	imer1 gate flip-f	lon					

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>		
bit 7			•			•	bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'			
u = Bit is unch		x = Bit is unkr			at POR and BO		other Resets		
'1' = Bit is set	0	'0' = Bit is clea			eared by hardw				
bit 7	If TMR1ON = This bit is ign If TMR1ON = 1 = Timer1 c	ored <u>1</u> :	rolled by the Ti	imer1 gate func ate function	tion				
bit 6	1 = Timer1 g	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)							
bit 5	 T1GTM: Timer1 Gate Toggle Mode bit 1 = Timer1 Gate Toggle mode is enabled 0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge. 								
bit 4	T1GSPM: Tin 1 = Timer1 g	T1GSPM: Timer1 Gate Single-Pulse Mode bit 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled							
bit 3	T1GGO/DON 1 = Timer1 g	TIGGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started							
bit 2	T1GVAL: Tim Indicates the	T1GVAL: Timer1 Gate Current State bit Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.							
bit 1-0	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE). T1GSS<1:0>: Timer1 Gate Source Select bits 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin								

REGISTER 21-2: T1GCON: TIMER1 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
CCP1CON	P1M	<1:0>	DC1B	<1:0>		CCP1N	1<3:0>		218
CCP2CON	P2M•	<1:0>	DC2B	<1:0>		CCP2N	1<3:0>		218
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
TMR1H	Holding Regi	ster for the M	ost Significan	t Byte of the	16-bit TMR1 F	Register			184*
TMR1L	Holding Regi	ister for the Le	east Significa	nt Byte of the	16-bit TMR1	Register			184*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
T1CON	TMR1C	S<1:0>	0> T1CKPS<1:0>			T1SYNC	_	TMR10N	188
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	S<1:0>	189

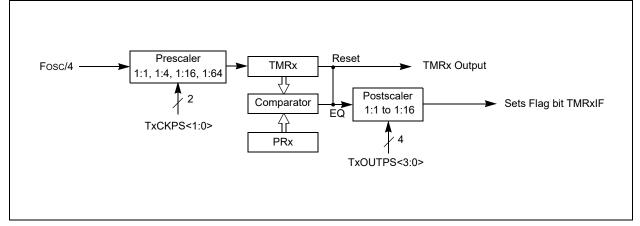
TABLE 21-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).

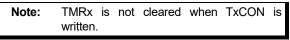

Note:	The 'x' variable used in this section is used to designate Timer2, Timer4, or Tim- er6. For example, TxCON references
	T2CON, T4CON, or T6CON. PRx references PR2, PR4, or PR6.

The Timer2/4/6 modules incorporate the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP module (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

22.1 Timer2/4/6 Operation


The clock input to the Timer2/4/6 modules is the system instruction clock (Fosc/4).

TMRx increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, TxCKPS<1:0> of the TxCON register. The value of TMRx is compared to that of the Period register, PRx, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMRx to 00h on the next cycle and drives the output counter/postscaler (see Section 22.2 "Timer2/4/6 Interrupt").

The TMRx and PRx registers are both directly readable and writable. The TMRx register is cleared on any device Reset, whereas the PRx register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMRx register
- · a write to the TxCON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

22.2 Timer2/4/6 Interrupt

Timer2/4/6 can also generate an optional device interrupt. The Timer2/4/6 output signal (TMRx-to-PRx match) provides the input for the 4-bit counter/postscaler. This counter generates the TMRx match interrupt flag which is latched in TMRxIF of the PIRx register. The interrupt is enabled by setting the TMRx Match Interrupt Enable bit, TMRxIE, of the PIEx register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, TxOUTPS<3:0>, of the TxCON register.

22.3 Timer2/4/6 Output

The unscaled output of TMRx is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in **Section 24.0 "Host Synchronous Serial Port Module"**

22.4 Timer2/4/6 Operation During Sleep

The Timer2/4/6 timers cannot be operated while the processor is in Sleep mode. The contents of the TMRx and PRx registers will remain unchanged while the processor is in Sleep mode.

22.5 Register Definitions: Timer2/4/6 Control

REGISTER 22-1: TxCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_		TxOUTF	PS<3:0>		TMRxON	TxCKP	S<1:0>		
oit 7							bit		
_egend:						(2)			
R = Readab		W = Writable		U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Res					
u = Bit is und		x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all	other Resets		
1' = Bit is se	et	'0' = Bit is clea	ared						
oit 7	Unimpleme	ented: Read as '	0'						
oit 6-3	-	3:0>: Timerx Ou		er Select bits					
	1111 = 1:16	6 Postscaler							
	1110 = 1:15	1110 = 1:15 Postscaler							
	1101 = 1:14	Postscaler							
		1100 = 1:13 Postscaler							
	1011 = 1:12								
	1010 = 1:11								
	1001 = 1:10								
	1000 = 1:9 0111 = 1:8								
	0110 = 1:7								
	0101 = 1:6								
	0100 = 1:5								
	0011 = 1:4								
	0010 = 1:3	Postscaler							
	0001 = 1:2	Postscaler							
	0000 = 1:1	Postscaler							
pit 2	TMRxON: T	īmerx On bit							
	1 = Timerx is on								
	0 = Timerx	is off							
oit 1-0	TxCKPS<1:	TxCKPS<1:0>: Timer2-type Clock Prescale Select bits							
	11 = Presca	ler is 64							
	10 = Presca								
	01 = Presca								
	00 = Presca	lorie 1							

PIC16(L)F1938/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP2CON	P2M∙	<1:0>	DC2B	3<1:0>		CCP2M<3:0>			
INTCON	GIE	PEIE	IE TMROIE INTE IOCIE TMROIF INTF IOCIF						87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	93
PR2	Timer2 Mod	dule Period	Register						191*
PR4	Timer4 Mod	dule Period	Register						191*
PR6	Timer6 Mod	dule Period	Register						191*
T2CON	_		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	193
T4CON	_		T4OUT	PS<3:0>		TMR4ON	T4CKP	S<1:0>	193
T6CON	_		T6OUTI	PS<3:0>		TMR2ON	T6CKP	S<1:0>	193
TMR2	Holding Re	Holding Register for the 8-bit TMR2 Register							191*
TMR4	Holding Re	gister for the	e 8-bit TMR4	4 Register ⁽¹⁾					191*
TMR6	Holding Re	gister for the	e 8-bit TMR6	6 Register ⁽¹⁾					191*

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

23.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains three Enhanced Capture/Compare/PWM modules (ECCP1, ECCP2, and ECCP3) and two standard Capture/Compare/PWM modules (CCP4 and CCP5).

The Capture and Compare functions are identical for all five CCP modules (ECCP1, ECCP2, ECCP3, CCP4, and CCP5). The only differences between CCP modules are in the Pulse-Width Modulation (PWM) function. The standard PWM function is identical in modules, CCP4 and CCP5. In CCP modules ECCP1, ECCP2, and ECCP3, the Enhanced PWM function has slight variations from one another. Full-Bridge ECCP modules have four available I/O pins while Half-Bridge ECCP modules only have two available I/O pins. See Table 23-1 for more information.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to ECCP1, ECCP2, ECCP3, CCP4 and CCP5. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

TABLE 23-1:PWM RESOURCES

Device Name	ECCP1	ECCP2	ECCP3	CCP4	CCP5
PIC16F/LF1933/36/38	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM
PIC16F/LF1934/37/39	Enhanced PWM Full-Bridge	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM

23.1 Capture Mode

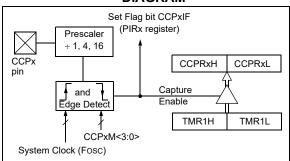
The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 23-1 shows a simplified diagram of the Capture operation.


23.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function**" for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 23-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

23.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

23.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock (Fosc) should not be used in Capture
	(1030) should hot be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

23.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 23-1 demonstrates the code to perform this function.

EXAMPLE 23-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCPxCON	;Set Bank bits to point
		;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_P	S;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

23.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state. Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

23.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxM<	:3:0>		218
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				196
CCPRxH	Capture/Co	mpare/PWM	Register x I	High Byte (M	ISB)				196
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	89
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	92
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	92
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	188
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	189
TMR1L	Holding Reg	gister for the	Least Signif	icant Byte of	f the 16-bit TMR1	I Register			184
TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of	the 16-bit TMR1	Register			184
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	132
TRISE			_	—	(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	135

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

Note 1: Applies to ECCP modules only.

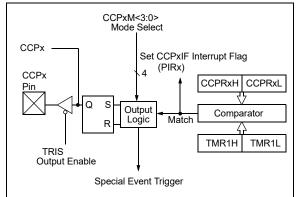
2: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

3: Unimplemented, read as '1'.

23.2 Compare Mode

The Compare mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:


- · Toggle the CCPx output
- · Set the CCPx output
- · Clear the CCPx output
- · Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 23-2 shows a simplified diagram of the Compare operation.

FIGURE 23-2: COMPARE MODE OPERATION BLOCK DIAGRAM

23.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function"** for more details.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

23.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

23.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

23.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Special Event Trigger output starts an A/D conversion (if the A/D module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

TABLE 23-3: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16F193X/LF193X	CCP5

Refer to **Section 15.2.5** "**Special Event Trigger**" for more information.

- Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

23.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

23.2.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxM<	<3:0>		218
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				196
CCPRxH	Capture/Co	pture/Compare/PWM Register x High Byte (MSB)						196	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	89
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	92
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	188
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	189
TMR1L	Holding Reg	gister for the	Least Signif	icant Byte of	f the 16-bit TMR1	I Register			184
TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of	the 16-bit TMR1	Register			184
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	132
TRISE	—	—		—	(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	135

TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Compare mode.

Note 1: Applies to ECCP modules only.

2: These bits are not implemented on PIC16(L)F1938 devices, read as '0'.

3: Unimplemented, read as '1'.

23.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

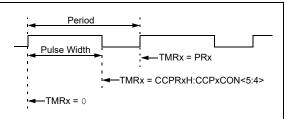
PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 23-3 shows a typical waveform of the PWM signal.

23.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.


The standard PWM mode generates a Pulse-Width modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PRx registers
- TxCON registers
- CCPRxL registers
- CCPxCON registers

Figure 23-4 shows a simplified block diagram of PWM operation.

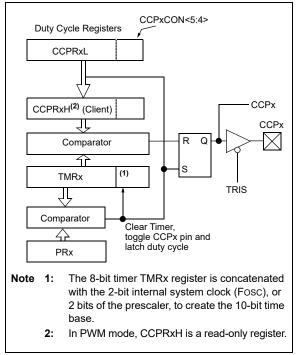

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - **2:** Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 23-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

23.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- 1. Disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Timer2/4/6 resource selection:
 - Select the Timer2/4/6 resource to be used for PWM generation by setting the CxTSEL<1:0> bits in the CCPTMERSx register.
- 3. Load the PRx register with the PWM period value.
- 4. Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- 5. Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 6. Configure and start Timer2/4/6:
 - Clear the TMRxIF interrupt flag bit of the PIRx register. See Note below.
 - Configure the TxCKPS bits of the TxCON register with the Timer prescale value.
 - Enable the Timer by setting the TMRxON bit of the TxCON register.
- 7. Enable PWM output pin:
 - Wait until the Timer overflows and the TMRxIF bit of the PIRx register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
- **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

23.3.3 TIMER2/4/6 TIMER RESOURCE

The PWM standard mode makes use of one of the 8-bit Timer2/4/6 timer resources to specify the PWM period.

Configuring the CxTSEL<1:0> bits in the CCPTMRSx register selects which Timer2/4/6 timer is used.

23.3.4 PWM PERIOD

The PWM period is specified by the PRx register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 23-1.

EQUATION 23-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$ (TMRx Prescale Value)

Note 1: Tosc = 1/Fosc

When TMRx is equal to PRx, the following three events occur on the next increment cycle:

- TMRx is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 22.1 "Timer2/4/6 Operation") is not used in the determination of the PWM frequency.

23.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PRx and TMRx registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 23-2 is used to calculate the PWM pulse width.

Equation 23-3 is used to calculate the PWM duty cycle ratio.

EQUATION 23-2: PULSE WIDTH

Pulse Width = (CCPRxL:CCPxCON < 5:4>) •

TOSC • (TMRx Prescale Value)

EQUATION 23-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PRx+1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMRx register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 23-4).

23.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 23-4.

EQUATION 23-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 23-5:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

23.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

23.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

23.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

23.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

	-			-				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
PxM<	1:0> ⁽¹⁾	DCxB	<1:0>	CCPxM		N<3:0>		218
C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	C1TSEL<1:0>	
—	—		—	—	—	C5TSE	L<1:0>	220
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	89
—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	90
TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	92
—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	93
Timer2/4/6 F	Period Regist	er						191*
—		TxOUTF	PS<3:0>		TMRxON	TxCKP	S<:0>1	193
Timer2/4/6 N	/lodule Regis	ter						191
TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	132
—			—	(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	135
	PxM< C4TSE C4TSE GIE TMR1GIE OSFIE TMR1GIF OSFIF TIMR1GIF TIMR2/4/6 F TIMEr2/4/6 F TRISA7 TRISB7 TRISB7	CCP3SEL PxM<1:0>(1) C4TSEL<1:0> C4TSEL<1:0> GIE PEIE TMR1GIE ADIE OSFIE C2IE TMR1GIF ADIF OSFIE CCP5IE TMR1GIF ADIF OSFIF C2IF TMR1GIF ADIF OSFIF C2IF TIMR1GIF ADIF OSFIF C2IF TIMR1GIF ADIF OSFIF C2IF TIMR1GIF ADIF OSFIF C2IF TIMR1GIF MIF OSFIF C2IF TIMR1GIF MIF OSFIF C2IF TIMR1GIF MIF MISON TRISON TIMR1GIF MIF MISON TRISA6 TRISC1 TRISC6	Image: constraint of the sector of the se	Image: constant of the section of	Image: Constraint of the second se	Image: constraint of the symbol of the sy	$-$ CCP3SELT1GSELP2BSELSRNQSELC20UTSELSSSEL $PxM<: ()>^{(1)}$ DCx $= (:)>$ C2TS $= (:)>$ CCPX $\times (:)>$ C1TSE $C4TSE = (:)>$ C3TS $= (:)>$ C2TS $= (:)>$ C1TSE $ -$ C1TSE $ GIE$ PEIETMR0IEINTEIOCIETMR0IFINTFTMR1GIEADIERCIETXIESSPIECCP1IETMR2IEOSFIEC2IEC1IEEEIEBCLIELCDIE $ -$ CCP5IECCP4IECCP3IETMR6IE $-$ TMR4IETMR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFOSFIFC2IFC1IFEEIFBCLIFLCDIF $ -$ CCP5IECCP4IFCCP3IFTMR6IF $ -$ CCP5IFCCP4IFCCP3IFTMR6IF $ -$ CCP5IFCCP4IFCCP3IFTMR6IF $ -$ CCP5IFCCP4IFCCP3IFTMR6IF $ -$ TXOUTS<3:0>TMR6IF $-$ TMR4IFTime2/4/6TrisoTXOUTSTMR6IF $-$ TMR4IFTime2/4/6TRISATRISA5TRISA4TRISA3TRISA2TRISA1TRISA7TRISA6TRISA5TRISA4TRISA3TRISA2TRISA1TRISA7TRISA6TRISA5TRISA4TRISA3TRISC2<	$\begin{tabular}{ c $

TABLE 23-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

2: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

3: Unimplemented, read as '1'.

* Page provides register information.

23.4 PWM (Enhanced Mode)

The enhanced PWM function described in this section is available for CCP modules ECCP1, ECCP2 and ECCP3, with any differences between modules noted.

The enhanced PWM mode generates a Pulse-Width Modulation (PWM) signal on up to four different output pins with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

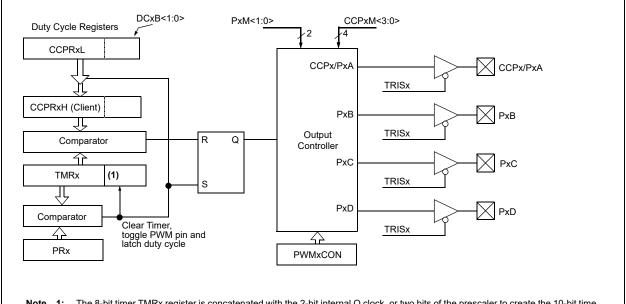
- PRx registers
- TxCON registers
- · CCPRxL registers
- · CCPxCON registers

The ECCP modules have the following additional PWM registers which control Auto-shutdown, Auto-restart, Dead-band Delay and PWM Steering modes:

- · CCPxAS registers
- PSTRxCON registers
- PWMxCON registers

The enhanced PWM module can generate the following five PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode
- Single PWM with PWM Steering mode


To select an Enhanced PWM Output mode, the PxM bits of the CCPxCON register must be configured appropriately.

The PWM outputs are multiplexed with I/O pins and are designated PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Figure 23-5 shows an example of a simplified block diagram of the Enhanced PWM module.

Table 23-9 shows the pin assignments for various Enhanced PWM modes.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.
 - **3:** Any pin not used in the enhanced PWM mode is available for alternate pin functions, if applicable.
 - 4: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 23-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

Note 1: The 8-bit timer TMRx register is concatenated with the 2-bit internal Q clock, or two bits of the prescaler to create the 10-bit time base.

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 23-9: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: PWM Steering enables outputs in Single mode.

EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH **FIGURE 23-6:** STATE)

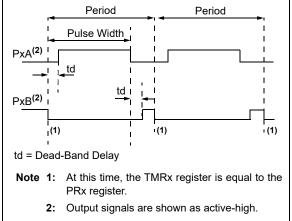
PxM<1:0>	Signal	0 ◀── Pulse Width	PRX+1
			Period
00 (Single Output)	PxA Modulated		
	PxA Modulated	Delay →	Delay
10 (Half-Bridge)	PxB Modulated		
	PxA Active		
(Full-Bridge,	PxB Inactive		
⁰¹ Forward)	PxC Inactive		
	PxD Modulated	=	
	PxA Inactive	_ ;	
11 (Full-Bridge,	PxB Modulated	=	
Reverse)	PxC Active —		
	PxD Inactive —		

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

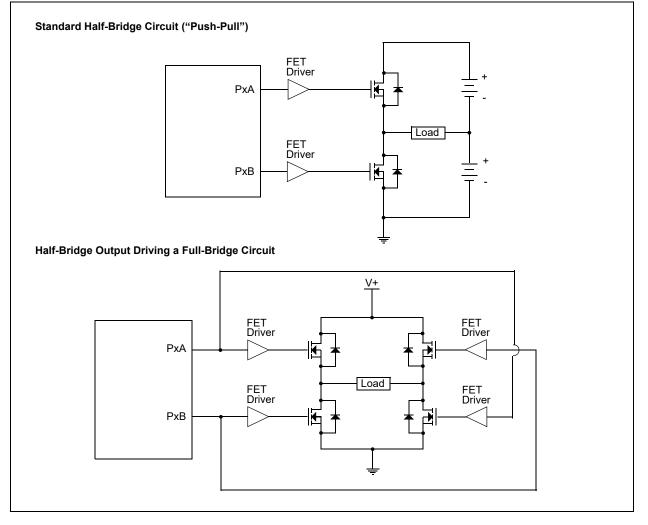
PIC16(L)F1938/9

PxM<1∶	:0>	Signal	0		
00	(Single Output)	PxA Modulated			
		PxA Modulated	Delay	 Delay	<u>i</u>
10 (Half-Bridge)	PxB Modulated			· · ·	
		PxA Active	- :	· · ·	
01	(Full-Bridge, ⁰¹ Forward)	PxB Inactive	- !	I	
	,	PxC Inactive			
		PxD Modulated	=		 I I
		PxA Inactive	- ' - '	 	I I
11 ((Full-Bridge, Reverse)	PxB Modulated			I
	Reverse)	PxC Active	- i 		
		PxD Inactive	- :		

FIGURE 23-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)


Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
 Delay = 4 * Tosc * (PWMxCON<6:0>)

23.4.1 HALF-BRIDGE MODE

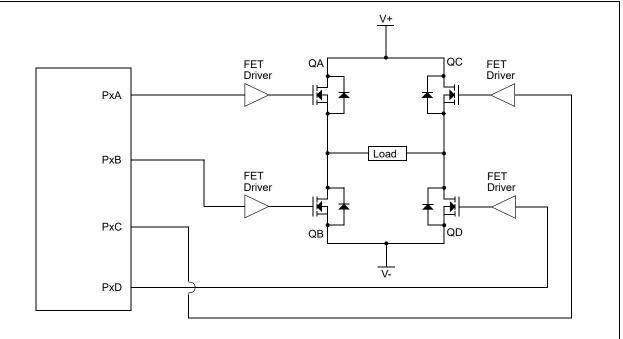

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 23-9). This mode can be used for Half-Bridge applications, as shown in Figure 23-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

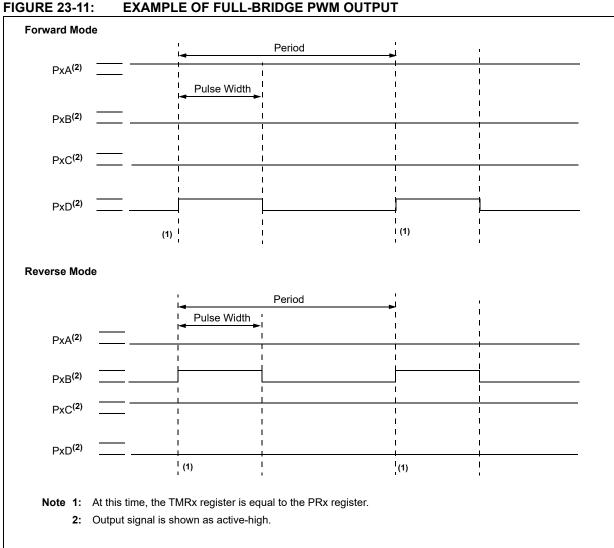
In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 23.4.5 "Programmable Dead-Band Delay Mode" for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 23-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 23-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

23.4.2 FULL-BRIDGE MODE


In Full-Bridge mode, all four pins are used as outputs. An example of Full-Bridge application is shown in Figure 23-10.


In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 23-11.

In the Reverse mode, PxC is driven to its active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 23-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 23-10: EXAMPLE OF FULL-BRIDGE APPLICATION

FIGURE 23-11: **EXAMPLE OF FULL-BRIDGE PWM OUTPUT**

23.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

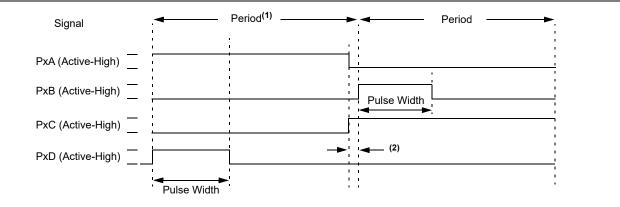
A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

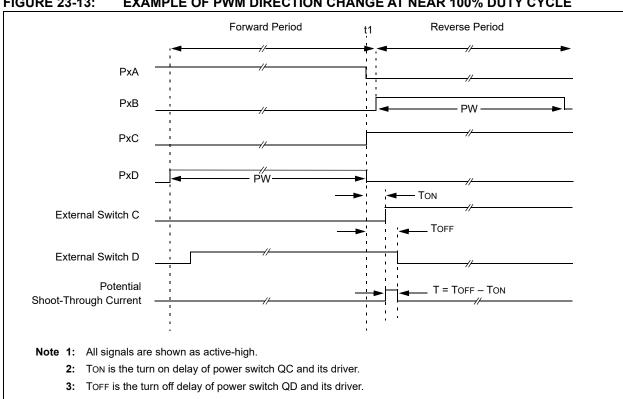
See Figure 23-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.


Figure 23-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD become inactive, while output PxC becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 23-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:


- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 23-12: EXAMPLE OF PWM DIRECTION CHANGE

- **Note 1:** The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.
 - 2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

23.4.3 ENHANCED PWM AUTO-SHUTDOWN MODE

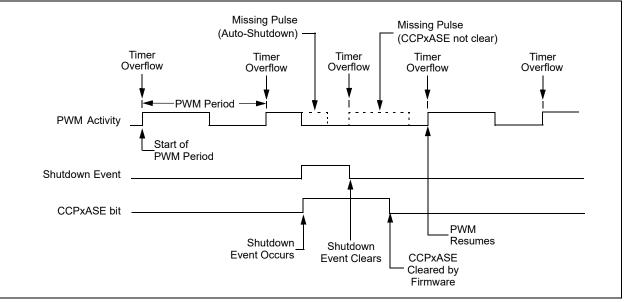
The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the CCPxAS2, CCPxAS1 and CCPxAS0 bits of the CCPxAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- A logic '1' on a Comparator (async_CxOUT) output

A shutdown condition is indicated by the CCPxASE (Auto-Shutdown Event Status) bit of the CCPxAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

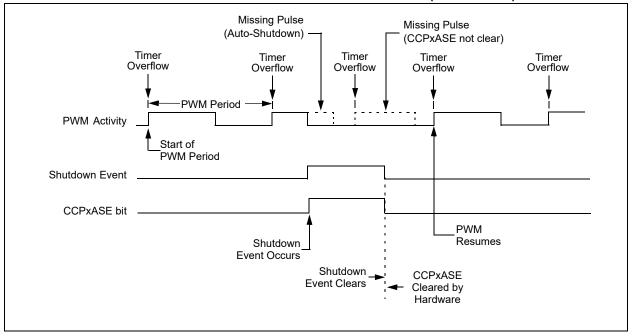
When a shutdown event occurs, two things happen:


The CCPxASE bit is set to '1'. The CCPxASE will remain set until cleared in firmware or an auto-restart occurs (see Section 23.4.4 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [PxA/PxC] and [PxB/PxD]. The state of each pin pair is determined by the PSSxAC and PSSxBD bits of the CCPxAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

- **Note 1:** The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.
 - Writing to the CCPxASE bit is disabled while an auto-shutdown condition persists.
 - **3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.
 - 4: Prior to an auto-shutdown event caused by a comparator output or INT pin event, a software shutdown can be triggered in firmware by setting the CCPxASE bit of the CCPxAS register to '1'. The Auto-Restart feature tracks the active status of a shutdown caused by a comparator output or INT pin event only. If it is enabled at this time, it will immediately clear this bit and restart the ECCP module at the beginning of the next PWM period.

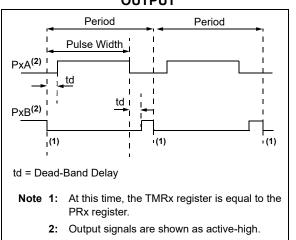


23.4.4 AUTO-RESTART MODE

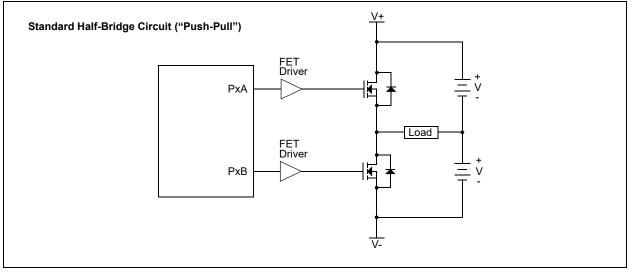
The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

FIGURE 23-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)



23.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

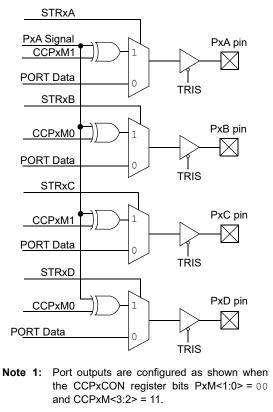
In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 23-16 for illustration. The lower seven bits of the associated PWMxCON register (Register 23-5) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 23-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 23-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

23.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.


Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STRx<D:A> bits of the PSTRxCON register, as shown in Table 23-9.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the Px<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in Section 23.4.3 "Enhanced PWM Auto-shutdown mode". An auto-shutdown event will only affect pins that have PWM outputs enabled.

FIGURE 23-18: SIMPLIFIED STEERING BLOCK DIAGRAM

2: Single PWM output requires setting at least one of the STRx bits.

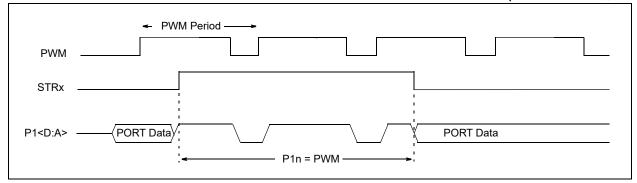
23.4.6.1 Steering Synchronization

The STRxSYNC bit of the PSTRxCON register gives the user two selections of when the steering event will happen. When the STRxSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the Px<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

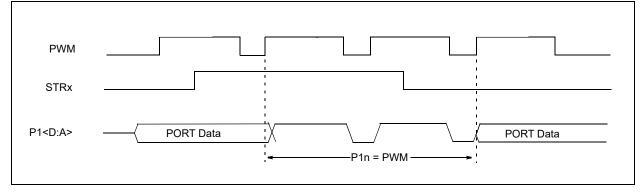
When the STRxSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 23-19 and 23-20 illustrate the timing diagrams of the PWM steering depending on the STRxSYNC setting.

23.4.7 START-UP CONSIDERATIONS


When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (PxA/PxC and PxB/PxD). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.


The PxA, PxB, PxC and PxD output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMRxIF bit of the PIRx register being set as the second PWM period begins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

FIGURE 23-19: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)

FIGURE 23-20: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRxSYNC = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPxCON	PxM<	1:0> (1)	DCxB	8<1:0>		CCPx	M<3:0>		218
CCPxAS	CCPxASE	CCPxAS2	CCPxAS1	CCPxAS1 CCPxAS0		.C<1:0>	PSSxB	D<1:0>	221
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<1:0> C1TSEL<1:0>				219
CCPTMRS1	—	—	—	—	—	—	C5TSE	L<1:0>	220
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	89
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	92
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	93
PRx	Timer2/4/6 P	eriod Registe	er						191*
PSTRxCON	—	-	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA	223
PWMxCON	PxRSEN				PxDC<6:0>				222
TxCON	—		TxOUT	PS<3:0>		TMRxON	TxCKP	S<:0>1	193
TMRx	Timer2/4/6 M	Iodule Regist	er						191
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	132
TRISE	_	_	—	_	(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	135

TABLE 23-10: SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

2: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

3: Unimplemented, read as '1'.

* Page provides register information.

23.5 Register Definitions: CCP Control

REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER

R/W-00	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PxN	//<1:0>(1)	DCxB	i<1:0>		CCPx	И<3:0>				
bit 7							bit			
Legend:						(0)				
R = Readable		W = Writable bi		•	ented bit, read as		D (
u = Bit is unch '1' = Bit is set	0	x = Bit is unkno		-n/n = Value at	POR and BOR/\	alue at all other	Reset			
I – DILIS SEL		'0' = Bit is clear	eu							
bit 7-6	PxM<1:0>: Er	hanced PWM Ou	tput Configurat	ion bits ⁽¹⁾						
	Capture mode									
	Unused									
	<u>Compare mod</u> Unused	<u>e:</u>								
		> = 00,01,10:								
			e/Compare inp	ut; PxB, PxC, PxD	assigned as por	t pins				
	If CCPxM<3:2				-					
	0	• •	, ,	C, PxD assigned a ited; PxA active; P						
		0 1		with dead-band o			t pins			
	11 = Full-Bri	dge output revers	e; PxB modula	ted; PxC active; P	xA, PxD inactive					
bit 5-4		WM Duty Cycle I	_east Significar	nt bits						
	<u>Capture mode</u> Unused	<u>.</u>								
	Compare mod	e:								
	Unused									
	PWM mode:									
			-	cycle. The eight M	Sbs are found in	CCPRxL.				
bit 3-0		ECCPx Mode Se								
		0000 = Capture/Compare/PWM off (resets ECCPx module) 0001 = Reserved								
		pare mode: toggle	e output on mat	ch						
	0011 = Rese	rved								
	0100 = Capt	ure mode: every f	alling edge							
	0101 = Capt	ure mode: every r	ising edge							
	•	ure mode: every 4	0 0							
	UIII – Capi	0111 = Capture mode: every 16th rising edge								
			•	low; set output on	•	· /				
			•	high; clear output terrupt only; ECCl		· · · · ·				
		-		r (ECCPx resets T	•		onversion if A/			
		ile is enabled) ⁽¹⁾		,						
	CCP4/CCP5 o	nlv.								
	11xx = PW									
	ECCP1/ECCP	2/ECCP3 only:								
			0	xB, PxD active-hig	•					
			0	xB, PxD active-lov B, PxD active-higl						
				B, PxD active-low						

Note 1: These bits are not implemented on CCP4 and CCP5.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
C4TSI	EL<1:0>	C3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	:L<1:0>					
bit 7		·					bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'						
u = Bit is unchanged		x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets					
'1' = Bit is set		'0' = Bit is clea	ared									
bit 7-6	C4TSEL<1:0	C4TSEL<1:0>: CCP4 Timer Selection										
	00 = CCP4 is	00 = CCP4 is based off Timer2 in PWM mode										
		01 = CCP4 is based off Timer4 in PWM mode										
		10 = CCP4 is based off Timer6 in PWM mode										
	11 = Reserve											
bit 5-4	C3TSEL<1:0	C3TSEL<1:0>: CCP3 Timer Selection										
	00 = CCP3 is based off Timer2 in PWM mode											
		01 = CCP3 is based off Timer4 in PWM mode										
		10 = CCP3 is based off Timer6 in PWM mode										
	11 = Reserve											
bit 3-2		>: CCP2 Timer										
		s based off Time										
		01 = CCP2 is based off Timer4 in PWM mode 10 = CCP2 is based off Timer6 in PWM mode										
			ero in pvvivi m	ode								
		11 = Reserved										
bit 1-0		C1TSEL<1:0>: CCP1 Timer Selection										
		00 = CCP1 is based off Timer2 in PWM mode 01 = CCP1 is based off Timer4 in PWM mode										
		1 = CCP1 is based oπ Timer4 in PVVM mode 0 = CCP1 is based off Timer6 in PWM mode										

REGISTER 23-2: CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0			
					—	C5TSEL<1:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set '0' = Bit is			ared							
bit 7-2	Unimplemen	ted: Read as '	0'							
			.							

REGISTER 23-3: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

- bit 1-0 C5TSEL<1:0>: CCP5 Timer Selection 00 = CCP5 is based off Timer2 in PWM mode 01 = CCP5 is based off Timer4 in PWM mode
 - 10 = CCP5 is based off Timer6 in PWM mode
 - 11 = Reserved

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
CCPxASE	CCPxAS2	CCPxAS1	CCPxAS0	PSSxA	C<1:0>	PSSxB	D<1:0>			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	•	nented bit, read					
u = Bit is und	hanged	x = Bit is unkı	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets			
'1' = Bit is se	t	'0' = Bit is cle	ared							
bit 7	CCPxASE: (CCPx Auto-Shu	tdown Event S	tatus bit						
		wn event has o tputs are opera		outputs are in	shutdown state	e				
bit 6	1 = Auto-shu	CCPxAS2: CCPx Auto-Shutdown Source 2 Select bit 1 = Auto-shutdown 2 source is enabled, Vi∟ on INT pin 0 = Auto-shutdown 2 source is disabled								
bit 5	1 = Auto-shi	CPx Auto-Shu utdown 1 sourc utdown 1 sourc	e is enabled, a),(2) output low					
bit 4	1 = Auto-shu	CPx Auto-Shu utdown 0 sourc utdown 0 sourc	e is enabled, a		⁾ output low					
bit 3-2	00 = Drive pi 01 = Drive pi)>: Pins PxA ar ns PxA and Px ns PxA and Px A and PxC tri-s	C to '0' C to '1'	wn State Contr	ol bits					
bit 1-0	00 = Drive pi 01 = Drive pi	D>: Pins PxB ar ns PxB and Px ns PxB and Px B and PxD tri-s	D to '0' D to '1'	wn State Contr	ol bits					
2: as	CxSYNC is ena sync_CxOUT = a sync_CxOUT = a	async_C2OUT	(for CCP1 and		l.					

REGISTER 23-4: CCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
PxRSEN				PxDC<6:0>							
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bi		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	PxRSEN: P	WM Restart Ena	able bit								
		uto-shutdown, th M restarts auton		oit clears automa	tically once the	e shutdown eve	ent goes away;				
	0 = Upon au	uto-shutdown, C	CPxASE mus	t be cleared in s	software to res	tart the PWM					
bit 6-0	PxDC<6:0>	: PWM Delay Co	ount bits								
	PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal										

REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

should transition active and the actual time it transitions active

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1					
		—	STRxSYNC	STRxD	STRxC	STRxB	STRxA					
bit 7							bit (
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'						
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets					
'1' = Bit is se	et	'0' = Bit is cle	ared									
bit 7-5	Unimpleme	Inimplemented: Read as '0'										
bit 4	t 4 STRxSYNC: Steering Sync bit											
		1 = Output steering update occurs on next PWM period										
	•	0 = Output steering update occurs at the beginning of the instruction cycle boundary										
bit 3		ering Enable bi										
	•		vaveform with p	olarity control	from CCPxM<1	1:0>						
	•	0 = PxD pin is assigned to port pin										
bit 2		STRxC: Steering Enable bit C										
		 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin 										
bit 1	•	0	•									
		RxB: Steering Enable bit B • PxB pin has the PWM waveform with polarity control from CCPxM<1:0>										
	•		•	olarity control		.0-						
bit 0	•	0 = PxB pin is assigned to port pin STRxA: Steering Enable bit A										
		•	vaveform with p	olarity control	from CCPvM<1	·0>						
		is assigned to p	•			.0-						
	0 – 1 AA pili		or pin									
Note 1: T	he PWM Steerii	ng mode is ava	ilable only wher	the CCPxCO	N register bits	CCPxM<3:2> =	= 11 and					

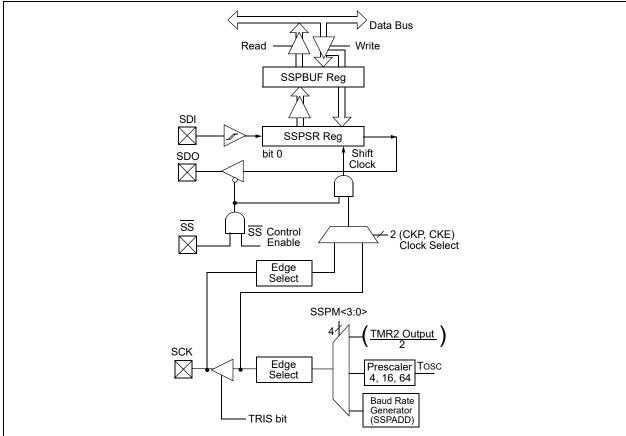
REGISTER 23-6: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

PxM<1:0> = 00.

24.0 HOST SYNCHRONOUS SERIAL PORT MODULE

24.1 Host SSP (MSSP) Module Overview

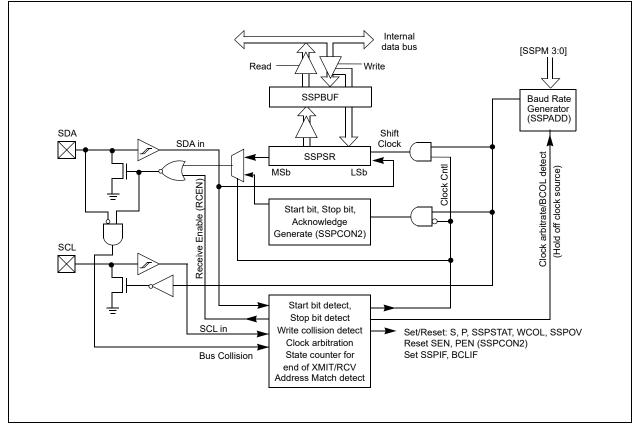
The Host Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

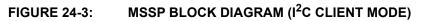

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Host mode
- Client mode
- Clock Parity
- Client Select Synchronization (Client mode only)
- Daisy-chain connection of client devices

Figure 24-1 is a block diagram of the SPI Interface module.




The I^2C interface supports the following modes and features:

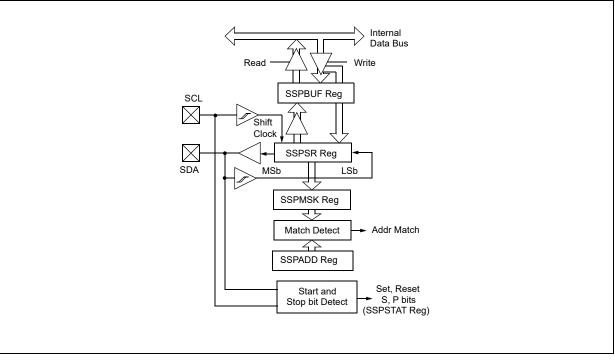

- Host mode
- · Client mode
- Byte NACKing (Client mode)
- Limited Multi-host support
- · 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- Bus collision detection
- · General call address matching
- Address masking
- Address Hold and Data Hold modes
- Selectable SDA hold times

Figure 24-2 is a block diagram of the I^2C Interface module in Host mode. Figure 24-3 is a diagram of the I^2C Interface module in Client mode.

FIGURE 24-2: MSSP BLOCK DIAGRAM (I²C HOST MODE)

24.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a host/client environment where the host device initiates the communication. A client device is controlled through a Chip Select known as Client Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Client Select (CS)

Figure 24-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single host device and one or more client devices. When multiple client devices are used, an independent Client Select connection is required from the host device to each client device.

Figure 24-4 shows a typical connection between a host device and multiple client devices.

The host selects only one client at a time. Most client devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the host and one in the client. With either the host or the client device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 24-5 shows a typical connection between two processors configured as host and client devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The host device transmits information out on its SDO output pin which is connected to, and received by, the client's SDI input pin. The client device transmits information out on its SDO output pin, which is connected to, and received by, the host's SDI input pin.

To begin communication, the host device first sends out the clock signal. Both the host and the client devices will be configured for the same clock polarity.

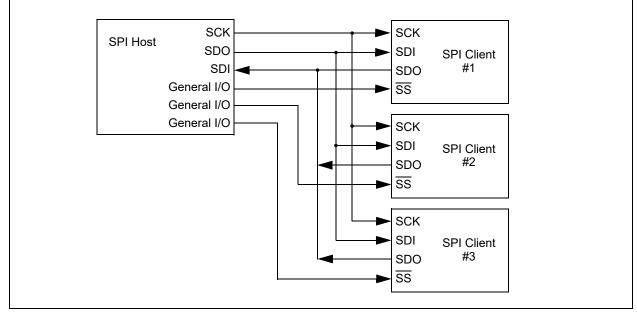
The host device starts a transmission by sending out the MSb from its shift register. The client device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the host device is sending out the MSb from its shift register (on its SDO pin) and the client device is reading this bit and saving it as the LSb of its shift register, that the client

device is also sending out the MSb from its shift register (on its SDO pin) and the host device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the host and client have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.


Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Host sends useful data and client sends dummy data.
- Host sends useful data and client sends useful data.
- Host sends dummy data and client sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the host stops sending the clock signal and it deselects the client.

Every client device connected to the bus that has not been selected through its client select line must disregard the clock and transmission signals and must not transmit out any data of its own.

FIGURE 24-4: SPI HOST AND MULTIPLE CLIENT CONNECTION

24.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPSTAT)
- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 3 (SSPCON3)
- MSSP Data Buffer register (SSPBUF)
- MSSP Address register (SSPADD)
- MSSP Shift register (SSPSR) (Not directly accessible)

SSPCON1 and SSPSTAT are the control and STATUS registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

In one SPI Host mode, SSPADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 24.7 "Baud Rate Generator"**.

SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read.

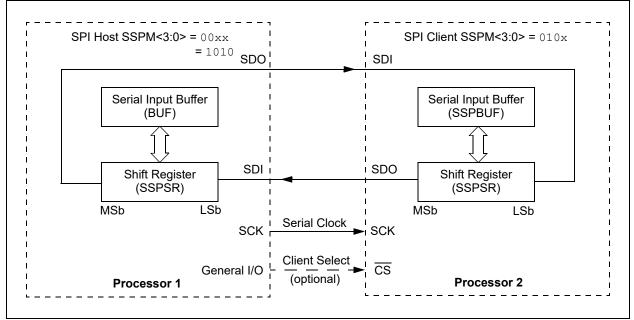
In receive operations, SSPSR and SSPBUF together create a buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

24.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Host mode (SCK is the clock output)
- · Client mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Host mode only)
- Client Select mode (Client mode only)


To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- · SDO must have corresponding TRIS bit cleared
- SCK (Host mode) must have corresponding TRIS bit cleared
- SCK (Client mode) must have corresponding TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any SSPBUF write to the register durina transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various Status conditions.

FIGURE 24-5: SPI HOST/CLIENT CONNECTION

24.2.3 SPI HOST MODE

The host can initiate the data transfer at any time because it controls the SCK line. The host determines when the client (Processor 2, Figure 24-5) is to broadcast data by the software protocol.

In Host mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register and the CKE bit of the SSPSTAT register. This then, would give waveforms for SPI communication as shown in Figure 24-6, Figure 24-8 and Figure 24-9, where the MSB is transmitted first. In Host mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- · Timer2 output/2
- Fosc/(4 * (SSPADD + 1))

Figure 24-6 shows the waveforms for Host mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

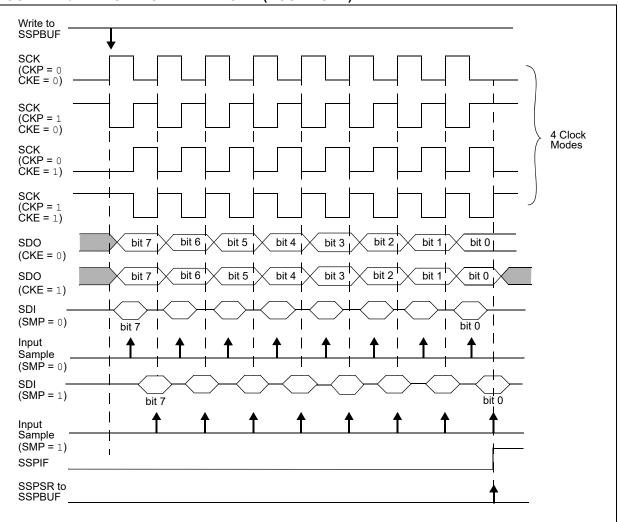


FIGURE 24-6: SPI MODE WAVEFORM (HOST MODE)

24.2.4 SPI CLIENT MODE

In Client mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Client mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPCON1 register.

While in Client mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the client can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

24.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first client output is connected to the second client input, the second client output is connected to the third client input, and so on. The final client output is connected to the host input. Each client sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Client Select line from the host device.

Figure 24-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the client. Setting the BOEN bit of the SSPCON3 register will enable writes to the SSPBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

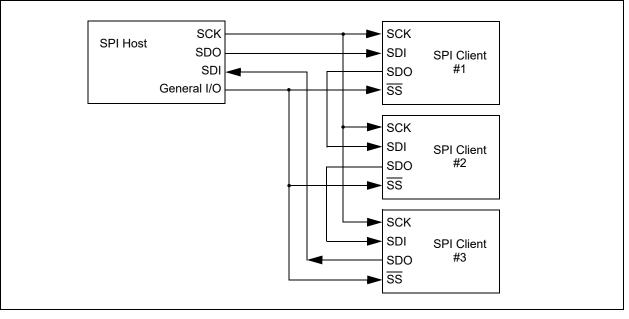
24.2.5 CLIENT SELECT SYNCHRONIZATION

The Client Select can also be used to synchronize communication. The Client Select line is held high until the host device is ready to communicate. When the Client Select line is pulled low, the client knows that a new transmission is starting.

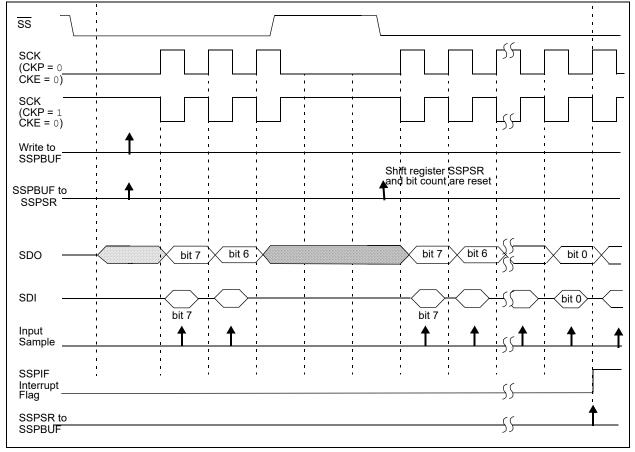
If the client fails to receive the communication properly, it will be reset at the end of the transmission, when the Client Select line returns to a high state. The client is then ready to receive a new transmission when the Client Select line is pulled low again. If the Client Select line is not used, there is a risk that the client will eventually become out of sync with the host. If the client misses a bit, it will always be one bit off in future transmissions. Use of the Client Select line allows the client and host to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Client mode. The SPI must be in Client mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100).

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.


When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When th	e SPI is in (Client mode with SS	pin					
	control	enabled	(SSPCON1<3:0>	=					
	0100), the SPI module will reset if the \overline{SS}								
	pin is set to VDD.								
2:	When th	e SPI is us	sed in Client mode v	with					


- 2: When the SPI is used in Client mode with CKE set; the user must enable SS pin control.
- **3:** While operated in SPI Client mode the SMP bit of the SSPSTAT register must remain clear.

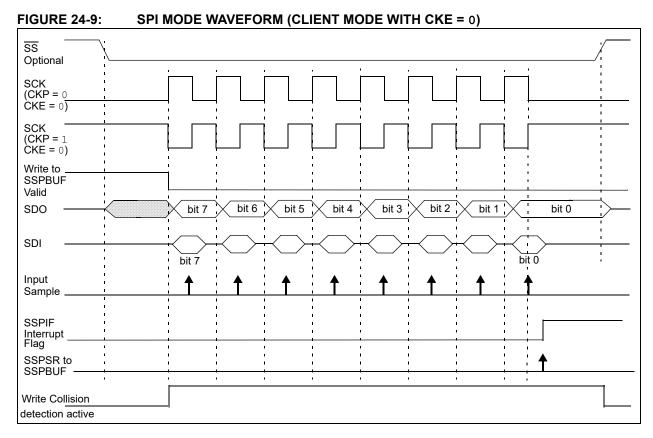

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

FIGURE 24-7: SPI DAISY-CHAIN CONNECTION

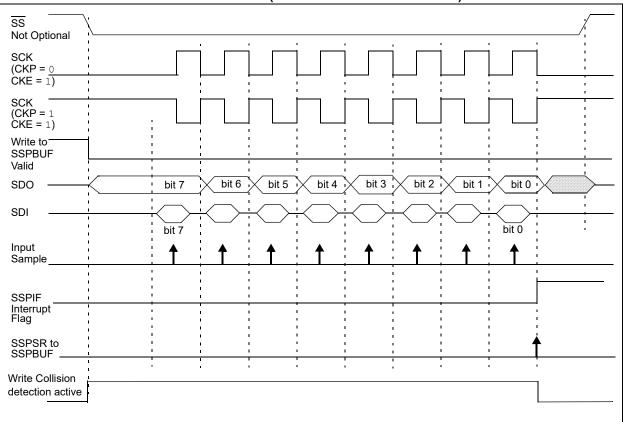


FIGURE 24-10: SPI MODE WAVEFORM (CLIENT MODE WITH CKE = 1)

24.2.6 SPI OPERATION IN SLEEP MODE

In SPI Host mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Client mode, when MSSP interrupts are enabled, after the host completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Host mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Client mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	-	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	121
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	118
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
SSPBUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				228*
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM<	<3:0>		272
SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	274
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	271
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISB2	TRISC1	TRISC0	129

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

* Page provides register information.

24.3 I²C Mode Overview

The Inter-Integrated Circuit Bus (I^2C) is a multi-host serial data communication bus. Devices communicate in a host/client environment where the host devices initiate the communication. A Client device is controlled through addressing.

The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- · Serial Data (SDA)

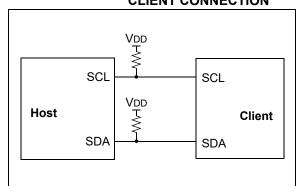
Figure 24-11 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 24-11 shows a typical connection between two processors configured as host and client devices.

The I²C bus can operate with one or more host devices and one or more client devices.

There are four potential modes of operation for a given device:


- Host Transmit mode (host is transmitting data to a client)
- Host Receive mode
 (host is receiving data from a client)
- Client Transmit mode
 (client is transmitting data to a host)
- Client Receive mode
 (client is receiving data from the host)

To begin communication, a host device starts out in Host Transmit mode. The host device sends out a Start bit followed by the address byte of the client it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the host intends to transmit to or receive data from the client device.

If the requested client exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The host then continues in either Transmit mode or Receive mode and the client continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the host intends to read data from the client, and is sent out as a logical zero when it intends to write data to the client.

FIGURE 24-11: I²C HOST/ CLIENT CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the client device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

If the host intends to write to the client, then it repeatedly sends out a byte of data, with the client responding after each byte with an \overrightarrow{ACK} bit. In this example, the host device is in Host Transmit mode and the client is in Client Receive mode.

If the host intends to read from the client, then it repeatedly receives a byte of data <u>from</u> the client, and responds after each byte with an ACK bit. In this example, the host device is in Host Receive mode and the client is Client Transmit mode.

On the last byte of data communicated, the host device may end the transmission by sending a Stop bit. If the host device is in <u>Receive</u> mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the host may want to maintain control of the bus and re-initiate another transmission. If so, the host device may send another Start bit in place of the Stop bit or last ACK bit when it is in Receive mode.

The I²C bus specifies three message protocols;

- Single message where a host writes data to a client.
- Single message where a host reads data from a client.
- Combined message where a host initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more clients.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives client device clients a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one host device communicating at any single time.

24.3.1 CLOCK STRETCHING

When a client device has not completed processing data, it can delay the transfer of more data through the process of Clock Stretching. An addressed client device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The host that is communicating with the client will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the client has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

24.3.2 ARBITRATION

Each host device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two host devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a host device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message. Client Transmit mode can also be arbitrated, when a host addresses multiple client's, but this is less common.

If two host devices are sending a message to two different client devices at the address stage, the host sending the lower client address always wins arbitration. When two host devices send messages to the same client address, and addresses can sometimes refer to multiple clients, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-host support.

24.4 I²C Mode Operation

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and 2 interrupt flags interface the module with the $PIC^{\textcircled{B}}$ microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

24.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a Host to a Client or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the host. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

24.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

24.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an I²C mode is enabled.

24.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 24-2: I²C BUS TERMS

TABLE 24-2:	I'C BUS TERMS					
TERM	Description					
Transmitter	The device which shifts data out onto the bus.					
Receiver	The device which shifts data in from the bus.					
Host	The device that initiates a transfer, generates clock signals and terminates a transfer.					
Client	The device addressed by the host.					
Multi-host	A bus with more than one device that can initiate data transfers.					
Arbitration	Procedure to ensure that only one host at a time controls the bus. Winning arbitration ensures that the message is not corrupted.					
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.					
Idle	No host is controlling the bus, and both SDA and SCL lines are high.					
Active	Any time one or more host devices are controlling the bus.					
Addressed Cli- ent	Client device that has received a matching address and is actively being clocked by a host.					
Matching Address	Address byte that is clocked into a client that matches the value stored in SSPADD.					
Write Request	Client receives a matching address with R/W bit clear, and is ready to clock in data.					
Read Request	Host sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Cli- ent. This data is the next and all following bytes until a Restart or Stop.					
Clock Stretching	When a device on the bus hold SCL low to stall communication.					
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.					

24.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the host and signifies the transition of the bus from an Idle to an Active state. Figure 24-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

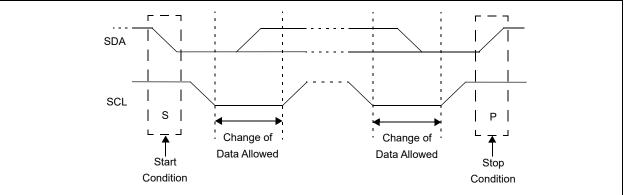
24.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

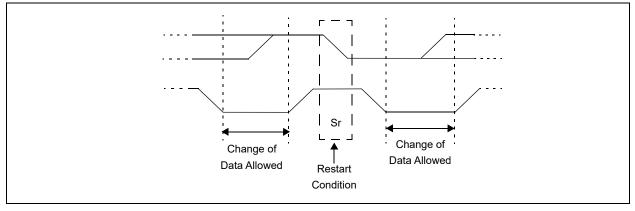
Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected.

24.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A host can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the


same effect on the client that a Start would, resetting all client logic and preparing it to clock in an address. The host may want to address the same or another client.

In 10-bit Addressing Client mode a Restart is required for the host to clock data out of the addressed client. Once a client has been fully addressed, matching both high and low address bytes, the host can issue a Restart and the high address byte with the R/W bit set. The client logic will then hold the clock and prepare to clock out data.


After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

24.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPCON3 register can enable the generation of an interrupt in Client modes that do not typically support this function. Client modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 24-13: I²C RESTART CONDITION

24.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPCON2 register.

Client software, when the AH<u>EN</u> and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPCON2 register is set/cleared to determine the response.

Client hardware will generate an ACK response if the AHEN and DHEN bits of the SSPCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the client. If the BF bit of the SSPSTAT register or the SSPOV bit of the SSPCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

24.5 I²C Client Mode Operation

The MSSP Client mode operates in one of four modes selected in the SSPM bits of SSPCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operated the same as the other modes with SSPIF additionally getting set upon detection of a Start, Restart, or Stop condition.

24.5.1 CLIENT MODE ADDRESSES

The SSPADD register (Register 24-6) contains the Client mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 24-5) affects the address matching process. See **Section 24.5.9 "SSP Mask Register**" for more information.

24.5.1.1 I²C Client 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

24.5.1.2 I²C Client 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb of the 10-bit address and stored in bits 2 and 1 of the SSPADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPADD. Even if there is not an address match; SSPIF and UA are set, and SCL is held low until SSPADD is updated to receive a high byte again. When SSPADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the client is addressed, and clocking in the high address with the R/W bit set. The client hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a client after it has received a complete high and low address byte match.

24.5.2 CLIENT RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 24-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPIF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See Section 24.2.3 "SPI HOST Mode" for more detail.

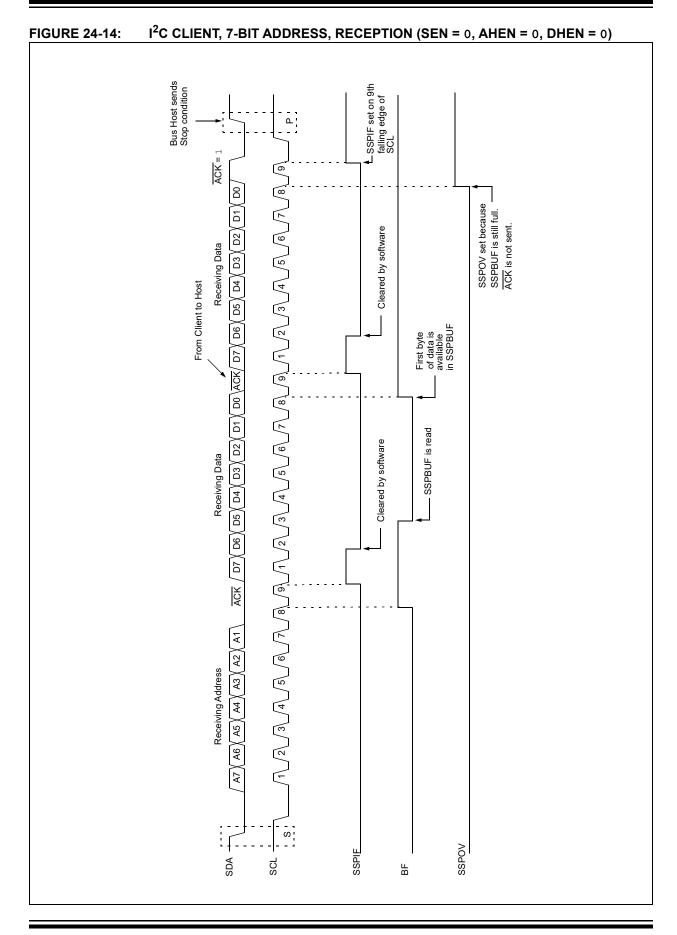
24.5.2.1 7-bit Addressing Reception

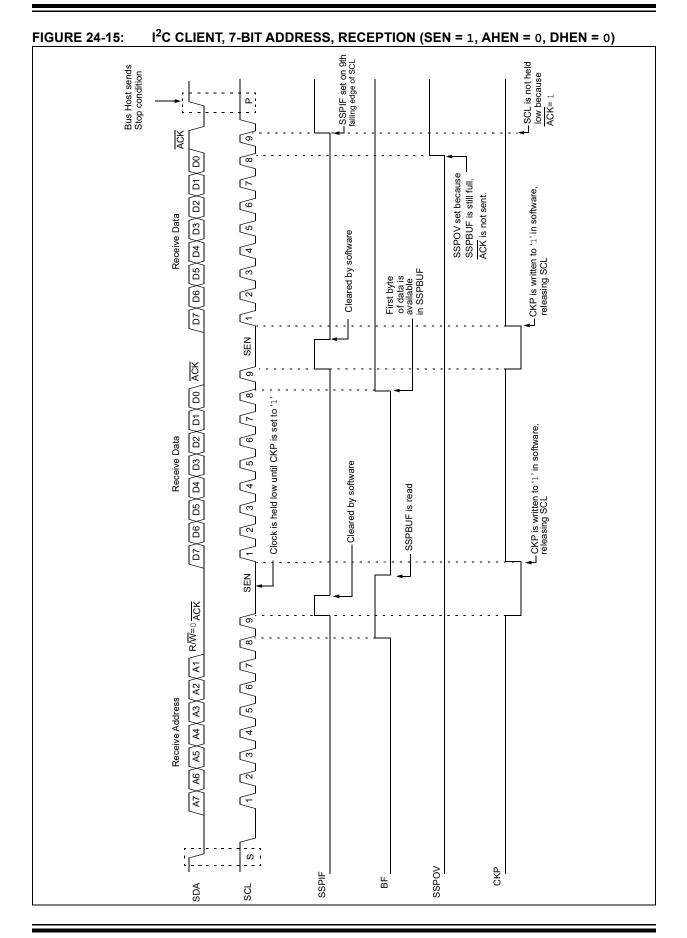
This section describes a standard sequence of events for the MSSP module configured as an I^2C Client in 7-bit Addressing mode. All decisions made by hardware or software and their effect on reception. Figure 24-14 and Figure 24-15 is used as a visual reference for this description.

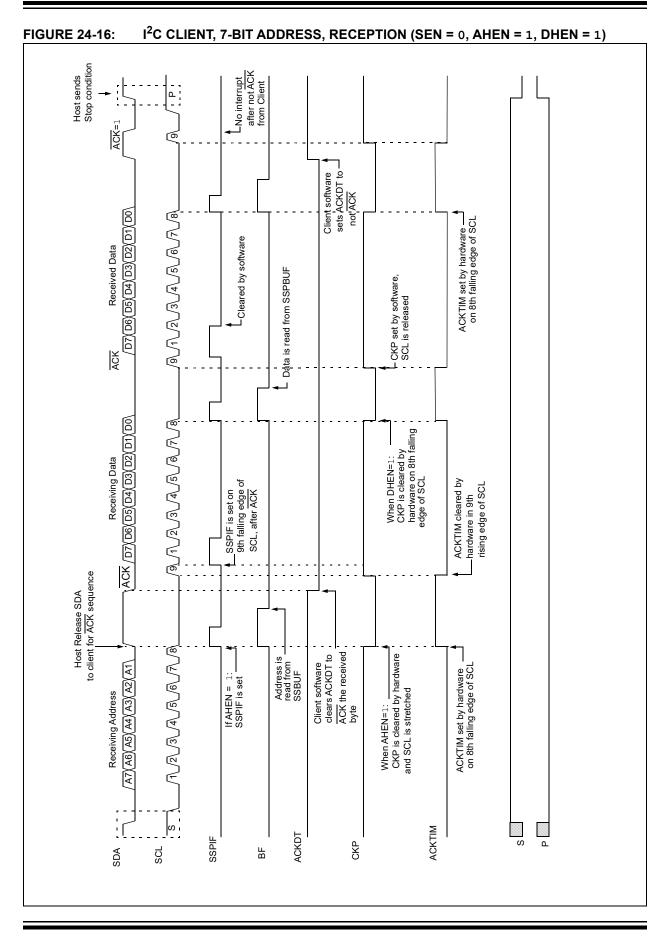
This is a step by step process of what typically must be done to accomplish I^2C communication.

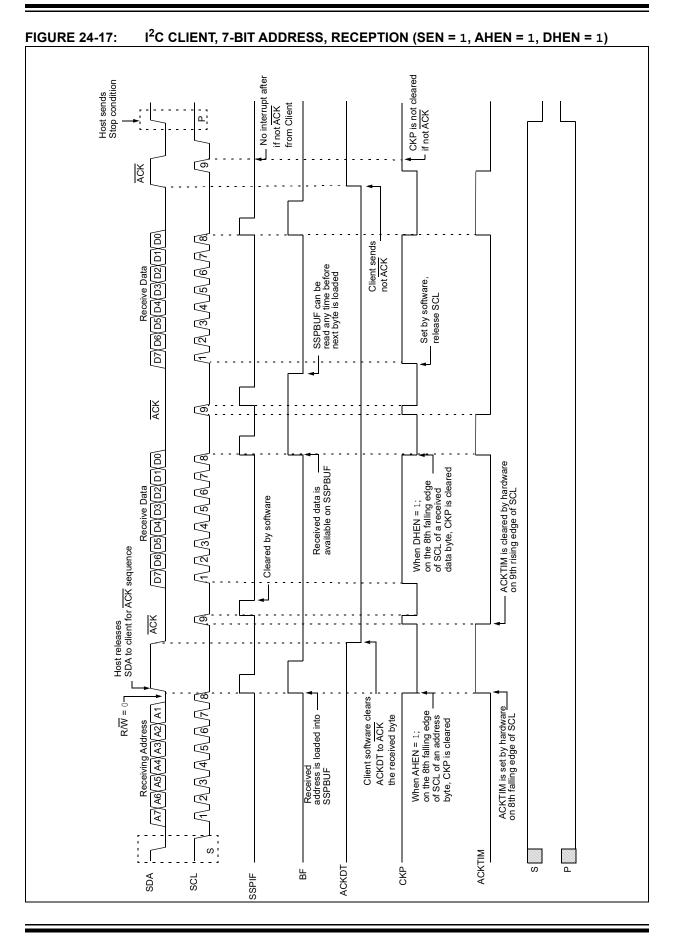
- 1. Start bit detected.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The client pulls SDA low sending an ACK to the host, and sets SSPIF bit.
- 5. Software clears the SSPIF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. If SEN = 1; Client software sets CKP bit to release the SCL line.
- 8. The host clocks out a data byte.
- 9. Client drives SDA low sending an ACK to the host, and sets SSPIF bit.
- 10. Software clears SSPIF.
- 11. Software reads the received byte from SSPBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Host.
- 13. Host sends Stop condition, setting P bit of SSP-STAT, and the bus goes Idle.

24.5.2.2 7-bit Reception with AHEN and DHEN


Client device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the client software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.


This list describes the steps that need to be taken by client software to use these options for I^2C communication. Figure 24-16 displays a module using both address and data holding. Figure 24-17 includes the operation with the SEN bit of the SSPCON2 register set.


- 1. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Client clears the SSPIF.
- Client can look at the ACKTIM bit of the SSP-CON3 register to <u>determine</u> if the SSPIF was after or before the ACK.
- 5. Client reads the address value from SSPBUF, clearing the BF flag.
- 6. Client sets ACK value clocked out to the host by setting ACKDT.
- 7. Client releases the clock by setting CKP.
- 8. SSPIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the client hardware will stretch the clock after the ACK.
- 10. Client clears SSPIF.


Note:	SSPIF is still set after the ninth falling edge
	of SCL even if there is no clock stretching
	and BF has been cleared. Only if NACK is
	sent to Host is SSPIF not set

- 11. SSPIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Client looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Client reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the client sending an ACK = 1, or the host sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the client will only know by polling the P bit of the SSTSTAT register.

24.5.3 CLIENT TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the client on the ninth bit.

Following the ACK, client hardware clears the CKP bit and the SCL pin is held low (see **Section 24.5.6 "Clock Stretching"** for more detail). By stretching the clock, the host will be unable to assert another clock pulse until the client is done preparing the transmit data.

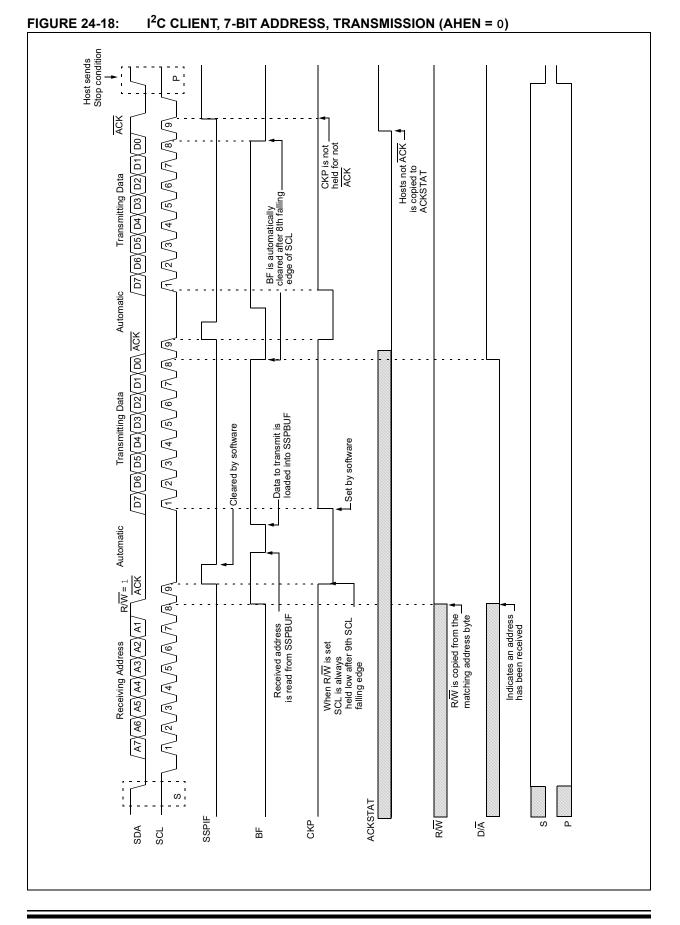
The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the host-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. In this case, when the not \overline{ACK} is latched by the client, the client goes Idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

24.5.3.1 Client Mode Bus Collision

A client receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the client goes Idle and waits to be addressed again. User software can use the BCLIF bit to handle a client bus collision.


24.5.3.2 7-bit Transmission

A host device can transmit a read request to a client, and then clock data out of the client. The list below outlines what software for a client will need to do to accomplish a standard transmission. Figure 24-18 can be used as a reference to this list.

- 1. Host sends a Start condition on SDA and SCL.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Client setting SSPIF bit.
- 4. Client hardware generates an ACK and sets SSPIF.
- 5. SSPIF bit is cleared by user.
- 6. Software reads the received address from SSPBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The client software loads the transmit data into SSPBUF.
- 9. CKP bit is set releasing SCL, allowing the host to clock the data out of the client.
- 10. SSPIF is set after the ACK response from the host is loaded into the ACKSTAT register.
- 11. SSPIF bit is cleared.
- 12. The client software checks the ACKSTAT bit to see if the host wants to clock out more data.

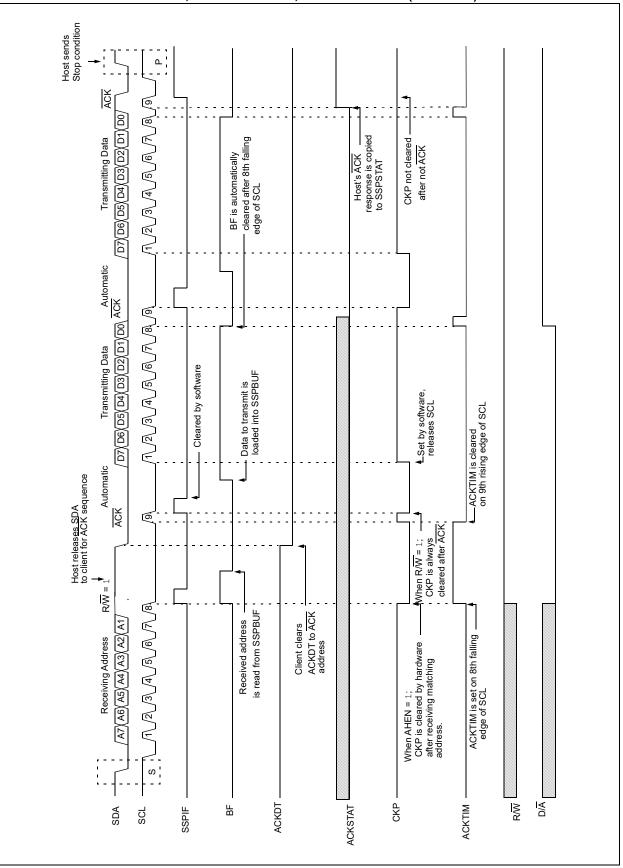
Note 1:	lf	the	host	ACKs	the	clock	will	be				
	stretched.											
2:	 2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling. 											

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the host sends a not ACK; the clock is not held, but SSPIF is still set.
- 15. The host sends a Restart condition or a Stop.
- 16. The client is no longer addressed.

24.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPIF interrupt is set.

Figure 24-19 displays a standard waveform of a 7-bit Address Client Transmission with AHEN enabled.


- 1. Bus starts Idle.
- 2. Host sends Start condition; the S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Host sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPIF interrupt is generated.
- 4. Client software clears SSPIF.
- 5. Client software reads ACKTIM bit of SSPCON3 register, and R/W and D/A of the SSPSTAT register to determine the source of the interrupt.
- 6. Client reads the address value from the SSPBUF register clearing the BF bit.
- Client software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPCON2 register accordingly.
- 8. Client sets the CKP bit releasing SCL.
- 9. Host clocks in the \overline{ACK} value from the client.
- 10. Client hardware automatically clears the CKP bit and sets SSPIF after the ACK if the R/W bit is set.
- 11. Client software clears SSPIF.
- 12. Client loads value to transmit to the host into SSPBUF setting the BF bit.

Note: <u>SSPBUF</u> cannot be loaded until after the <u>ACK</u>.

13. Client sets CKP bit releasing the clock.

- 14. Host clocks out the data from the client and sends an ACK value on the ninth SCL pulse.
- 15. Client hardware copies the ACK value into the ACKSTAT bit of the SSPCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the host from the client.
- 17. If the host sends a not ACK the client releases the bus allowing the host to send a Stop and end the communication.

Note: Host must send a not ACK on the last byte to ensure that the client releases the SCL line to receive a Stop.

24.5.4 CLEINT MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C Client in 10-bit Addressing mode.

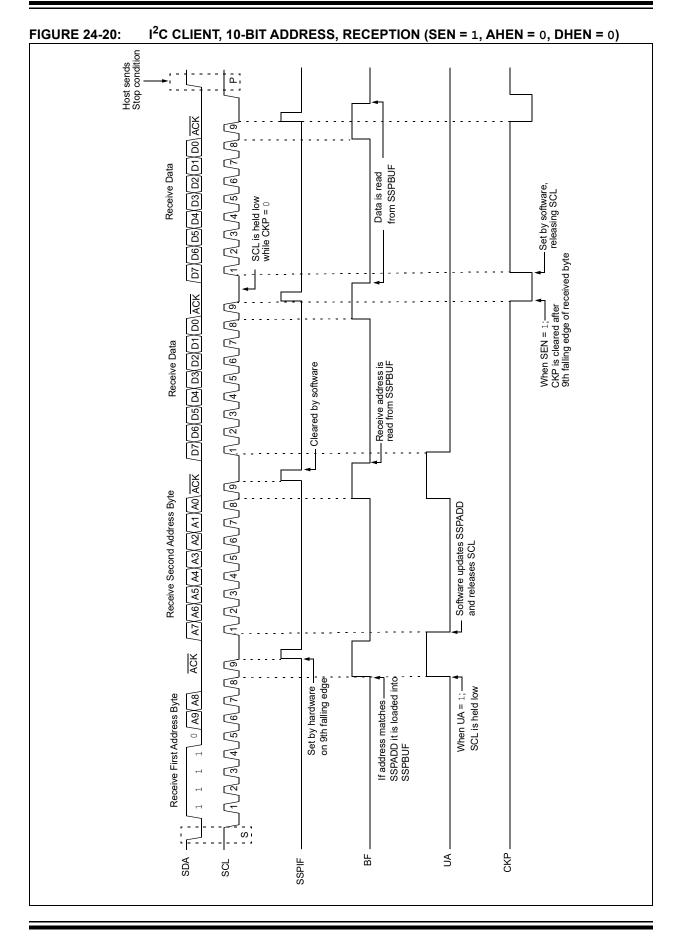
Figure 24-20 is used as a visual reference for this description.

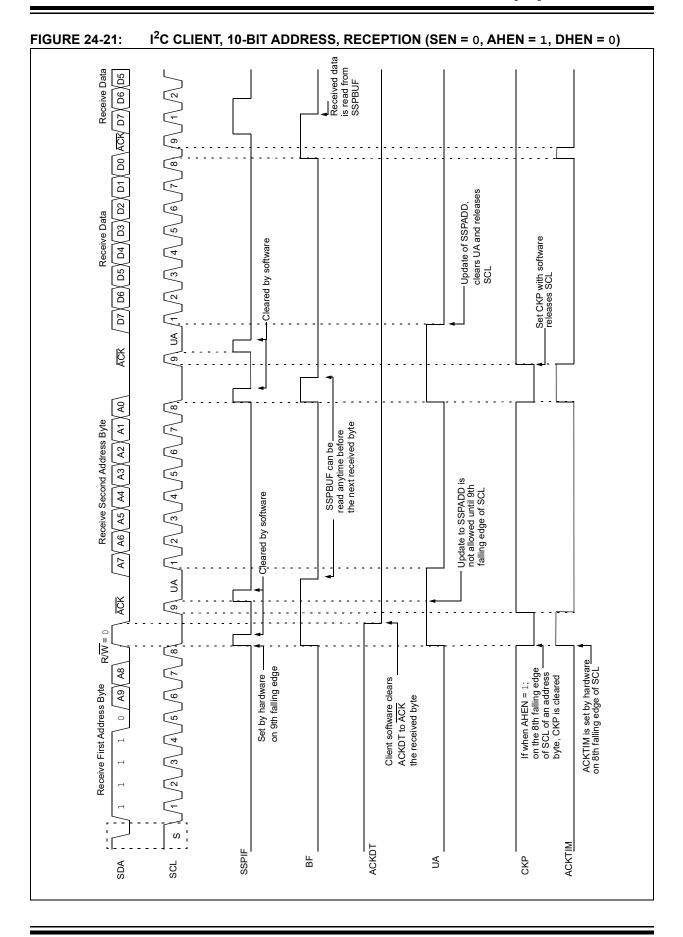
This is a step by step process of what must be done by client software to accomplish I^2C communication.

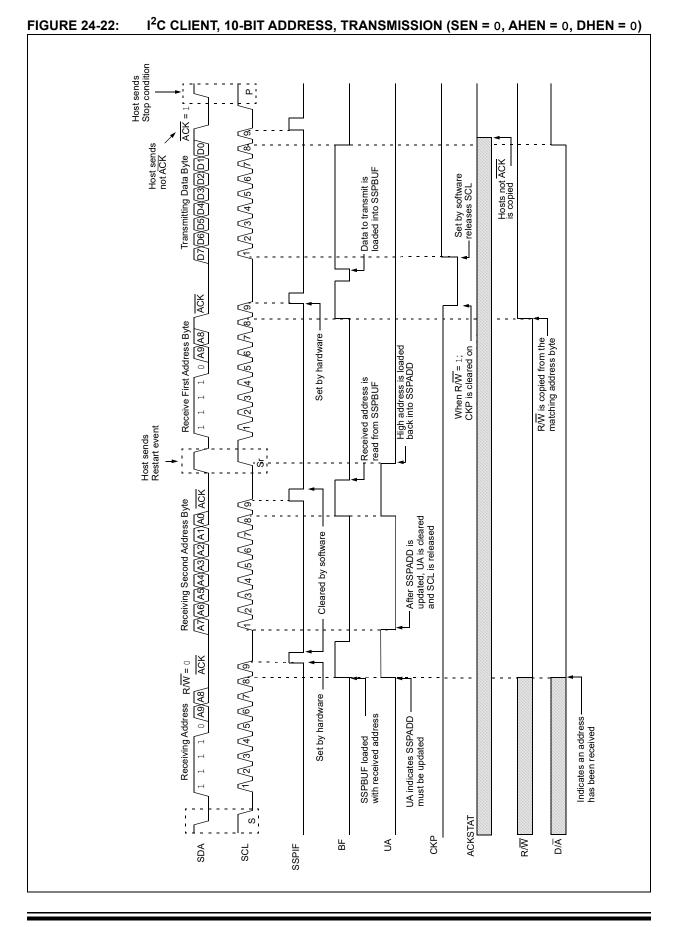
- 1. Bus starts Idle.
- Host sends Start condition; S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- 3. Host sends matching high address with R/W bit clear; UA bit of the SSPSTAT register is set.
- 4. Client sends ACK and SSPIF is set.
- 5. Software clears the SSPIF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. Client loads low address into SSPADD, releasing SCL.
- 8. Host sends matching low address byte to the Client; UA bit is set.

Note: Updates to the SSPADD register are not allowed until after the ACK sequence.

9. Client sends ACK and SSPIF is set.


Note: If the low address does not match, SSPIF and UA are still set so that the client software can set SSPADD back to the high address. BF is not set because there is no match. CKP is unaffected.


- 10. Client clears SSPIF.
- 11. Client reads the received matching address from SSPBUF clearing BF.
- 12. Client loads high address into SSPADD.
- 13. Host clocks a data byte to the client and clocks out the clients ACK on the ninth SCL pulse; SSPIF is set.
- 14. If SEN bit of SSPCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Client clears SSPIF.
- 16. Client reads the received byte from SSPBUF clearing BF.
- 17. If SEN is set the client sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Host sends Stop to end the transmission.


24.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 24-21 can be used as a reference of a client in 10-bit addressing with AHEN set.

Figure 24-22 shows a standard waveform for a client transmitter in 10-bit Addressing mode.

24.5.6 **CLOCK STRETCHING**

Clock stretching occurs when a device on the bus holds the SCL line low effectively pausing communication. The client may stretch the clock to allow more time to handle data or prepare a response for the host device. A host device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a client is invisible to the host software and handled by the hardware that generates SCL.

The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

24.5.6.1 Normal Clock Stretching

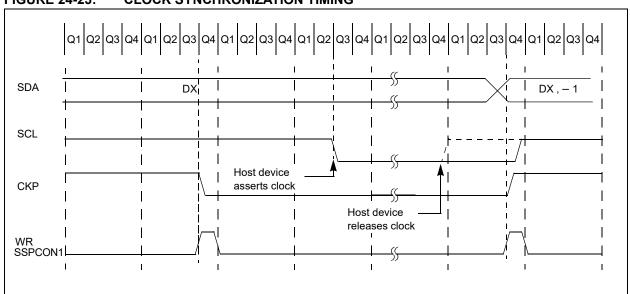
Following an ACK if the R/W bit of SSPSTAT is set, a read request, the client hardware will clear CKP. This allows the client time to update SSPBUF with data to transfer to the host. If the SEN bit of SSPCON2 is set, the client hardware will always stretch the clock after the ACK sequence. Once the client is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the ninth falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the ninth falling edge of SCL. It is now always cleared for read requests.

24.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.


24.5.6.3 Byte NACKing

When AHEN bit of SSPCON3 is set: CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSPCON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

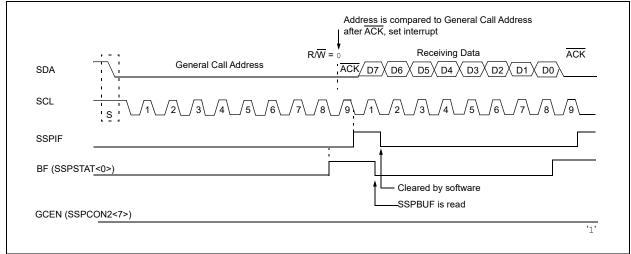
Stretching after the eighth falling edge of SCL allows the client to look at the received address or data and decide if it wants to ACK the received data.

24.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I²C client device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I²C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 24-23).

FIGURE 24-23: CLOCK SYNCHRONIZATION TIMING

24.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the client addressed by the host device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the Client module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the client clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and client software can read SSPBUF and respond. Figure 24-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The client will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the client hardware will stretch the clock after the eighth falling edge of SCL. The client must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 24-24: CLIENT MODE GENERAL CALL ADDRESS SEQUENCE

24.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 24-5) is available in I²C Client mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

24.6 I²C Host Mode

Host mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Host mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Host mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Host mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

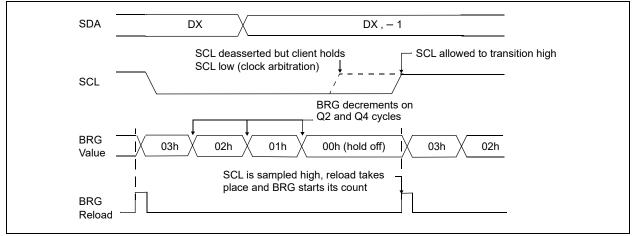
The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Host mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur
 - 2: Host mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPxIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

24.6.1 I²C HOST MODE OPERATION

The host device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I^2C bus will not be released.

In Host Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the client address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.


In Host Receive mode, the first byte transmitted contains the client address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit client address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 24.7 "Baud Rate Generator" for more detail.

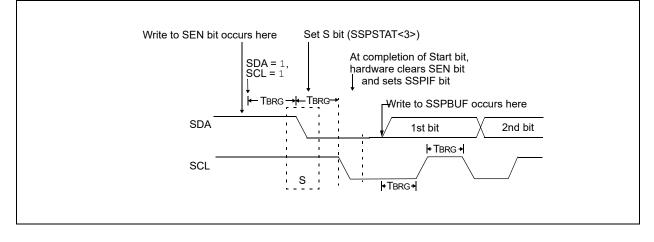
24.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the host, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 24-25).

24.6.3 WCOL STATUS FLAG

If the user writes the SSPBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPBUF was attempted while the module was not idle.

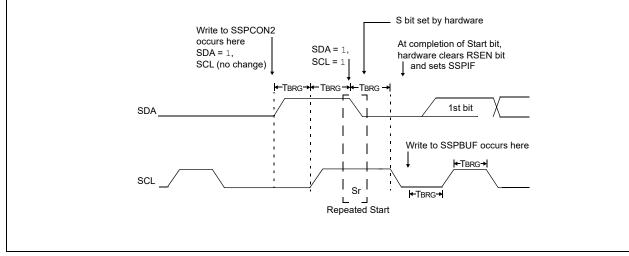
Note:	Because queuing of events is not allowed,					
	writing to the lower five bits of SSPCON2					
	is disabled until the Start condition is					
	complete.					


24.6.4 I²C HOST MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN bit of the SSPCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPCON2 register will be automatically cleared by

FIGURE 24-26: FIRST START BIT TIMING

hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.


- **Note 1:** If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C Specification states that a bus collision cannot occur on a Start.

24.6.5 I²C HOST MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the Host state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP- CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another host is attempting to transmit a data '1'.

FIGURE 24-27: REPEAT START CONDITION WAVEFORM

24.6.6 I²C HOST MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the host releases SDA. This allows the client device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the host receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the host clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 24-28).

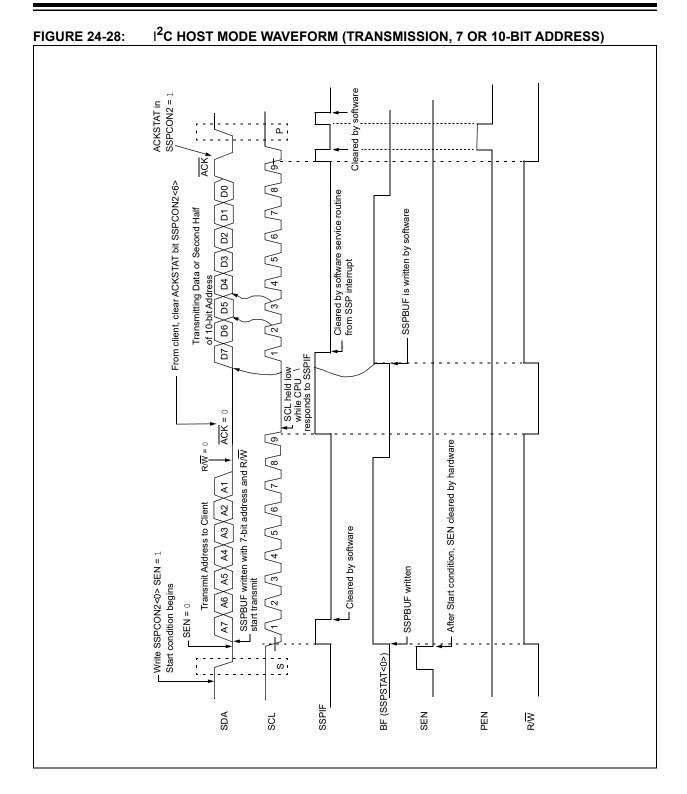
After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the host will release the SDA pin, allowing the client to respond with an Acknowledge. On the falling edge of the ninth clock, the host will sample the SDA pin to see if the address was recognized by a client. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

24.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

24.6.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).


WCOL must be cleared by software before the next transmission.

24.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the client has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the client does not Acknowledge ($\overline{ACK} = 1$). A client sends an Acknowledge when it has recognized its address (including a general call), or when the client has properly received its data.

24.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSPIF is set by hardware on completion of the Start.
- 3. SSPIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPBUF with the client address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the client device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 9. The user loads the SSPBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the client device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSP-CON2 register. Interrupt is generated once the Stop/Restart condition is complete.

24.6.7 I²C HOST MODE RECEPTION

Host mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register.

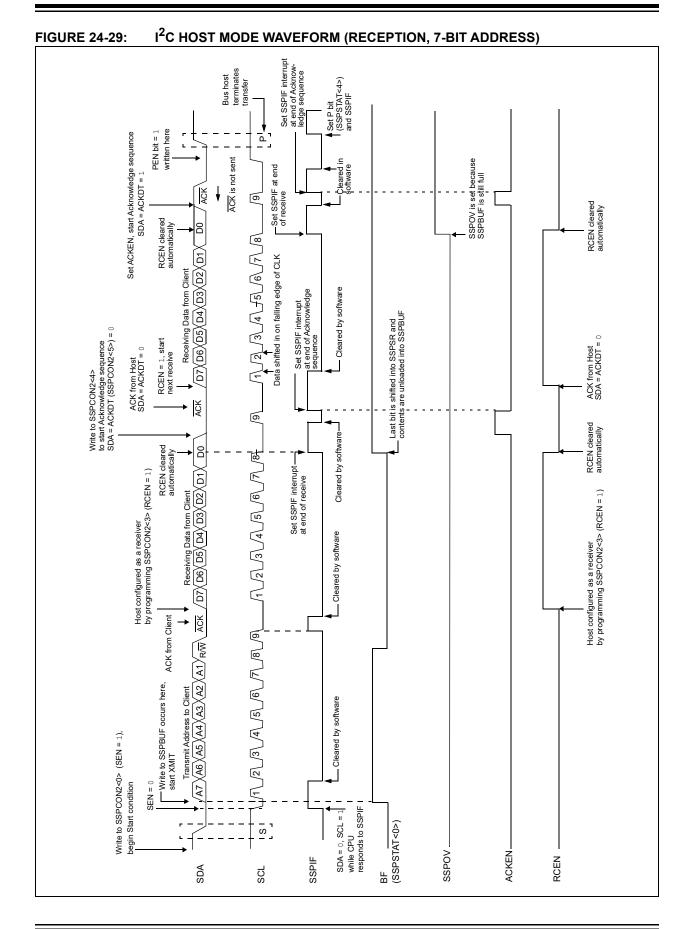
Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register.

24.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

24.6.7.2 SSPOV Status Flag


In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

24.6.7.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

24.6.7.4 Typical Receive Sequence:

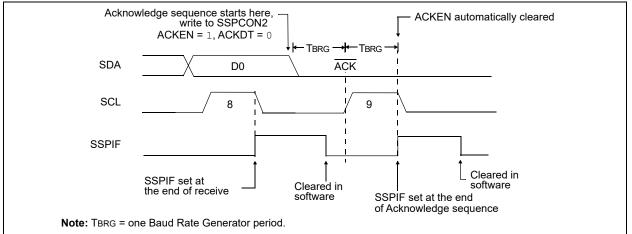
- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSPIF is set by hardware on completion of the Start.
- 3. SSPIF is cleared by software.
- 4. User writes SSPBUF with the client address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the client device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 8. User sets the RCEN bit of the SSPCON2 register and the Host clocks in a byte from the client.
- 9. After the falling edge of SCL, SSPIF and BF are set.
- 10. Host clears SSPIF and reads the received byte from SSPBUF, clears BF.
- 11. Host sets ACK value sent to client in ACKDT bit of the SSPCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Hosts ACK is clocked out to the Client and SSPIF is set.
- 13. User clears SSPIF.
- 14. Steps 8-13 are repeated for each received byte from the client.
- 15. Host sends a not ACK or Stop to end communication.

24.6.8 ACKNOWLEDGE SEQUENCE TIMING

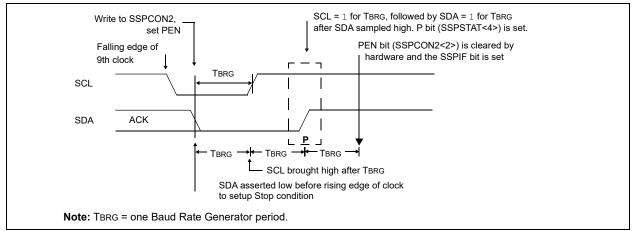
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 24-30).

24.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


24.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the host will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 24-31).


24.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 24-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 24-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

24.6.10 SLEEP OPERATION

While in Sleep mode, the I²C Client module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

24.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

24.6.12 MULTI-HOST MODE

In Multi-Host mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-host operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLIF bit.

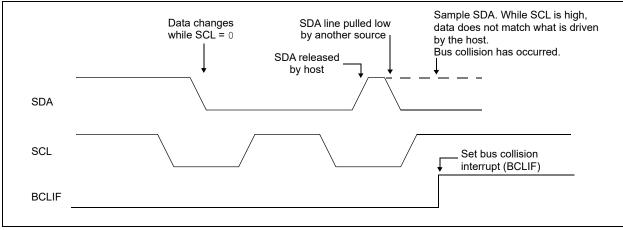
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- · A Start Condition
- · A Repeated Start Condition
- An Acknowledge Condition

24.6.13 MULTI -HOST COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Host mode support is achieved by bus arbitration. When the host outputs address/data bits onto the SDA pin, arbitration takes place when the host outputs a '1' on SDA, by letting SDA float high and another host asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The host will set the Bus Collision Interrupt Flag, BCLIF, and reset the I²C port to its Idle state (Figure 24-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the l^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The host will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Host mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 24-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

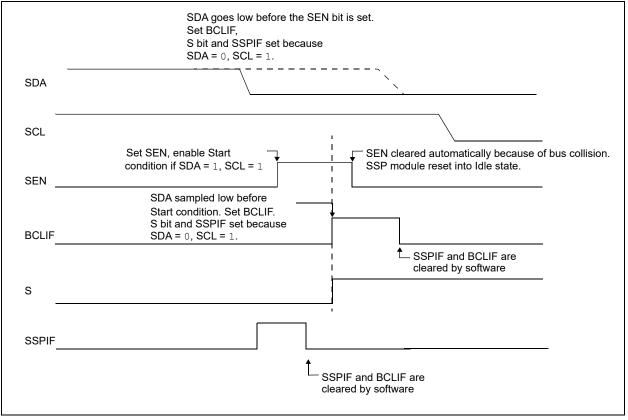
24.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

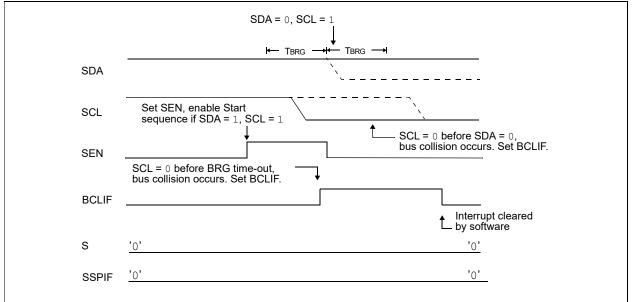
- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 24-33).
- b) SCL is sampled low before SDA is asserted low (Figure 24-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:


- · the Start condition is aborted,
- · the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 24-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another host is attempting to drive a data '1' during the Start condition.


If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 24-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus hosts can assert a Start condition at the exact same time. Therefore, one host will always assert SDA before the other. This condition does not cause a bus collision because the two hosts must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

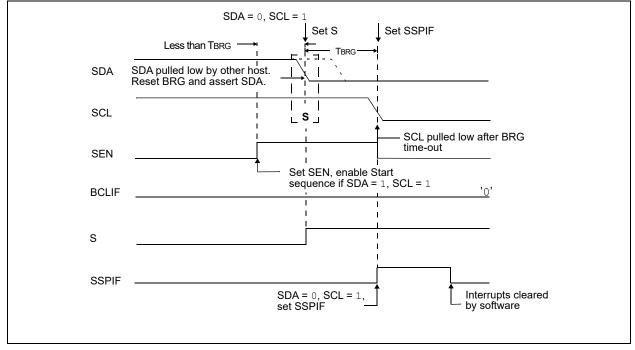
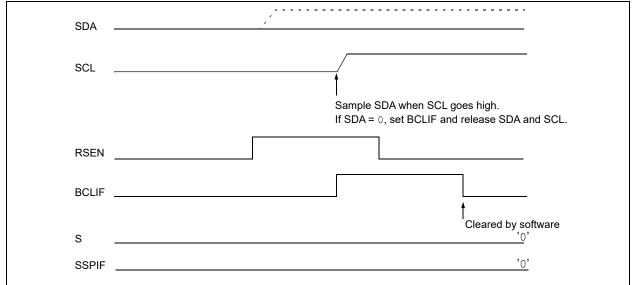


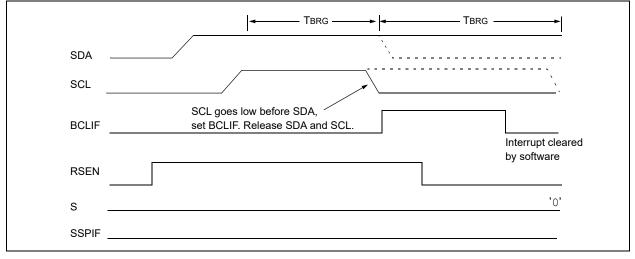
FIGURE 24-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

24.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

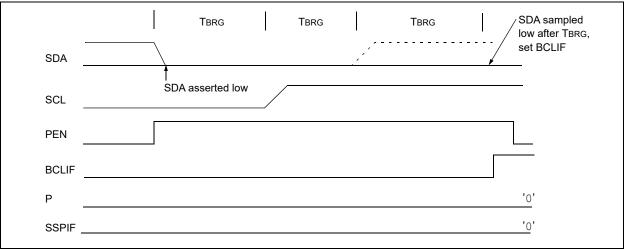

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- SCL goes low before SDA is asserted low, indicating that another host is attempting to transmit a data '1'.

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another host is attempting to transmit a data '0', Figure 24-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two hosts can assert SDA at exactly the same time.

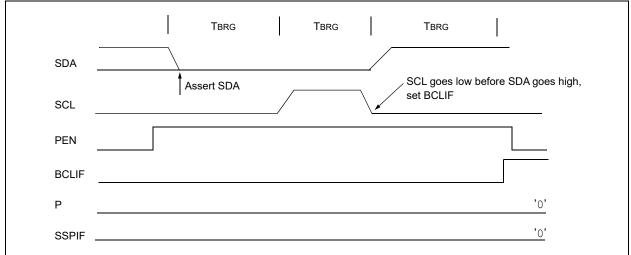

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another host is attempting to transmit a data '1' during the Repeated Start condition, see Figure 24-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 24-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)


24.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another host attempting to drive a data '0' (Figure 24-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another host attempting to drive a data '0' (Figure 24-39).

FIGURE 24-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 24-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	_	_	CCP2IE ⁽¹⁾	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	—	_	CCP2IF ⁽¹⁾	92
SSPADD				ADD<	:7:0>				275
SSPBUF	MSSP Recei	ive Buffer/Tra	nsmit Register						228*
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		272
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	273
SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	274
SSPMSK	MSK<7:0>							275	
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	271
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129

 TABLE 24-3:
 SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C mode.

* Page provides register information.

Note 1: PIC16F1934 only.

24.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Host modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 24-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 24-40 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module


clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 24-4demonstratesclockratesbasedoninstructioncyclesandtheBRGvalueloadedintoSSPADD.

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 24-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 24-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: Refer to the I/O port electrical and timing specifications in Table 30-4 and Figure 30-7 to ensure the system is designed to support the I/O timing requirements.

24.8 Register Definitions: MSSP Control

REGISTER 24-1: SSPSTAT: SSP STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0
Legend:							
R = Readable b		W = Writable bi	t	U = Unimplem	ented bit, read as	'0'	
u = Bit is uncha	nged	x = Bit is unkno		-n/n = Value at	POR and BOR/V	alue at all other l	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	$\frac{\text{SPI Host mode}}{1 = \text{Input data s}}$ $0 = \text{Input data s}$ $\frac{\text{SPI Client mode}}{\text{SMP must be c}}$ $\frac{\text{In I}^2}{1 = \text{Slew rate o}}$	sampled at end c sampled at middl <u>e:</u> leared when SP	of data output tir e of data outpu is used in Cliel for standard spe	t time nt mode eed mode (100 k	Hz and 1 MHz)		
bit 6	CKE: SPI Clock In SPI Host or (1 = Transmit or 0 = Transmit or In $I^2 _ C^{TM} \mod 1$ = Enable input	k Edge Select bit <u>Client mode:</u> ccurs on transitio ccurs on transitio	: (SPI mode onl n from active to n from Idle to a resholds are co	y) Idle clock state ctive clock state	bus specification		
bit 5	1 = Indicates th	ress bit (I ² C mod lat the last byte r lat the last byte r	eceived or trans				
bit 4	 0 = Indicates that the last byte received or transmitted was address P: Stop bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset) 0 = Stop bit was not detected last 						
bit 3	 Start bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 						
bit 2	 Rive: Read/Write bit information (I²C mode only) This bit holds the R/W bit information <u>following</u> the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not ACK bit. <u>InI² C Client mode</u>: Read Write <u>InI² C Host mode</u>: Transmit is in progress Transmit is not in progress ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode. 						
bit 1	UA: Update Ad 1 = Indicates th	dress bit (10-bit	l ² C mode only) s to update the		SSPADD register		
bit O	0 = Receive no <u>Transmit (l² _ C</u> 1 = Data transn	nd I ² <u>C modes</u> mplete, SSPBUF t complete, SSP <u>c mode only):</u> nit in progress (d	BUF is empty oes not include		op bits), SSPBUF b bits), SSPBUF is		

REGISTER 24-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	CKP		SSPI	M<3:0>	
bit 7							bit
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, read as '0'		
u = Bit is unchang	ged	x = Bit is unknow	n	-n/n = Value at P	OR and BOR/Value	e at all other Resets	
'1' = Bit is set		'0' = Bit is cleared	ł	HS = Bit is set by	hardware	C = User cleared	
bit 7	WCOL: Write Collision Detect bit <u>Host mode:</u> 1 = A write to the SSPBUF register was attempted while the I ² C conditions were not valid for a transmission to I 0 = No collision <u>Client mode:</u> 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision						
bit 6	SSPOV: Receive In SPI mode: 1 1 = A new byte Overflow ca setting ove setting ove SSPBUF re 0 = No overflow 1n I ² <u>C mode:</u> 1 = A byte is n	e Overflow Indicator is received while the an only occur in Clier flow. In Host mode, agister (must be clear w eccived while the S leared in software).	e SSPBUF registe nt mode. In Client the overflow bit is red in software).	mode, the user must not set since each no	read the SSPBUF, ew reception (and tr	e of overflow, the data even if only transmitt ansmission) is initiate DV is a "don't care"	ing data, to avoid d by writing to th
bit 5	In both modes, v In SPI mode: 1 = Enables se 0 = Disables se In I^2 <u>C mode:</u> 1 = Enables the	rial port and configu erial port and config e serial port and confi	e pins must be pr res SCK, SDO, Sl jures these pins a igures the SDA ar	nd SCL pins as the so	rce of the serial por		
bit 4	 0 = Disables serial port and configures these pins as I/O port pins CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In1² <u>C Client mode:</u> SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In1² <u>C Host mode:</u> Unused in this mode 						
bit 3-0	$\begin{array}{c} 0000 = \text{SPI Hos} \\ 0001 = \text{SPI Hos} \\ 0001 = \text{SPI Hos} \\ 0010 = \text{SPI Hos} \\ 0101 = \text{SPI Clien} \\ 0101 = \text{SPI Clien} \\ 0101 = \text{I}^2\text{C Clien} \\ 0101 = \text{I}^2\text{C Clien} \\ 1001 = \text{Reserve} \\ 1001 = \text{Reserve} \\ 1011 = \text{I}^2\text{C firm} \\ 1001 = \text{Reserve} \\ 1011 = \text{Reserve} $	nt mode, 7-bit addre t mode, 10-bit addr mode, clock = Fos d t mode, clock = Fos vare controlled Hos d d t mode, 7-bit addre	cc/4 cc/16 cc/64 R2 outp <u>ut/2</u> K pin, <u>SS</u> pin co SS ess c / (4 * (SSPADE cc/(4 * (SSPADD t mode (Client Id	ntrol enabled ntrol disabled, SS ca)+1)) ⁽⁴⁾ +1))(⁵)	nabled	bin	
2: Wh 3: Wh		flow bit is not set si bins must be proper A and SCL pins mu	nce each new ree ly configured as i st be configured	ception (and transmi nput or output. as inputs.		y writing to the SSPI	3UF register.

SSPADD values of 0, 1 of 2 are not supported for 1 c mode.
SSPADD value of '0' is not supported. Use SSPM = 0000 instead.

R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
						bit C
	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
•						other Resets
t	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
1 = Enable in	terrupt when a	general call a	• /		ed in the SSPS	ŝR
1 = Acknowle	dge was not re	eceived	mode only)			
In Receive me Value transmi 1 = Not Ackne	ode: itted when the owledge	·	• /	e sequence at t	he end of a red	ceive
ACKEN: Ackr In Host Recei 1 = Initiate A Automati	nowledge Seq <u>ve mode:</u> Acknowledge cally cleared b	sequence on by hardware.	·		transmit ACk	DT data bit
RCEN: Recei	ve Enable bit Receive mode	(in I ² C Host mo	ode only)			
<u>SCKMSSP R</u> 1 = Initiate St	<u>elease Contro</u> op condition o	<u>:</u>		atically cleared I	oy hardware.	
RSEN: Repea	 Stop containing RSEN: Repeated Start Condition Enabled bit (in I²C Host mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 					
<u>In Host mode</u> 1 = Initiate St 0 = Start cond <u>In Client mod</u>	<u>:</u> art condition o dition Idle e <u>:</u> stching is enat	n SDA and SC	L pins. Automa	-	-	ed)
	e bit hanged GCEN: Gene 1 = Enable in 0 = General of ACKSTAT: Act 1 = Acknowle 0 = Acknowle ACKDT: Ackrowle ACKDT: Ackrowle ACKDT: Ackrowle ACKEN: Ackrowle ACKEN: Ackrowle ACKEN: Ackrowle ACKEN: Ackrowle ACKEN: Ackrowle ACKEN: Ackrowle CEN: Recei 1 = Initiate A Automati 0 = Acknowle RCEN: Recei 1 = Enables F 0 = Receive id PEN: Stop Conso SCKMSSP R 1 = Initiate St 0 = Stop conso RSEN: Repea 1 = Initiate R 0 = Repeated SEN: Start Col In Host mode 1 = Initiate St 0 = Start conso In Client mod 1 = Clock stree	e bit W = Writable hanged x = Bit is unk '0' = Bit is cle GCEN: General Call Enable 1 = Enable interrupt when a 0 = General call address dis ACKSTAT: Acknowledge St 1 = Acknowledge was not re 0 = Acknowledge was recei ACKDT: Acknowledge Data In Receive mode: Value transmitted when the 1 = Not Acknowledge 0 = Acknowledge 0 = Acknowledge 0 = Acknowledge ACKEN: Acknowledge 0 = Acknowledge ACKEN: Acknowledge Sequ In Host Receive mode: 1 = Initiate Acknowledge Automatically cleared b 0 = Acknowledge sequence RCEN: Receive Enable bit 1 = Enables Receive mode 0 = Receive idle PEN: Stop Condition Enable SCKMSSP Release Control 1 = Initiate Stop condition o 0 = Stop condition Idle RSEN: Repeated Start Con 1 = Initiate Repeated Start 0 = Repeated Start conditio SEN: Start Condition Enable In Host mode: 1 = Initiate Start condition o 0 = Start condition Idle In Host mode: 1 = Clock stretching is enable	e bit W = Writable bit hanged x = Bit is unknown t '0' = Bit is cleared GCEN: General Call Enable bit (in I ² C Cliat 1 = Enable interrupt when a general call ar 0 = General call address disabled ACKSTAT: Acknowledge Status bit (in I ² C 1 = Acknowledge was not received 0 = Acknowledge was not received 0 = Acknowledge was received ACKDT: Acknowledge Data bit (in I ² C mod In Receive mode: Value transmitted when the user initiates a 1 = Not Acknowledge 0 = Acknowledge Sequence Enable I In Host Receive mode: 1 = Initiate Acknowledge sequence on Automatically cleared by hardware. 0 = Acknowledge sequence idle RCEN: Receive Enable bit (in I ² C Host mod 1 = Enables Receive mode for I ² C 0 = Receive idle PEN: Stop Condition Enable bit (in I ² C Host mod 1 = Initiate Stop condition on SDA and SC 0 = Stop condition Idle RSEN: Repeated Start condition Enabled 1 = Initiate Repeated Start condition on S 0 = Repeated Start condition Idle SEN: Start Condition Enable/Stretch Enable In Host mode: 1 = Initiate Start condition on SDA and SC 0 = Start condition Idle In Host mode: 1 = Initiate Start condition on SDA and SC 0 = Start condition Idle In Host mode: 1 = Initiate Start condition on SDA and SC 0 = Start condition Idle In Host mode: 1 = Clock stretching is enabled for both cli	e bit W = Writable bit U = Unimpler hanged x = Bit is unknown -n/n = Value a t '0' = Bit is cleared HC = Cleared GCEN: General Call Enable bit (in I ² C Client mode only) 1 = Enable interrupt when a general call address (0x00 c 0 = General call address disabled ACKSTAT: Acknowledge Status bit (in I ² C mode only) 1 = Acknowledge was not received 0 = Acknowledge was received ACKDT: Acknowledge Data bit (in I ² C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledg 1 = Not Acknowledge 0 = Acknowledge 0 = Acknowledge 0 = Acknowledge 1 = Initiate Acknowledge Sequence Enable bit (in I ² C Host In Host Receive mode: 1 = Initiate Acknowledge sequence on SDA and S Automatically cleared by hardware. 0 = Acknowledge sequence idle RCEN: Receive Enable bit (in I ² C Host mode only) 1 = Enables Receive mode for I ² C 0 = Receive idle PEN: Stop Condition Enable bit (in I ² C Host mode only) <u>SCKMSSP Release Control:</u> 1 = Initiate Repeated Start Condition Enabled bit (in I ² C Host 1 = Initiate Repeated Start condition on SDA and SCL pins. Automa 0 = Stop condition Idle RSEN: Repeated Start condition on SDA and SCL pins. Automa 0 = Repeated Start condition on SDA and SCL pins. Automa 0 = Repeated Start condition on SDA and SCL pins. Automa 0 = Start condition Enable/Stretch Enable bit In Host mode: 1 = Initiate Start condition on SDA and SCL pins. Automa 0 = Start condition Idle In Client mode: 1 = Clock stretching is enabled for both client transmit ar	 a bit W = Writable bit U = Unimplemented bit, reach hanged x = Bit is unknown -n/n = Value at POR and BO t '0' = Bit is cleared HC = Cleared by hardware GCEN: General Call Enable bit (in I²C Client mode only) 1 = Enable interrupt when a general call address (0x00 or 00h) is receiv 0 = General call address disabled ACKSTAT: Acknowledge Status bit (in I²C mode only) 1 = Acknowledge was not received 0 = Acknowledge was received ACKDT: Acknowledge Data bit (in I²C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at t 1 = Not Acknowledge Sequence Enable bit (in I²C Host mode only) In Host Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and Automatically cleared by hardware. 0 = Acknowledge sequence idle RCEN: Receive Enable bit (in I²C Host mode only) 1 = Enables Receive mode for I²C 0 = Receive idle PEN: Stop Condition Enable bit (in I²C Host mode only) SCKMSSP Release Control: 1 = Initiate Repeated Start Condition SDA and SCL pins. Automatically cleared I to = stop condition Idle REN: Repeated Start condition on SDA and SCL pins. Automatical 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatical 2 = Repeated Start condition on SDA and SCL pins. Automatical 2 = Initiate Start condition on SDA and SCL pins. Automatical 3 = Repeated Start condition on SDA and SCL pins. Automatical 4 = Initiate Start condition on SDA and SCL pins. Automatical 4 = Initiate Start condition on SDA and SCL pins. Automatical 5 = Start Condition Enable/Stretch Enable bit 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared I o = Start condition Idle 5 = Clock stretching is enabled for both client transmit and client receiver 	a bit W = Writable bit U = Unimplemented bit, read as '0' hanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of t '0' = Bit is cleared HC = Cleared by hardware S = User set GCEN: General Call Enable bit (in I ² C Client mode only) 1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPS 0 = General call address disabled ACKSTAT: Acknowledge Status bit (in I ² C mode only) 1 = Acknowledge was received 0 = Acknowledge bata bit (in I ² C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a recoive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a recoix = Not Acknowledge 0 = Acknowledge 0 = Acknowledge 0 = Acknowledge sequence Enable bit (in I ² C Host mode only) In Host Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACK Automatically cleared by hardware. 0 = Acknowledge sequence idle RCEN: Receive mode for I ² C 0 = Receive idle PEN: Stop Condition Enable bit (in I ² C Host mode only) 1 = Inititate Stop condition on SDA and SCL pins. Automatically

REGISTER 24-3: SSPCON2: SSP CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared ACKTIM: Acknowledge Time Status bit (I²C mode only)⁽³⁾ bit 7 1 = Indicates the I^2 C bus is in an Acknowledge sequence, set on eighth falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on ninth rising edge of SCL clock bit 6 **PCIE**: Stop Condition Interrupt Enable bit (I²C Client mode only) 1 = Enable interrupt on detection of Stop condition 0 = Stop detection interrupts are disabled⁽²⁾ **SCIE**: Start Condition Interrupt Enable bit (I²C Client mode only) bit 5 1 = Enable interrupt on detection of Start or Restart conditions 0 = Start detection interrupts are disabled⁽²⁾ bit 4 BOEN: Buffer Overwrite Enable bit In SPI Client mode:⁽¹⁾ 1 = SSPBUF updates every time that a new data byte is shifted in ignoring the BF bit 0 = If new byte is received with BF bit of the SSPSTAT register already set, SSPOV bit of the SSPCON1 register is set, and the buffer is not updated In I²C Host mode and SPI Host mode: This bit is ignored. In I²C Client mode: 1 = SSPBUF is updated and ACK is generated for a received address/data byte, ignoring the state of the SSPOV bit only if the BF bit = 0. 0 = SSPBUF is only updated when SSPOV is clear **SDAHT:** SDA Hold Time Selection bit (I²C mode only) bit 3 1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL 0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL bit 2 **SBCDE:** Client Mode Bus Collision Detect Enable bit (I²C Client mode only) If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCLIF bit of the PIR2 register is set, and bus goes idle 1 = Enable client bus collision interrupts 0 = Client bus collision interrupts are disabled **AHEN:** Address Hold Enable bit (I²C Client mode only) bit 1 1 = Following the eighth falling edge of SCL for a matching received address byte; CKP bit of the SSPCON1 register will be cleared and the SCL will be held low. 0 = Address holding is disabled **DHEN:** Data Hold Enable bit (I²C Client mode only) bit 0 1 = Following the eighth falling edge of SCL for a received data byte: client hardware clears the CKP bit of the SSPCON1 register and SCL is held low. 0 = Data holding is disabled Note 1: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPBUF.

REGISTER 24-4: SSPCON3: SSP CONTROL REGISTER 3

- 2: This bit has no effect in Client modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
			MSK	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set '0' = Bit is cleared			ared					
bit 7-1	MSK<7:1>:							
	1 = The rec	eived address b	it n is compar	ed to SSPADD	<n> to detect I²</n>	² C address mat	ch	
	0 = The rec	eived address b	it n is not use	d to detect I ² C	address match			

REGISTER 24-5: SSPMSK: SSP MASK REGISTER

	1 = 1 he received address bit n is compared to SSPADD <n> to detect I²C address match</n>
	0 = The received address bit n is not used to detect I ² C address match
bit 0	MSK<0>: Mask bit for I ² C Client mode, 10-bit Address
	I ² C Client mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPADD<0> to detect I^2C address match
	0 = The received address bit 0 is not used to detect I ² C address match

I²C Client mode, 7-bit address, the bit is ignored

REGISTER 24-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	ADD<7:0>						
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Host mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Client mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by host is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Client mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

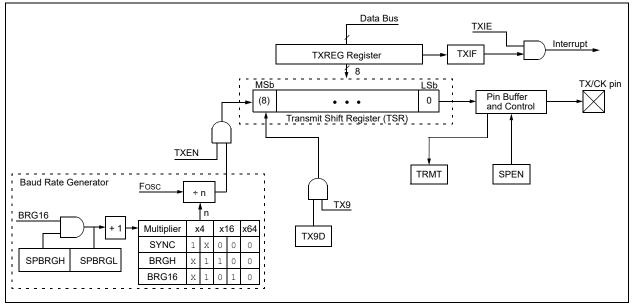
7-Bit Client mode:

bit 7-1	ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

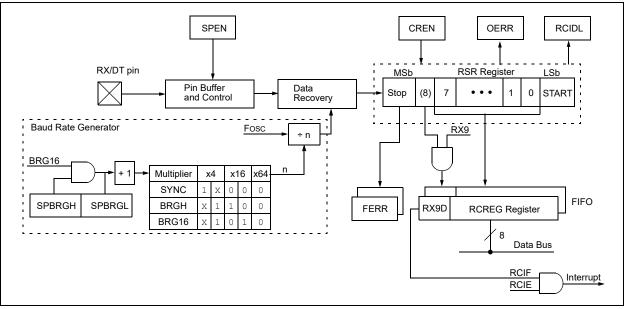
25.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. **Full-Duplex** mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a host synchronous device.


The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous host
- · Half-duplex synchronous client
- Programmable clock polarity in Synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:


- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 25-1 and Figure 25-2.

FIGURE 25-1: EUSART TRANSMIT BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 25-1, Register 25-2 and Register 25-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

25.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 25-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

25.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 25-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

25.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note 1: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

25.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

25.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See Section 25.5.1.2 "Clock Polarity".

25.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

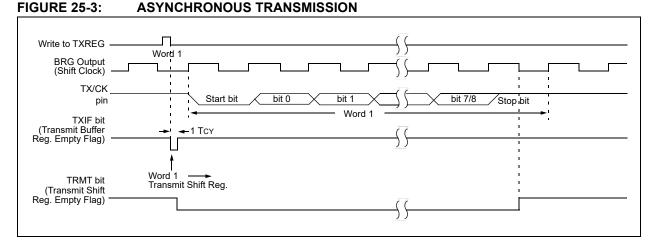
The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

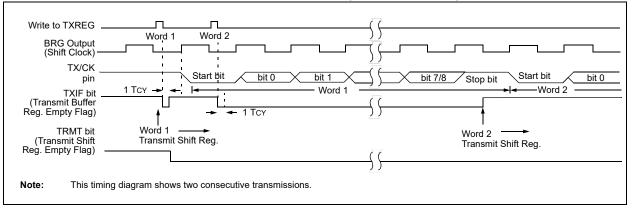
25.1.1.5 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.


25.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.


A special 9-bit Address mode is available for use with multiple receivers. See **Section 25.1.2.7** "Address **Detection**" for more information on the address mode.

25.1.1.7 Asynchronous Transmission Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 25-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286	
SPBRGL				BRG	<7:0>				288*	
SPBRGH	BRG<15:8>									
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129	
TXREG	EUSART T	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285	

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

25.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 25-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

25.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note 1: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

25.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 25.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no ac characters will be received until the	overrun								
	condition is cleared. See Section 25.1.2.5									
	"Receive Overrun Error" for more									
	information on overrun errors.									

25.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE interrupt enable bit of the PIE1 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

25.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive										
	FIFO have framing errors, repeated reads										
	of the RCREG will not clear the FERR bit.										

25.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

25.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

25.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

25.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

ASYNCHRONOUS RECEPTION

FIGURE 25-5:

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit bit 0 / bit 1 / 5 / bit 7/8 / Stop bit / bit / bit 0 / 5 / bit 7/8 / Stop bit / bit / bit 7/8 / Stop bit //6 / Stop bit
Rcv Shift Reg —► Rcv Buffer Reg.	
RCIDL	
Read Rcv Buffer Reg. RCREG	
RCIF (Interrupt Flag)	
OERR bit	
CREN	
	s timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG	EUSART R	Receive Dat	a Register						281*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>								288*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285
1									•

TABLE 25-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 5.2.2 "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 25.4.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

25.3 Register Definitions: EUSART Control

REGISTER 25-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0		
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D		
bit 7							bit (
Legend:									
R = Readable		W = Writable bi			ented bit, read as '				
u = Bit is unch	anged	x = Bit is unkno		-n/n = Value at	POR and BOR/Va	alue at all other f	Resets		
'1' = Bit is set		'0' = Bit is clear	ed						
bit 7	Asynchronous Don't care Synchronous r 1 = Host mo			m BRG)					
bit 6	1 = Selects 9	nsmit Enable bit 9-bit transmission 8-bit transmission							
bit 5	TXEN: Transm 1 = Transmit 0 = Transmit								
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror		it						
bit 3	Asynchronous 1 = Send Syr	nc Break on next t ak transmission c	ransmission (cl	eared by hardwar	e upon completion	n)			
bit 2	BRGH: High E <u>Asynchronous</u> 1 = High spe 0 = Low spee <u>Synchronous r</u> Unused in this	ed ed <u>mode:</u>	bit						
bit 1	TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full								
bit 0	TX9D: Ninth b Can be addres	it of Transmit Data							

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x					
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D					
bit 7			·	·			bit C					
Legend:												
R = Readable		W = Writable		U = Unimplemented bit, read as '0'								
u = Bit is unc	0	x = Bit is unk		-n/n = Value	at POR and BC	R/Value at all c	other Resets					
'1' = Bit is set		'0' = Bit is cle	ared									
bit 7	SPEN: Seria	l Port Enable b	it									
	1 = Serial po	ort enabled (co	nfigures RX/D	T and TX/CK	pins as serial po	rt pins)						
	0 = Serial po	ort disabled (he	ld in Reset)									
bit 6		eceive Enable	oit									
		9-bit reception 8-bit reception										
bit 5		e Receive Ena	hle hit									
DI U	-											
	Don't care	Asynchronous mode: Don't care										
	<u>Synchronous</u>	Synchronous mode – Host:										
		1 = Enables single receive										
		0 = Disables single receive This bit is cleared after reception is complete.										
		s mode – Client		ele.								
	Don't care											
bit 4	CREN: Cont	inuous Receive	e Enable bit									
	Asynchronou	<u>is mode</u> :										
		1 = Enables receiver										
		0 = Disables receiver										
	-	<u>Synchronous mode</u> : 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)										
		s continuous re				1 Overnues Six						
bit 3	ADDEN: Add	dress Detect Er	able bit									
	Asynchronou	Asynchronous mode 9-bit (RX9 = 1):										
		1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set										
				are received	and ninth bit can	be used as pa	rity bit					
	<u>Asynchronol</u> Don't care	<u>ıs mode 8-bit (I</u>	xxy = 0:									
bit 2												
		FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receive next valid byte)										
	0 = No fram		apuatoa by rot		regiotor and ree		byto)					
bit 1	OERR: Over	run Error bit										
		error (can be o	leared by clea	aring bit CREN	1)							
	0 = No over											
bit 0		bit of Received										
	This can be a	address/data b	t or a parity bi	t and must be	calculated by us	ser firmware						

REGISTER 25-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	•	mented bit, read						
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
1.11.7		to Double Dates									
bit 7	ABDOVF: Au Asynchronous	to-Baud Deteo	c Overnow bit								
		<u>s mode</u> . d timer overflov	wed								
	0 = Auto-bau	d timer did not	overflow								
	Synchronous	<u>mode</u> :									
	Don't care										
bit 6		ive Idle Flag b	it								
	Asynchronous										
			/ed and the re	ceiver is receiv	/ing						
	 0 = Start bit has been received and the receiver is receiving Synchronous mode: 										
	Don't care										
bit 5	Unimplemen	ted: Read as	0'								
bit 4	SCKP: Synchronous Clock Polarity Select bit										
	Asynchronous mode:										
		nverted data t non-inverted d									
	Synchronous										
		ocked on rising ocked on fallin									
bit 3	BRG16: 16-b	it Baud Rate G	Generator bit								
		ud Rate Gene d Rate Genera									
bit 2	Unimplemen	ted: Read as	0'								
bit 1	WUE: Wake-u	up Enable bit									
	Asynchronous	<u>s mode</u> :									
		is waiting for a atically clear a			will be received	, byte RCIF wil	l be set. WUE				
		is operating no									
	Synchronous	mode:									
	Don't care										
bit 0	ABDEN: Auto	-Baud Detect	Enable bit								
	Asynchronous										
				clears when au	to-baud is com	olete)					
	0 = Auto-Bau Synchronous	id Detect mode	e is disabled								
	<u>oynonionous</u>	<u>moue</u> .									

REGISTER 25-3: BAUDCON: BAUD RATE CONTROL REGISTER

25.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 25-3 contains the formulas for determining the baud rate. Example 25-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 25-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 25-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG: FOSC Desired Baud Rate = $\overline{64([SPBRGH:SPBRG] + 1)}$ Solving for SPBRGH:SPBRGL: Fosc $X = \underline{Desired \ Baud \ Rate} - 1$ 64 16000000 9600 64 = [25.042] = 25 64(25+1)= 9615Error = <u>Calc. Baud Rate – Desired</u> Baud Rate Desired Baud Rate $\frac{(9615 - 9600)}{9600} = 0.16\%$ 9600

C	Configuration Bi	ts		Boud Bata Formula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]
0	0	1	8-bit/Asynchronous	
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]
0	1	1	16-bit/Asynchronous	
1	0	х	8-bit/Synchronous	Fosc/[4 (n+1)]
1	1	x	16-bit/Synchronous	

TABLE 25-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair

TABLE 25-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	287
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL				BRG	<7:0>				288*
SPBRGH				BRG<	:15:8>				288*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented location read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

					SYNC	= 0, BRGH	I = 0, BRG	616 = 0					
BAUD	Foso	: = 32.00	0 MHz	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_		_		_	_		_	_				
1200	—	_	_	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	_	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_	_	—		_		_	—	—		_	

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0				
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc	: = 3.686	4 MHz	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300				300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_
9600	9615	0.16	12	_	_	_	9600	0.00	5	—	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	_	—	—		—	57.60k	0.00	0	—	_	—
115.2k	—	_	_	—	_	_	_		_	—	_	—

					SYNC	C = 0, BRG	l = 1, BRO	316 = 0				
BAUD	Foso	= 32.00	0 MHz	Fosc	= 20.00	0 MHz	Foso	: = 18.43	2 MHz	Fosc	= 11.059	2 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		—	_		_	_	_	—			
1200	—	_	—	—		—	—	—	—	—	—	
2400	_	_	_	—	_	_	_	_	_	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

					SYNC	C = 0, BRG	l = 1, BRO	616 = 0				
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Foso	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	_	_	_	_	_		_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	—		_	—	115.2k	0.00	1		_	_

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

					SYNC	; = 0, BRGH	l = 0, BRG	616 = 1				
BAUD	Foso	= 32.00	0 MHz	Fosc	= 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

					SYNC	; = 0, BRG	l = 0, BRG	616 = 1				
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	—	_	57.60k	0.00	3	—	_	_
115.2k	—		_	—	_	_	115.2k	0.00	1	—	_	_

				SYNC = 0	, BRGH	= 1, BRG16	i = 1 or Sγ	'NC = 1,	BRG16 = 1			
BAUD	Fosc = 32.000 MHz		0 MHz	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SY	'NC = 1,	BRG16 = 1			
BAUD	BAUD Fosc = 8.000 MHz		Fosc = 4.000 MHz			Fosc	; = 3.686	4 MHz	Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	—
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—		—

25.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 25-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 25-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 25-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see <u>Section 25.4.3</u> "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - **3:** During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 25-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 25-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	0000h		001Ch
RX pin		Start	Edge #1 _ Edge #2 _ Edge #3 _ Edge #4 bit 0 _ bit 1 _ bit 2 _ bit 3 _ bit 4 _ bit 5 _ bit 6 _ bit 7	– Edge #5 , Stop bit
BRG Clock		hunnun	mmmmmmmm	UNDANNONULUUDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
ABDEN bit	Set by User —			Auto Cleared
RCIDL		, , , , , , , , , , , , , , , , , , ,		
RCIF bit (Interrupt)				
Read RCREG				
SPBRGL		1 1 1	XXh	(1Ch
SPBRGH			XXh	00h
Note 1	1: The ABD sequ	ence requires the EUSA	RT module to be configured in Asynchronous mode.	

25.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

25.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 25-7), and asynchronously if the device is in Sleep mode (Figure 25-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

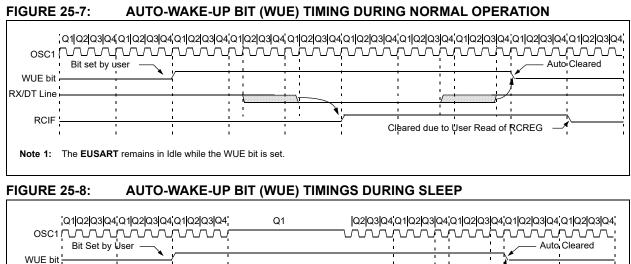
25.4.3.1 Special Considerations

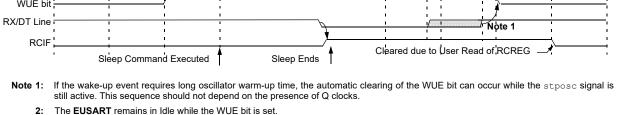
Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.


Oscillator Start-up Time


Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

25.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 25-9 for the timing of the Break character sequence.

25.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus host.

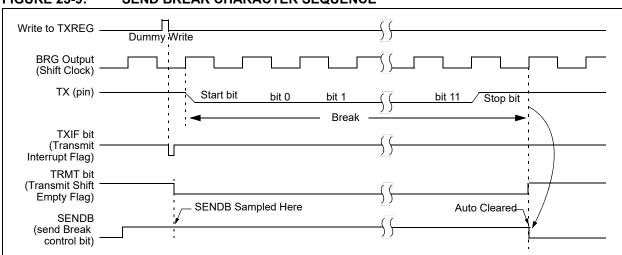
- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

25.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.


The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- · FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 25.4.3** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 25-9: SEND BREAK CHARACTER SEQUENCE

25.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single host and one or more clients. The host device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Client devices can take advantage of the host clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Clients use the external clock supplied by the host to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that host and client devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a host or client device.

Start and Stop bits are not used in synchronous transmissions.

25.5.1 SYNCHRONOUS HOST MODE

The following bits are used to configure the EUSART for Synchronous Host operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a host. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.5.1.1 Host Clock

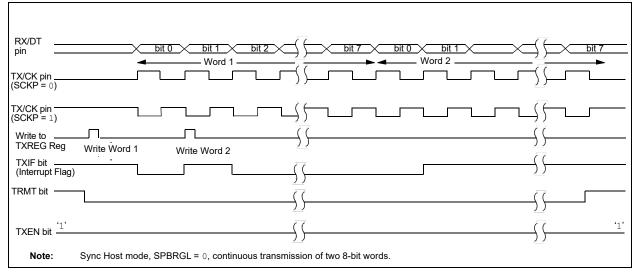
Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a host transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

25.5.1.2 Clock Polarity

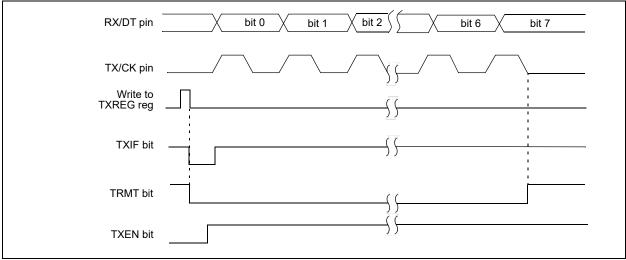
A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

25.5.1.3 Synchronous Host Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous host transmit operation.


A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the host clock and remains valid until the subsequent leading clock edge.


Note: The TSR register is not mapped in data memory, so it is not available to the user.

- 25.5.1.4 Synchronous Host Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous host serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS HOST
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL				BRG	<7:0>				288*
SPBRGH				BRG<	:15:8>				288*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TXREG	EUSART Transmit Data Register								278*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285
Logond	– unimplomo	ntad location	road on '0'	Shadad aalla	ore not used	for overabrar	ous hast tra	amiaaian	•

Legend: — = unimplemented location read as '0'. Shaded cells are not used for synchronous host transmission.

* Page provides register information.

25.5.1.5 Synchronous Host Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous host receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

25.5.1.6 Client Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a client receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous client transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

25.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is

set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

25.5.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

25.5.1.9 Synchronous Host Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous host serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

RX/DT bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 TX/CK pin (SCKP = 0)	
TX/CK pin	
SREN bit CREN bit	·0'
RCIF bit (Interrupt) Read	
RXREG	

FIGURE 25-12: SYNCHRONOUS RECEPTION (HOST MODE, SREN)

TABLE 25-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS HOST RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG	EUSART R	Receive Dat	a Register						281*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>								288*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented location read as '0'. Shaded cells are not used for synchronous host reception.

* Page provides register information.

25.5.2 SYNCHRONOUS CLIENT MODE

The following bits are used to configure the EUSART for Synchronous client operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a client. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.5.2.1 EUSART Synchronous Client Transmit

The operation of the Synchronous Host and Client modes are identical (see Section 25.5.1.3 "Synchronous Host Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 25.5.2.2 Synchronous Client Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 25-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS CLIENT TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TXREG	IXREG EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented location read as '0'. Shaded cells are not used for synchronous client transmission. * Page provides register information.

25.5.2.3 EUSART Synchronous Client Reception

The operation of the Synchronous Host and Client modes is identical (Section 25.5.1.5 "Synchronous Host Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Client mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 25.5.2.4 Synchronous Client Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

		-							
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG	EUSART R	Receive Dat	a Register						281*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	129
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

TABLE 25-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS CLIENT RECEPTION

Legend: — = unimplemented read as '0'. Shaded cells are not used for Synchronous Client Reception.

* Page provides register information.

25.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Client mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Client mode uses an externally generated clock to run the Transmit and Receive Shift registers.

25.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Client Reception (see Section 25.5.2.4 "Synchronous Client Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

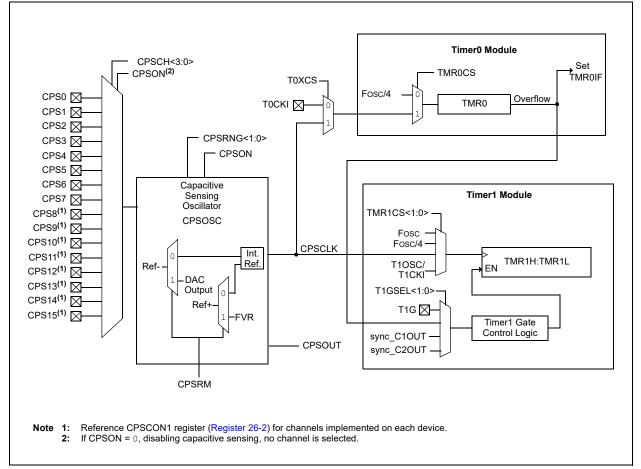
Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

25.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

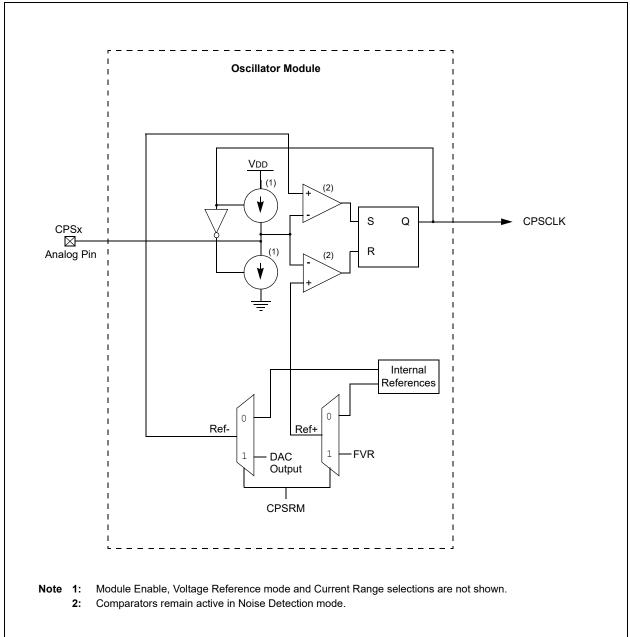
To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Client Transmission (see Section 25.5.2.2 "Synchronous Client Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.


Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

26.0 CAPACITIVE SENSING (CPS) MODULE


The Capacitive Sensing (CPS) module allows for an interaction with an end user without a mechanical interface. In a typical application, the CPS module is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the CPS module. The CPS module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple Current Ranges
- Multiple Voltage Reference modes
- Multiple timer resources
- Software control
- Operation during Sleep

FIGURE 26-1: CAPACITIVE SENSING BLOCK DIAGRAM

26.1 Analog MUX

The CPS module can monitor up to 16 inputs. The capacitive sensing inputs are defined as CPS<15:0>. To determine if a frequency change has occurred the user must:

- Select the appropriate CPS pin by setting the CPSCH<3:0> bits of the CPSCON1 register.
- · Set the corresponding ANSEL bit.
- Set the corresponding TRIS bit.
- · Run the software algorithm.

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

26.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a triangle waveform. The CPSOUT bit of the CPSCON0 register shows the status of the capacitive sensing oscillator, whether it is a sinking or sourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either Timer0 or Timer1. The oscillator has several different current settings as defined by CPS-RNG<1:0> of the CPSCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base.
- Maximize the count differential in the timer during a change in frequency.

26.3 Voltage Reference Modes

The capacitive sensing oscillator uses voltage references to provide two voltage thresholds for oscillation. The upper voltage threshold is referred to as Ref+ and the lower voltage threshold is referred to as Ref-.

The user can elect to use fixed voltage references, which are internal to the capacitive sensing oscillator, or variable voltage references, which are supplied by the Fixed Voltage Reference (FVR) module and the Digital-to-Analog Converter (DAC) module.

When the fixed voltage references are used, the Vss voltage determines the lower threshold level (Ref-) and the VDD voltage determines the upper threshold level (Ref+).

When the variable voltage references are used, the DAC voltage determines the lower threshold level (Ref-) and the FVR voltage determines the upper threshold level (Ref+). An advantage of using these reference sources is that oscillation frequency remains constant with changes in VDD.

Different oscillation frequencies can be obtained through the use of these variable voltage references. The more the upper voltage reference level is lowered and the more the lower voltage reference level is raised, the higher the capacitive sensing oscillator frequency becomes.

Selection between the voltage references is controlled by the CPSRM bit of the CPSCON0 register. Setting this bit selects the variable voltage references and clearing this bit selects the fixed voltage references.

Please see Section 14.0 "Fixed Voltage Reference (FVR)" and Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on configuring the variable voltage levels.

26.4 **Current Ranges**

The capacitive sensing oscillator can operate within several different current ranges, depending on the voltage reference mode and current range selections. Within each of the two voltage reference modes there are four current ranges.

Selection between the voltage reference modes is controlled by the CPSRM bit of the CPSCON0 register. Clearing this bit selects the fixed voltage references provided by the capacitive sensing oscillator module. Setting this bit selects the variable voltage references supplied by the Fixed Voltage reference (FVR) module and the Digital-to-Analog Converter (DAC) module. See Section 26.3 "Voltage Reference Modes" for more information on configuring the voltage references.

Selecting the current range within each voltage reference mode is controlled by configuring the CPSRNG<1:0> bits in the CPSCON0 register. See Table 26-1 for proper current mode selection.

The Noise Detection mode is unique in that it disables the constant current source associated with the selected input pin, but leaves the rest of the oscillator circuitry and pin structure active. This eliminates the oscillation frequency on the analog pin and greatly reduces the current consumed by the oscillator module.

When noise is introduced onto the pin, the oscillator is driven at the frequency determined by the noise. This produces a detectable signal at the comparator stage, indicating the presence of activity on the pin.

Figure 26-2 shows a more detailed drawing of the constant current sources and comparators associated with the oscillator and input pin.

Noise Detection Low

Medium

High

CPSRM	Voltage Reference Mode	CPSRNG<1:0>	Current Range ⁽¹⁾
_		00	Off
0	Fixed -	01	Low
	Fixed	10	Medium
		11	High

Variable

TABLE 26-1: **CURRENT RANGE SELECTION**

1

Note 1: See Power-Down Currents (IPD) in Section 30.0 "Electrical Specifications" for more information.

00

01

10 11

26.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

26.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

26.6.1 TIMER0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0 "Timer0 Module"** for additional information.

26.6.2 TIMER1

To select Timer1 as the timer resource for the CPS module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 gate, be used to develop the fixed time base required by the software portion of the CPS module. Refer to **Section** "" for additional information.

TABLE 26-2:	TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

26.7 Software Control

The software portion of the CPS module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1.
- Establishing the nominal frequency for the capacitive sensing oscillator.
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load.
- Set the frequency threshold.

26.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

26.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin.
- Use the same fixed time base as the nominal frequency measurement.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

26.7.3 FREQUENCY THRESHOLD

The frequency threshold should be placed midway between the value of nominal frequency and the reduced frequency of the capacitive sensing oscillator. Refer to Application Note AN1103, "*Software Handling for Capacitive Sensing*" (DS01103) for more detailed information on the software required for CPS module.

Note:	For more information on general capacitive sensing refer to Application Notes:
	 AN1101, "Introduction to Capacitive Sensing" (DS01101)
	 AN1102, "Layout and Physical Design Guidelines for Capacitive Sensing" (DS01102)

26.8 Operation during Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts.

Note: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

26.9 Register Definitions: CPS Control

REGISTER 26-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	R/W-0/0
CPSON	CPSRM	_		CPSRI	NG<1:0>	CPSOUT	T0XCS
bit 7							bit (
Legend: R = Readable	o hit	W = Writable	hit	II – Unimplor	nented bit, read	d ac 'O'	
u = Bit is unc		x = Bit is unkr				R/Value at all c	ther Resets
'1' = Bit is set	•	'0' = Bit is clea					
			arcu				
bit 7	1 = CPS mo	S Module Enab dule is enabled dule is disablec					
bit 6	1 = Capacitiv	•	dule is in Vari	Vode bit able Voltage Re d Variable Volta			
bit 5-4	Unimplemen	ted: Read as '	0'				
	00 = Oscillato 01 = Oscillato 10 = Oscillato	<u>) (Fixed Voltag</u> or is off or is in Low-Cu or is in Medium or is in High-Cu	rrent Range -Current Ran				
	00 = Oscillato 01 = Oscillato 10 = Oscillato	L (Variable Volt. or is on. Noise or is in Low-Cu or is in Medium or is in High-Cu	Detection mo rrent Range. -Current Ran	de. ge.			
bit 1	1 = Oscillato		rrent (Curren	t flowing out of			
bit 0	 0 = Oscillator is sinking current (Current flowing into the pin) TOXCS: Timer0 External Clock Source Select bit If TMR0CS = 1: The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0: 1 = Timer0 clock source is the capacitive sensing oscillator, CPSCLK 0 = Timer0 clock source is the T0CKI pin If TMR0CS = 0: Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4 						0:

REGISTER 26-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/0 ⁽²⁾	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_		CPSC	H<3:0>	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value at	POR and BOF	R/Value at all oth	er Resets
'1' = Bit is set	0	'0' = Bit is clea	ared				
		-					
bit 7-4	Unimplemen	ted: Read as '0'	,				
bit 3-0	•	: Capacitive Ser		Select hits			
511 0-0	If CPSON = $($	•					
		 its are ignored. N	lo channel is	selected.			
	If CPSON = 1	•					
	0000 =	channel 0, (CP	S0)				
	0001 =	channel 1, (CP	S1)				
	0010 =	channel 2, (CP	S2)				
	0011 =	channel 3, (CP	S3)				
	0100 =	channel 4, (CP	S4)				
	0101 =	channel 5, (CP	S5)				
	0110 =	channel 6, (CP	S6)				
		channel 7, (CP					
	1000 =	channel 8, (CP	S8 ⁽¹⁾)				
	1001 =	channel 9, (CP	S9 ⁽¹⁾)				
	1010 =	channel 10, (C	PS10 ⁽¹⁾)				
	1011 =	channel 11, (Cl	PS11 ⁽¹⁾)				
		channel 12, (C					
	1101 =	channel 13, (C	PS13 ⁽¹⁾)				
		channel 14, (C					

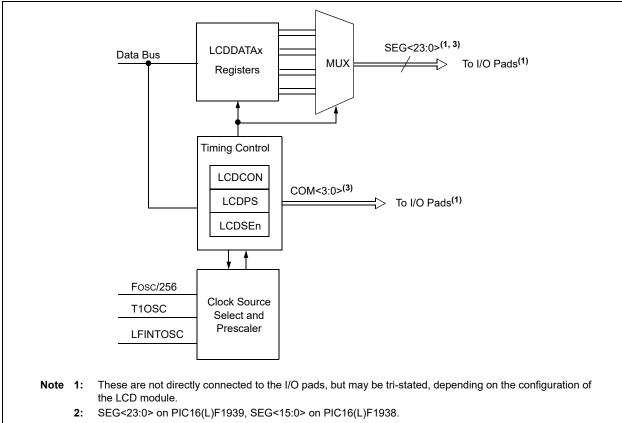
2: This bit is not implemented on PIC16(L)F1938, read as '0'

	•••								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	121
ANSELB		_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	133
CPSCON0	CPSON	CPSRM	_	—	CPSRN	IG<1:0>	CPSOUT	TOXCS	310
CPSCON1	_	_	_	—	CPSCH<3:0>				311
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	179
T1CON	TMR1C	:S<1:0>	T1CKP	'S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	188
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	132

TABLE 26-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CPS module.

Note 1: PIC16(L)F1939 only.


27.0 LIQUID CRYSTAL DISPLAY (LCD) DRIVER MODULE

The Liquid Crystal Display (LCD) Driver module generates the timing control to drive a static or multiplexed LCD panel. In the PIC16(L)F193X device, the module drives the panels of up to four commons and up to 24 segments. The LCD module also provides control of the LCD pixel data.

The LCD Driver module supports:

- Direct driving of LCD panel
- Three LCD clock sources with selectable prescaler
- Up to four common pins:
 - Static (1 common)
 - 1/2 multiplex (2 commons)
 - 1/3 multiplex (3 commons)
 - 1/4 multiplex (4 commons)
- · Segment pins up to:
 - 16 (PIC16(L)F1938)
 - 24 (PIC16(L)F1939)
- Static, 1/2 or 1/3 LCD Bias

FIGURE 27-1: LCD DRIVER MODULE BLOCK DIAGRAM

3: COM3 and SEG15 share the same physical pin on the PIC16(L)F1938, therefore SEG15 is not available when using 1/4 multiplex displays.

Note: COM3 and SEG15 share the same physical pin on the PIC16(L)F1938, therefore SEG15 is not available when using 1/4 multiplex displays.

27.1 LCD Registers

The module contains the following registers:

- LCD Control register (LCDCON)
- LCD Phase register (LCDPS)
- LCD Reference Ladder register (LCDRL)
- · LCD Contrast Control register (LCDCST)
- LCD Reference Voltage Control register (LCDREF)
- Up to three LCD Segment Enable registers (LCDSEn)
- Up to 12 LCD data registers (LCDDATAn)

TABLE 27-1: LCD SEGMENT AND DATA REGISTERS

	# of LCD Registers			
Device	Segment Enable	Data		
PIC16(L)F1938	2	8		
PIC16(L)F1939	3	12		

The LCDCON register (Register 27-1) controls the operation of the LCD Driver module. The LCDPS register (Register 27-2) configures the LCD clock source prescaler and the type of waveform; Type-A or Type-B. The LCDSEn registers (Register 27-5) configure the functions of the port pins.

The following LCDSEn registers are available:

- LCDSE0 SE<7:0>
- LCDSE1 SE<15:8>
- LCDSE2 SE<23:16>⁽¹⁾

Note 1: PIC16(L)F1939 only.

Once the module is initialized for the LCD panel, the individual bits of the LCDDATAn registers are cleared/set to represent a clear/dark pixel, respectively:

- LCDDATA0 SEG<7:0>COM0
- LCDDATA1 SEG<15:8>COM0
- LCDDATA2 SEG<23:16>COM0⁽¹⁾
- LCDDATA3 SEG<7:0>COM1
- LCDDATA4 SEG<15:8>COM1
- LCDDATA5 SEG<23:16>COM1⁽¹⁾
- LCDDATA6 SEG<7:0>COM2
- LCDDATA7 SEG<15:8>COM2
- LCDDATA8 SEG<23:16>COM2⁽¹⁾
- LCDDATA9 SEG<7:0>COM3
- LCDDATA10 SEG<15:8>COM3
- LCDDATA11 SEG<23:16>COM3(1)

N	lote 1	I: PIC16(L)	F1939 only.		
As	an	example	I CDDATAn	is	detailed

As an example, LCDDATAn is detailed in Register 27-6.

Once the module is configured, the LCDEN bit of the LCDCON register is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN bit of the LCDCON register.

27.2 Register Definitions: LCD Control

REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

R/W-0/0	R/W-0/0	R/C-0/0	U-0 R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1				
LCDEN	SLPEN	WERR	_ CS	S<1:0>	LMUX	<<1:0>				
oit 7		1 1			I	bit				
Legend:										
R = Readab	ole bit	W = Writable bit	U = Unimple	emented bit, read	as '0'					
u = Bit is un	changed	x = Bit is unknow	/n -n/n = Value	at POR and BO	R/Value at all o	other Resets				
'1' = Bit is se	et	'0' = Bit is cleare	d C = Only cle	arable bit						
bit 7	LCDEN: LCD	Driver Enable bit								
	-	er module is enab								
		er module is disab								
oit 6		SLPEN: LCD Driver Enable in Sleep Mode bit								
		 LCD Driver module is disabled in Sleep mode LCD Driver module is enabled in Sleep mode 								
· ·										
bit 5	WERR: LCD	Write Failed Error	bit							
bit 5	-		bit n while the WA bit of t	ne LCDPS regis	ter = 0 (must	be cleared i				
bit 5	1 = LCDDAT software	An register writte		ne LCDPS regis	ter = 0 (must	be cleared i				
-	1 = LCDDAT	An register writte		ne LCDPS regis	ter = 0 (must	be cleared i				
-	1 = LCDDAT software 0 = No LCD v Unimplemen	An register writte) write error ited: Read as '0'	n while the WA bit of t	ne LCDPS regis	ter = 0 (must	be cleared i				
bit 4	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo	An register writte) write error nted: Read as '0' ock Source Select	n while the WA bit of t	ne LCDPS regis	ter = 0 (must	be cleared i				
bit 4	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25	An register writte) write error nted: Read as '0' ock Source Select 56	n while the WA bit of t	ne LCDPS regis	ter = 0 (must	be cleared in				
bit 4	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC	An register writte) write error nted: Read as '0' ock Source Select 56 (Timer1)	n while the WA bit of t	ne LCDPS regis	ter = 0 (must	be cleared in				
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO	An register writte) write error hted: Read as '0' ock Source Select 56 (Timer1) SC (31 kHz)	n while the WA bit of t	ne LCDPS regis	ter = 0 (must	be cleared in				
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO	An register writte) write error nted: Read as '0' ock Source Select 56 (Timer1)	n while the WA bit of t bits			be cleared in				
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	An register writte) write error nted: Read as '0' ock Source Select 56 (Timer1) SC (31 kHz) Commons Select	n while the WA bit of t bits	ne LCDPS regis		be cleared in				
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO	An register writte) write error hted: Read as '0' ock Source Select 56 (Timer1) SC (31 kHz)	n while the WA bit of t bits	Number of Pixe						
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	An register writte) write error nted: Read as '0' ock Source Select 56 (Timer1) SC (31 kHz) Commons Select	n while the WA bit of t bits bits Maximum	Number of Pixe	ls					
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	An register writte) write error ited: Read as '0' ock Source Select 56 (Timer1) SC (31 kHz) Commons Select Multiplex	n while the WA bit of the bits Maximum PIC16(L)F1938	Number of Pixe	ls i(L)F1939	– Bias				
bit 4 bit 3-2 bit 1-0	1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0> 00	An register writte) write error nted: Read as '0' ock Source Select 56 (Timer1) SC (31 kHz) Commons Select Multiplex Static (COM0)	n while the WA bit of the bits bits Maximum PIC16(L)F1938 16	Number of Pixe	ls 5(L)F1939 24	Bias				

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1			
WFT	BIASMD	LCDA	WA		LP<	<3:0>				
bit 7	·						bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is cle	ared	C = Only clea	arable bit					
bit 7	WFT: Wavef									
		phase changes phase changes								
bit 6		as Mode Selec		51						
	When LMUX	< <u> <1:0> = 00:</u>								
	0 = Static Bi	as mode (do no	ot set this bit t	oʻ1')						
	When LMUX									
		1 = 1/2 Bias mode								
	0 = 1/3 Bias mode When LMUX<1:0> = 10:									
	1 = 1/2 Bias mode									
	0 = 1/3 Bias mode									
		<u>When LMUX<1:0> = 11:</u> 0 = 1/3 Bias mode (do not set this bit to '1')								
				1')						
bit 5		LCDA: LCD Active Status bit 1 = LCD Driver module is active								
	-	ver module is a								
bit 4		rite Allow Statu								
		1 = Writing to the LCDDATAn registers is allowed								
	-	o the LCDDATA	-	not allowed						
bit 3-0		CD Prescaler Se	election bits							
	1111 = 1:16 1110 = 1:15									
	1101 = 1:14									
	1100 = 1:13									
	1011 = 1:12									
	1010 = 1:11 1001 = 1:10									
	1001 - 1.10 1000 = 1.9									
	0111 = 1:8									
	0110 = 1:7 0101 = 1:6									
	0101 = 1.0 0100 = 1.5									
	0011 = 1:4									
	0010 = 1:3									
	0001 = 1:2 0000 = 1:1									

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	
LCDIRE	LCDIRS	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	_	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set	t	'0' = Bit is clea	ared	C = Only clea	arable bit			
bit 7	LCDIRE: LC	D Internal Refe	ence Enable	e bit				
				ind connected to	o the Internal Co	ontrast Control	circuit	
		LCD Reference						
bit 6		D Internal Refe	ence Source	e bit				
	<u>If LCDIRE =</u>	-	ast Control is	powered by V	חו			
				powered by a		of the FVR.		
	If LCDIRE =			. ,				
				ected. LCD band	dgap buffer is di	isabled.		
bit 5		Internal Refere						
				own when the LCD Reference Ladder is in power mode 'B' is in power mode 'B', the LCD Internal FVR buffer is disabled.				
				s the LCD Refe			el is disabled.	
bit 4		nted: Read as '	•					
bit 3	-	LCD3 Pin Enat						
	1 = The VLC	D3 pin is conne	ected to the i	nternal bias volt	age LCDBIAS3	3(1)		
	0 = The VLC	CD3 pin is not co	onnected					
bit 2		LCD2 Pin Enat						
				nternal bias volt	age LCDBIAS2	<u>2</u> (1)		
		0 = The VLCD2 pin is not connected						
bit 1		LCD1 Pin Enat				(1)		
				nternal bias volt	age LCDBIAS1			
bit 0		0 = The VLCD1 pin is not connected Unimplemented: Read as '0'						
	•			.				
Note 1: No	ormal pin contro	is of TRISx and	ANSELx are	e unaffected.				

REGISTER 27-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER

Note 1: Normal pin controls of TRISx and ANSELx are unaffected.

REGISTER 27-4: LCDCST: LCD CONTRAST CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
—	_	—		—		LCDCST<2:0>		
bit 7					•		bit 0	
Legend:								
R = Readable b	oit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared		ared	C = Only clea	arable bit				

bit 7-3	Unimplemented: Read as '0'					
bit 2-0	LCDCST<2:0>: LCD Contrast Control bits					
	Selects the resistance of the LCD contrast control resistor ladder					
	Bit Value = Resistor ladder					
	000 = Minimum Resistance (maximum contrast). Resistor ladder is shorted.					
	001 = Resistor ladder is at 1/7th of maximum resistance					

010 = Resistor ladder is at 17 th of maximum resistance

011 = Resistor ladder is at 3/7th of maximum resistance

100 = Resistor ladder is at 4/7th of maximum resistance

101 = Resistor ladder is at 5/7th of maximum resistance

110 = Resistor ladder is at 6/7th of maximum resistance

111 = Resistor ladder is at maximum resistance (minimum contrast).

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SEn	SEn	SEn	SEn	SEn	SEn	SEn	SEn	
bit 7							bit 0	
Legend:								
R = Readable	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 SEn: Segment Enable bits 1 = Segment function of the pin is enabled 0 = I/O function of the pin is enabled

REGISTER 27-6: LCDDATAn: LCD DATA REGISTERS

| R/W-x/u |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SEGx-COMy |
| bit 7 | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SEGx-COMy: Pixel On bits

1 = Pixel on (dark)
0 = Pixel off (clear)

27.3 LCD Clock Source Selection

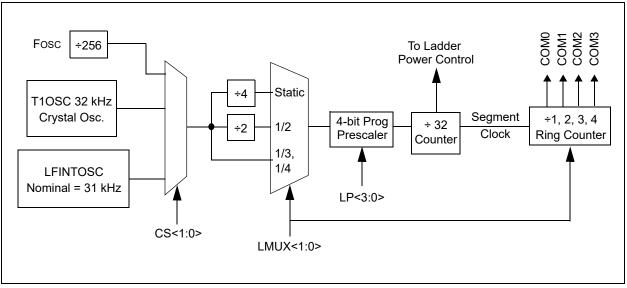
The LCD module has three possible clock sources:

- Fosc/256
- T10SC
- LFINTOSC

The first clock source is the system clock divided by 256 (Fosc/256). This divider ratio is chosen to provide about 1 kHz output when the system clock is 8 MHz. The divider is not programmable. Instead, the LCD prescaler bits LP<3:0> of the LCDPS register are used to set the LCD frame clock rate.

The second clock source is the T1OSC. This also gives about 1 kHz when a 32.768 kHz crystal is used with the Timer1 oscillator. To use the Timer1 oscillator as a clock source, the T1OSCEN bit of the T1CON register should be set.

The third clock source is the 31 kHz LFINTOSC, which provides approximately 1 kHz output.


The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

Using bits CS<1:0> of the LCDCON register can select any of these clock sources.

27.3.1 LCD PRESCALER

A 4-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable; its value is set by the LP<3:0> bits of the LCDPS register, which determine the prescaler assignment and prescale ratio.

The prescale values are selectable from 1:1 through 1:16.

FIGURE 27-2: LCD CLOCK GENERATION

27.4 LCD Bias Voltage Generation

The LCD module can be configured for one of three bias types:

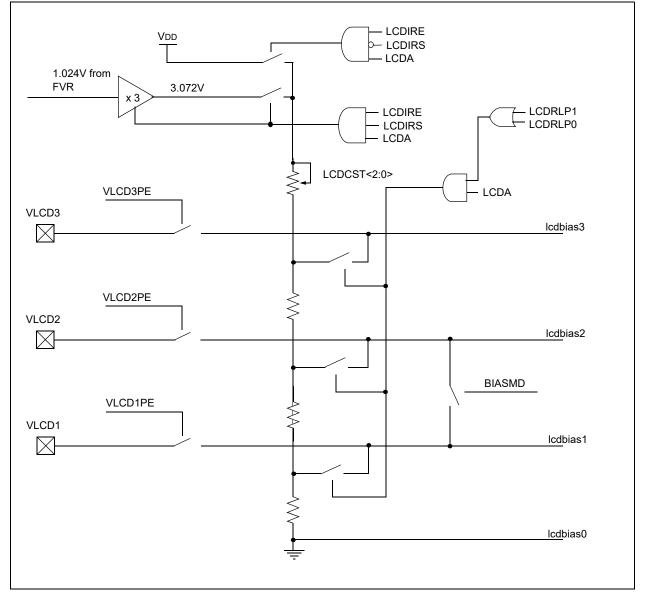

- Static Bias (2 voltage levels: VSS and VLCD)
- 1/2 Bias (3 voltage levels: Vss, 1/2 VLCD and VLCD)
- 1/3 Bias (4 voltage levels: Vss, 1/3 VLCD, 2/3 VLCD and VLCD)

TABLE 27-2: LCD BIAS VOLTAGES

	Static Bias	1/2 Bias	1/3 Bias
LCD Bias 0	Vss	Vss	Vss
LCD Bias 1	—	1/2 Vdd	1/3 Vdd
LCD Bias 2	_	1/2 Vdd	2/3 Vdd
LCD Bias 3	VLCD3	VLCD3	VLCD3

So that the user is not forced to place external components and use up to three pins for bias voltage generation, internal contrast control and an internal reference ladder are provided internally to the PIC16(L)F193X. Both of these features may be used in conjunction with the external VLCD<3:1> pins, to provide maximum flexibility. Refer to Figure 27-3.

FIGURE 27-3: LCD BIAS VOLTAGE GENERATION BLOCK DIAGRAM

27.5 LCD Bias Internal Reference Ladder

The internal reference ladder can be used to divide the LCD bias voltage two or three equally spaced voltages that will be supplied to the LCD segment pins. To create this, the reference ladder consists of three matched resistors. Refer to Figure 27-3.

27.5.1 BIAS MODE INTERACTION

When in 1/2 Bias mode (BIASMD = 1), then the middle resistor of the ladder is shorted out so that only two voltages are generated. The current consumption of the ladder is higher in this mode, with the one resistor removed.

TABLE 27-3:LCD INTERNAL LADDERPOWER MODES (1/3 BIAS)

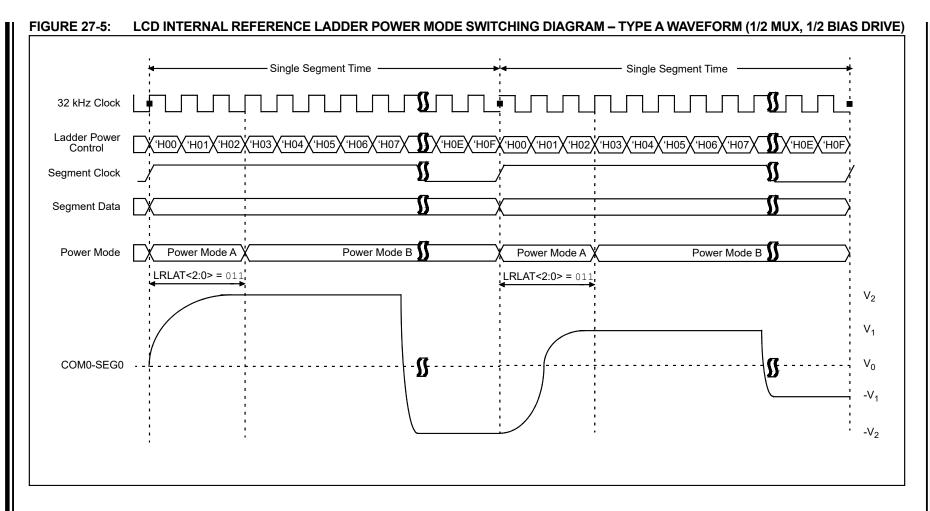
Power Mode	Nominal Resistance of Entire Ladder	Nominal IDD
Low	3 Mohm	1 µA
Medium	300 kohm	10 µA
High	30 kohm	100 µA

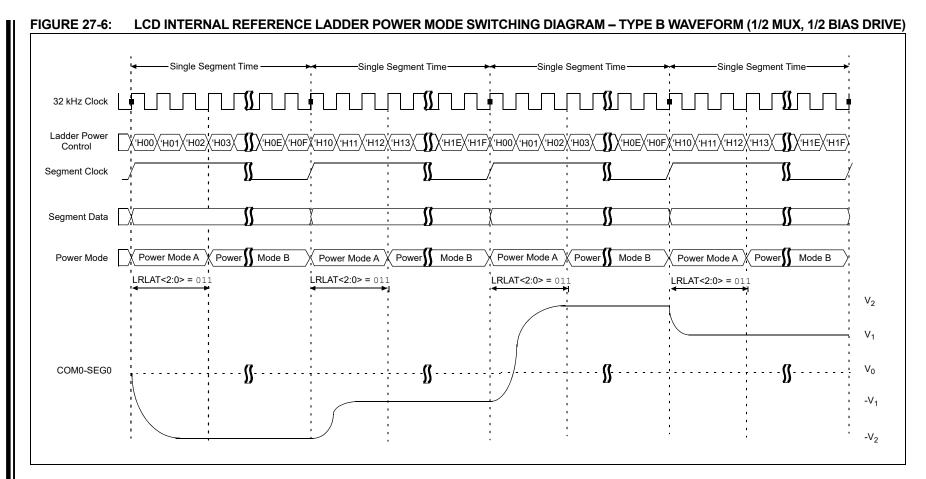
27.5.2 POWER MODES

The internal reference ladder may be operated in one of three power modes. This allows the user to trade off LCD contrast for power in the specific application. The larger the LCD glass, the more capacitance is present on a physical LCD segment, requiring more current to maintain the same contrast level.

Three different power modes are available, LP, MP and HP. The internal reference ladder can also be turned off for applications that wish to provide an external ladder or to minimize power consumption. Disabling the internal reference ladder results in all of the ladders being disconnected, allowing external voltages to be supplied.

Whenever the LCD module is inactive (LCDA = 0), the internal reference ladder will be turned off.


27.5.3 AUTOMATIC POWER MODE SWITCHING

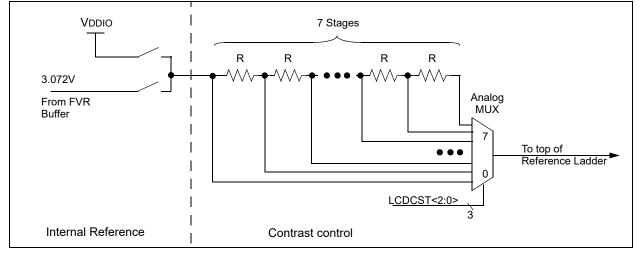

As an LCD segment is electrically only a capacitor, current is drawn only during the interval where the voltage is switching. To minimize total device current, the LCD internal reference ladder can be operated in a different power mode for the transition portion of the duration. This is controlled by the LCDRL Register (Register 27-7). The LCDRL register allows switching between two power modes, designated 'A' and 'B'. 'A' Power mode is active for a programmable time, beginning at the time when the LCD segments transition. 'B' Power mode is the remaining time before the segments or commons change again. The LRLAT<2:0> bits select how long, if any, that the 'A' Power mode is active. Refer to Figure 27-4.

To implement this, the 5-bit prescaler used to divide the 32 kHz clock down to the LCD controller's 1 kHz base rate is used to select the power mode.

FIGURE 27-4: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
LRLAP<1:0>		LRLBF	P<1:0>			LRLAT<2:0>				
bit 7							bit C			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'				
u = Bit is und	hanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all ot	her Resets			
'1' = Bit is se	t	'0' = Bit is clea	ared							
1.11.7.0					- 1 1- 24 -					
bit 7-6		: LCD Referenc nterval A (Refer			of dits					
	-	LCD Reference	-	-	unconnected					
	10 = Internal	 01 = Internal LCD Reference Ladder is powered in Low-Power mode 10 = Internal LCD Reference Ladder is powered in Medium-Power mode 								
	11 = Internal	LCD Reference	Ladder is pov	vered in High-P	ower mode					
bit 5-4		: LCD Referenc			ol bits					
	During Time interval B (Refer to Figure 27-4):									
		00 = Internal LCD Reference Ladder is powered down and unconnected								
	 01 = Internal LCD Reference Ladder is powered in Low-Power mode 10 = Internal LCD Reference Ladder is powered in Medium-Power mode 									
		LCD Reference								
bit 3		ted: Read as '0								
bit 2-0	LRLAT<2:0>: LCD Reference Ladder A Time interval control bits									
	Sets the number of 32 kHz clocks that the A Time interval power mode is active									
	For type A waveforms (WFT = 0):									
	000 = Internal LCD Reference Ladder is always in 'B' Power mode									
	001 = Internal LCD Reference Ladder is in 'A' Power mode for 1 clock and 'B' Power mode for 15 clocks									
		ILCD Reference								
		ILCD Reference LCD Reference								
		ILCD Reference								
		I LCD Reference								
	111 = Internal LCD Reference Ladder is in 'A' Power mode for 7 clocks and 'B' Power mode for 9 clocks									
	For type B waveforms (WFT = 1):									
	000 = Internal LCD Reference Ladder is always in 'B' Power mode.									
	001 = Interna	I LCD Referenc	e Ladder is in	'A' Power mode	for 1 clock and	d 'B' Power mod	e for 31 clocks			
		I LCD Reference								
		ILCD Reference LCD Reference								
		ILCD Reference								
		ILCD Reference								
				A I Owel mode	101 0 010003 011		IE TOF 26 CIOCKS			

REGISTER 27-7: LCDRL: LCD REFERENCE LADDER CONTROL REGISTERS


27.5.4 CONTRAST CONTROL

The LCD contrast control circuit consists of a seven-tap resistor ladder, controlled by the LCDCST bits. Refer to Figure 27-7.

The contrast control circuit is used to decrease the output voltage of the signal source by a total of approximately 10%, when LCDCST = 111.

Whenever the LCD module is inactive (LCDA = 0), the contrast control ladder will be turned off (open).

27.5.5 INTERNAL REFERENCE

Under firmware control, an internal reference for the LCD bias voltages can be enabled. When enabled, the source of this voltage can be either VDDIO or a voltage 3 times the main Fixed Voltage Reference (3.072V). When no internal reference is selected, the LCD contrast control circuit is disabled and LCD bias must be provided externally.

Whenever the LCD module is inactive (LCDA = 0), the internal reference will be turned off.

When the internal reference is enabled and the Fixed Voltage Reference is selected, the LCDIRI bit can be used to minimize power consumption by tying into the LCD reference ladder automatic power mode switching. When LCDIRI = 1 and the LCD reference ladder is in power mode 'B', the LCD internal FVR buffer is disabled.

Note: The LCD module automatically turns on the fixed voltage reference when needed.

27.5.6 VLCD<3:1> PINS

The VLCD<3:1> pins provide the ability for an external LCD bias network to be used instead of the internal ladder. Use of the VLCD<3:1> pins does not prevent use of the internal ladder. Each VLCD pin has an independent control in the LCDREF register (Register 27-3), allowing access to any or all of the LCD Bias signals. This architecture allows for maximum flexibility in different applications

For example, the VLCD<3:1> pins may be used to add capacitors to the internal reference ladder, increasing the drive capacity.

For applications where the internal contrast control is insufficient, the firmware can choose to only enable the VLCD3 pin, allowing an external contrast control circuit to use the internal reference divider.

27.6 LCD Multiplex Types

The LCD Driver module can be configured into one of four multiplex types:

- Static (only COM0 is used)
- 1/2 multiplex (COM<1:0> are used)
- 1/3 multiplex (COM<2:0> are used)
- 1/4 multiplex (COM<3:0> are used)

The LMUX<1:0> bit setting of the LCDCON register decides which of the LCD common pins are used (see Table 27-4 for details).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, then the TRIS setting of that pin is overridden.

Multiplex	LMUX <1:0>	СОМЗ	COM2	COM1	
Static	00	Unused	Unused	Unused	
1/2	01	Unused	Unused	Active	
1/3	10	Unused	Active	Active	
1/4	11	Active	Active	Active	

TABLE 27-4: COMMON PIN USAGE

27.7 Segment Enables

The LCDSEn registers are used to select the pin function for each segment pin. The selection allows each pin to operate as either an LCD segment driver or as one of the pin's alternate functions. To configure the pin as a segment pin, the corresponding bits in the LCDSEn registers must be set to '1'.

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSEn registers overrides any bit settings in the corresponding TRIS register.

Note: On a Power-on Reset, these pins are configured as normal I/O, not LCD pins.

27.8 Pixel Control

The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Register 27-6 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

27.9 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.

TABLE 27-5: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =						
Static	Clock source/(4 x 1 x (LCD Prescaler) x 32))						
1/2	Clock source/(2 x 2 x (LCD Prescaler) x 32))						
1/3	Clock source/(1 x 3 x (LCD Prescaler) x 32))						
1/4	Clock source/(1 x 4 x (LCD Prescaler) x 32))						
Note:	Clock source is Fosc/256, T1OSC or LFINTOSC.						

TABLE 27-6: APPROXIMATE FRAME FREQUENCY (IN Hz) USING Fosc @ 8 MHz, TIMER1 @ 32.768 kHz OR LFINTOSC

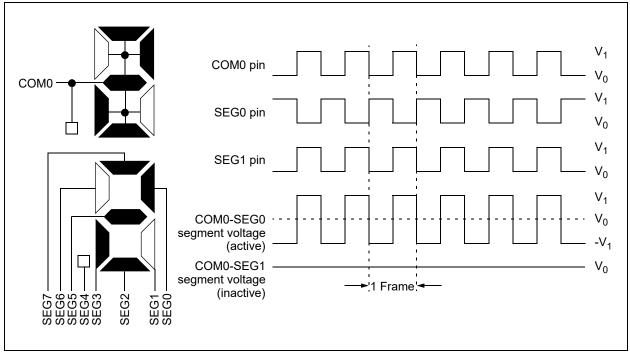
LP<3:0>	Static	1/2	1/3	1/4
2	122	122	162	122
3	81	81	108	81
4	61	61	81	61
5	5 49		65	49
6	6 41		54	41
7	35	35	47	35

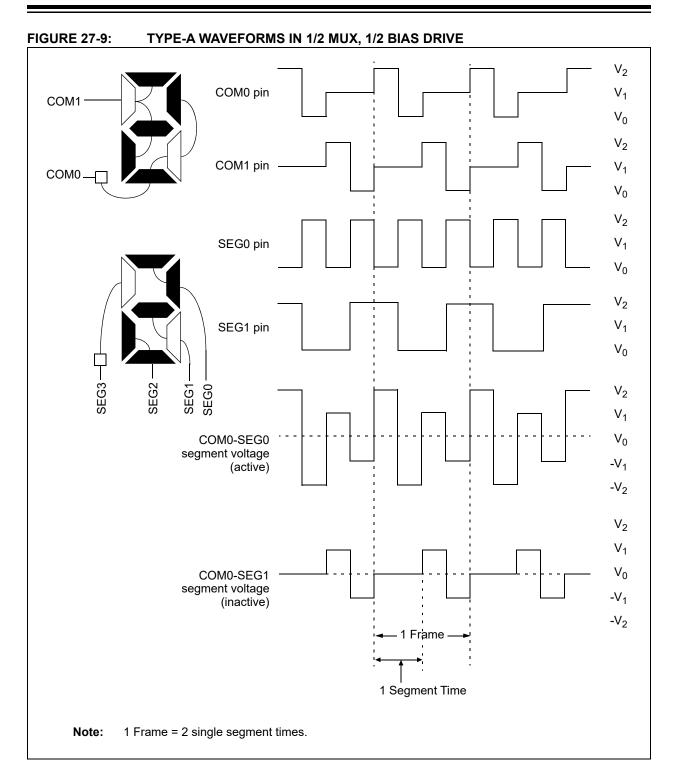
LCD	COM0		COM1		СОМ	2	СОМЗ	
Function	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment
SEG0	LCDDATA0, 0		LCDDATA3, 0		LCDDATA6, 0		LCDDATA9, 0	
SEG1	LCDDATA0, 1		LCDDATA3, 1		LCDDATA6, 1		LCDDATA9, 1	
SEG2	LCDDATA0, 2		LCDDATA3, 2		LCDDATA6, 2		LCDDATA9, 2	
SEG3	LCDDATA0, 3		LCDDATA3, 3		LCDDATA6, 3		LCDDATA9, 3	
SEG4	LCDDATA0, 4		LCDDATA3, 4		LCDDATA6, 4		LCDDATA9, 4	
SEG5	LCDDATA0, 5		LCDDATA3, 5		LCDDATA6, 5		LCDDATA9, 5	
SEG6	LCDDATA0, 6		LCDDATA3, 6		LCDDATA6, 6		LCDDATA9, 6	
SEG7	LCDDATA0, 7		LCDDATA3, 7		LCDDATA6, 7		LCDDATA9, 7	
SEG8	LCDDATA1, 0		LCDDATA4, 0		LCDDATA7, 0		LCDDATA10, 0	
SEG9	LCDDATA1, 1		LCDDATA4, 1		LCDDATA7, 1		LCDDATA10, 1	
SEG10	LCDDATA1, 2		LCDDATA4, 2		LCDDATA7, 2		LCDDATA10, 2	
SEG11	LCDDATA1, 3		LCDDATA4, 3		LCDDATA7, 3		LCDDATA10, 3	
SEG12	LCDDATA1, 4		LCDDATA4, 4		LCDDATA7, 4		LCDDATA10, 4	
SEG13	LCDDATA1, 5		LCDDATA4, 5		LCDDATA7, 5		LCDDATA10, 5	
SEG14	LCDDATA1, 6		LCDDATA4, 6		LCDDATA7, 6		LCDDATA10, 6	
SEG15	LCDDATA1, 7		LCDDATA4, 7		LCDDATA7, 7		LCDDATA10, 7	
SEG16	LCDDATA2, 0		LCDDATA5, 0		LCDDATA8, 0		LCDDATA11, 0	
SEG17	LCDDATA2, 1		LCDDATA5, 1		LCDDATA8, 1		LCDDATA11, 1	
SEG18	LCDDATA2, 2		LCDDATA5, 2		LCDDATA8, 2		LCDDATA11, 2	
SEG19	LCDDATA2, 3		LCDDATA5, 3		LCDDATA8, 3		LCDDATA11, 3	
SEG20	LCDDATA2, 4		LCDDATA5, 4		LCDDATA8, 4		LCDDATA11, 4	
SEG21	LCDDATA2, 5		LCDDATA5, 5		LCDDATA8, 5		LCDDATA11, 5	
SEG22	LCDDATA2, 6		LCDDATA5, 6		LCDDATA8, 6		LCDDATA11, 6	
SEG23	LCDDATA2, 7		LCDDATA5, 7		LCDDATA8, 7		LCDDATA11, 7	

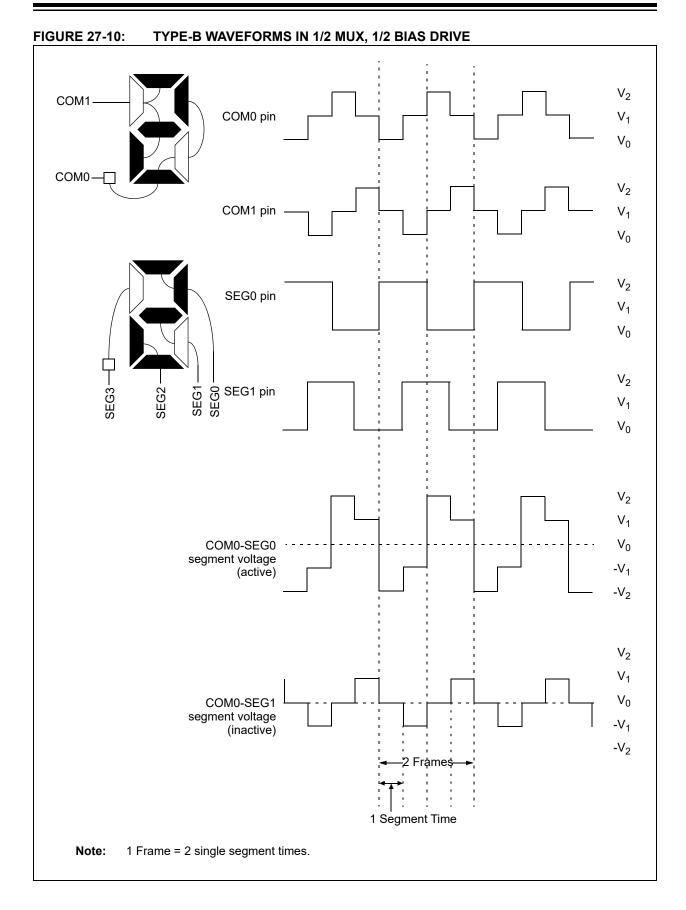
27.10 LCD Waveform Generation

LCD waveforms are generated so that the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. The net DC voltage across any pixel should be zero.

The COM signal represents the time slice for each common, while the SEG contains the pixel data.


The pixel signal (COM-SEG) will have no DC component and it can take only one of the two RMS values. The higher RMS value will create a dark pixel and a lower RMS value will create a clear pixel.


As the number of commons increases, the delta between the two RMS values decreases. The delta represents the maximum contrast that the display can have. The LCDs can be driven by two types of waveform: Type-A and Type-B. In Type-A waveform, the phase changes within each common type, whereas in Type-B waveform, the phase changes on each frame boundary. Thus, Type-A waveform maintains 0 VDc over a single frame, whereas Type-B waveform takes two frames.


- Note 1: If Sleep has to be executed with LCD Sleep disabled (LCDCON<SLPEN> is '1'), then care must be taken to execute Sleep only when VDc on all the pixels is '0'.
 - 2: When the LCD clock source is Fosc/256, if Sleep is executed, irrespective of the LCDCON<SLPEN> setting, the LCD immediately goes into Sleep. Thus, take care to see that VDC on all pixels is '0' when Sleep is executed.

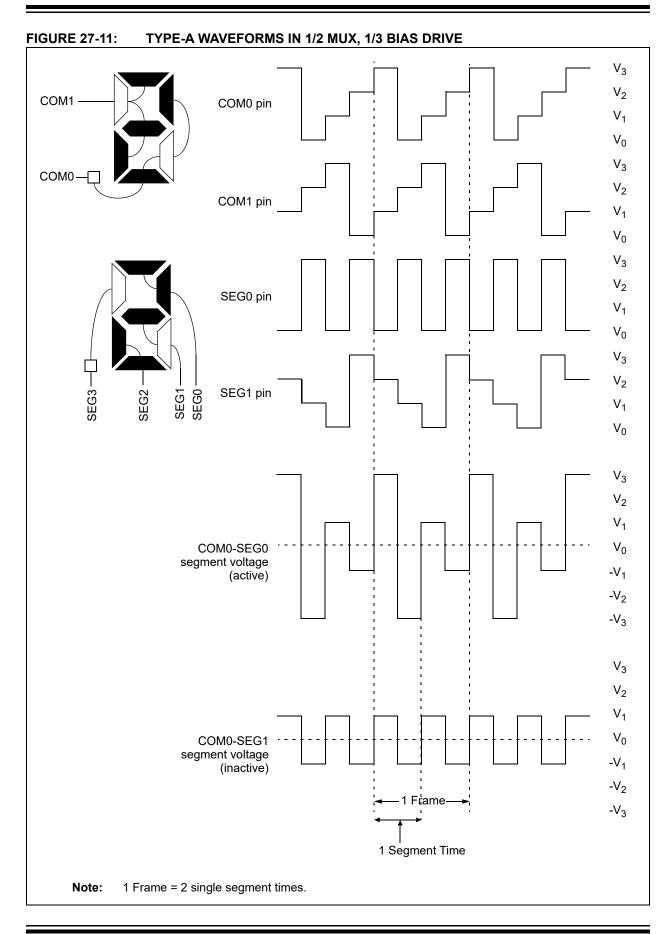

Figure 27-8 through Figure 27-18 provide waveforms for static, half-multiplex, 1/3-multiplex and 1/4-multiplex drives for Type-A and Type-B waveforms.

FIGURE 27-8: TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE

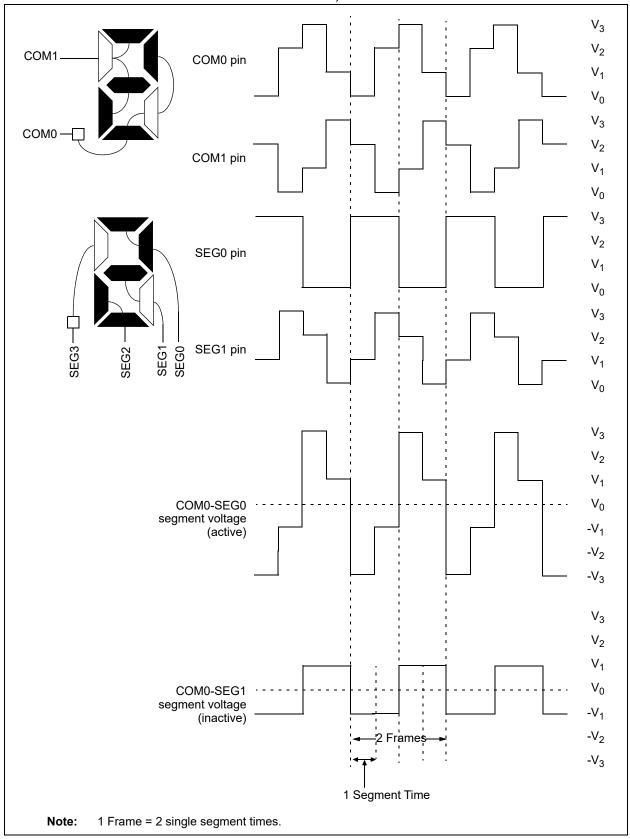
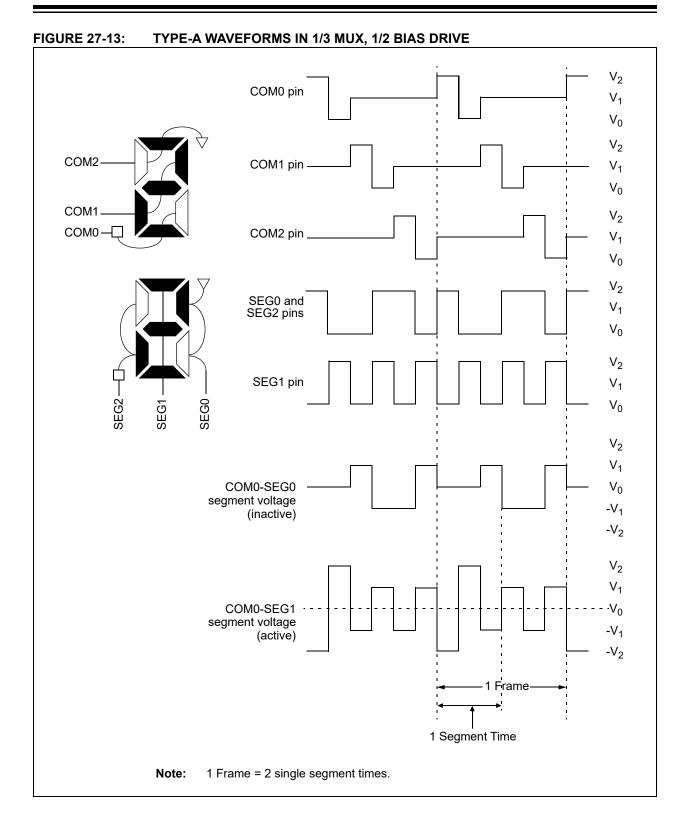
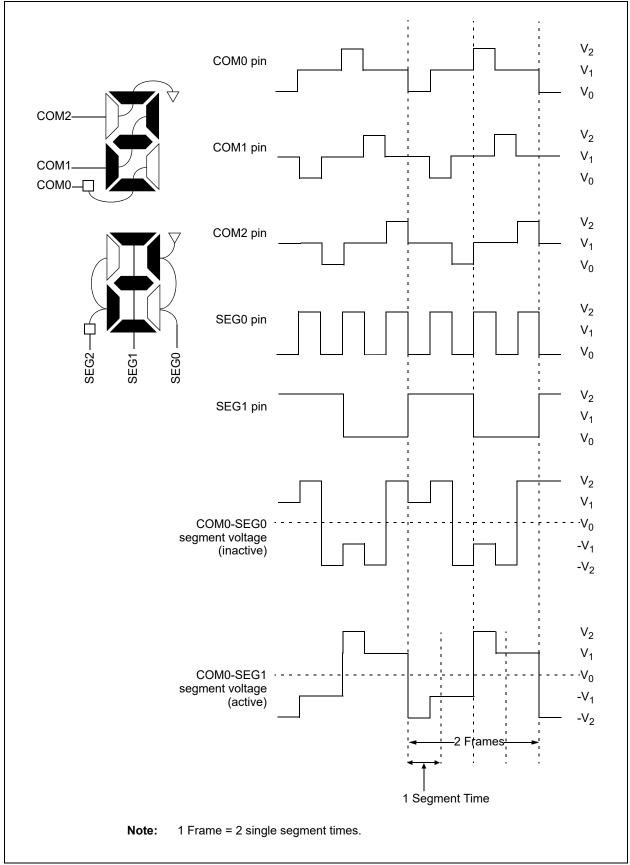
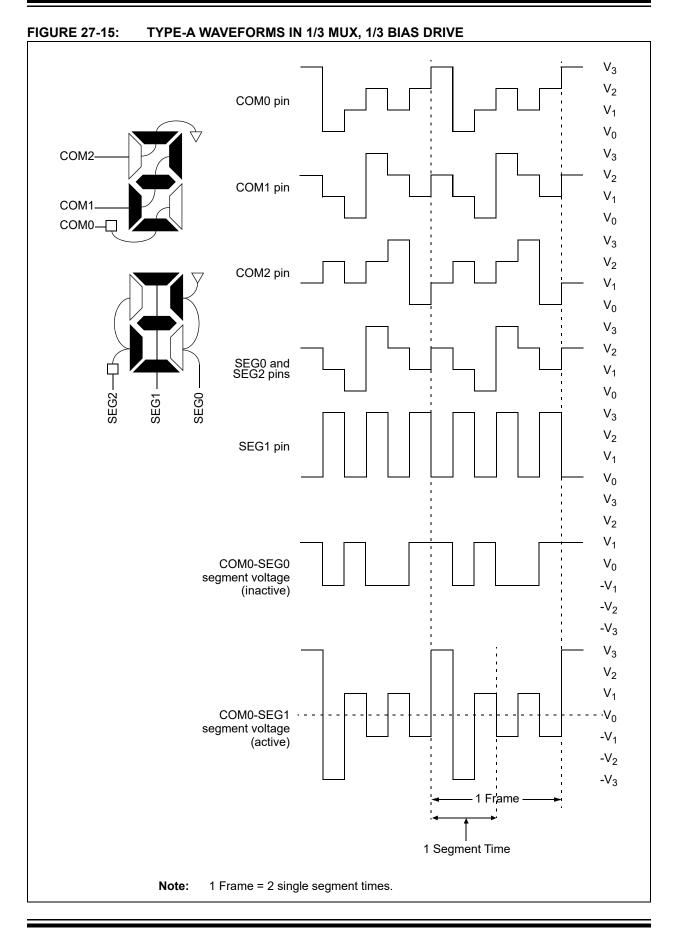





FIGURE 27-12: TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE

FIGURE 27-14: TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE

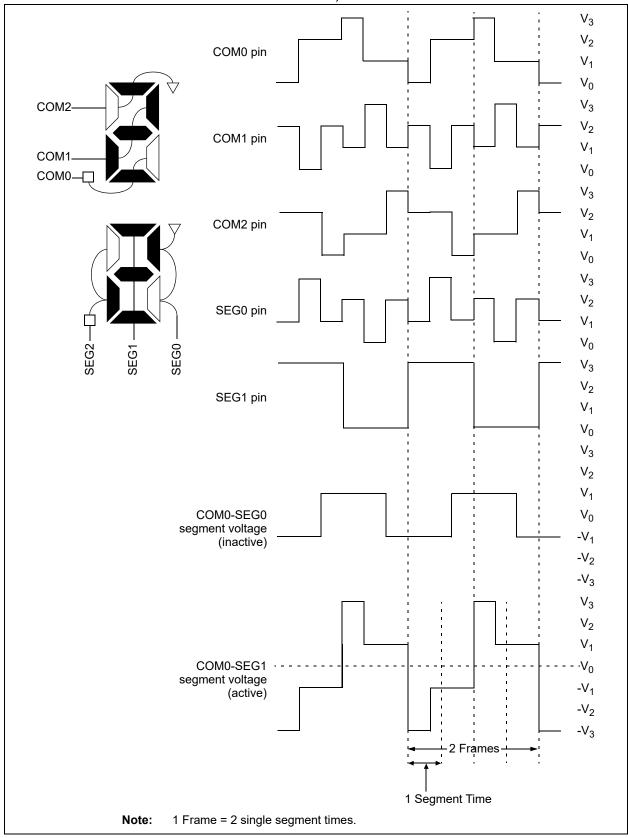
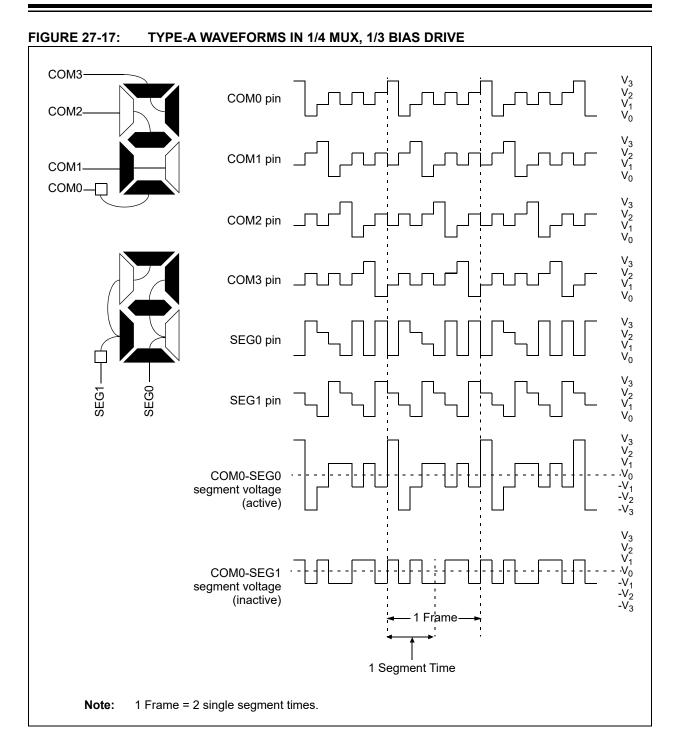
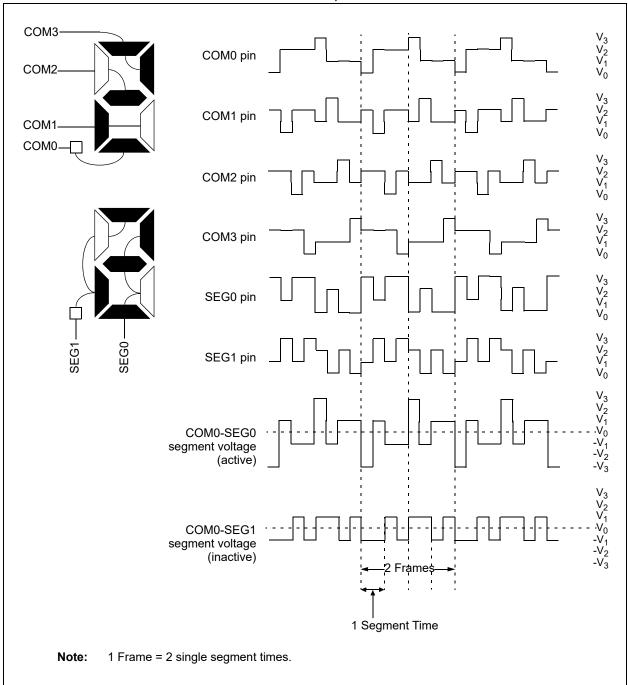




FIGURE 27-16: TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

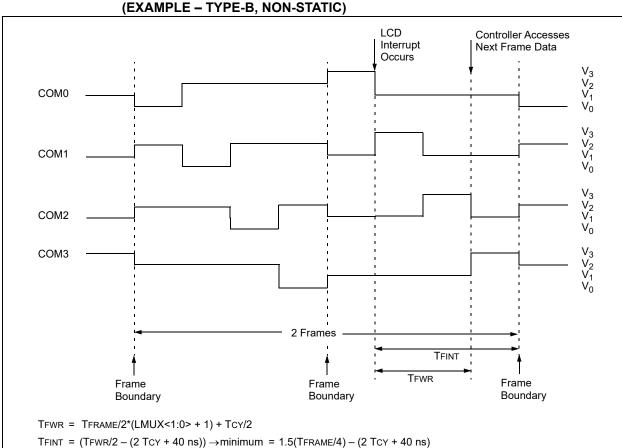
FIGURE 27-18: TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE

27.11 LCD Interrupts

The LCD module provides an interrupt in two cases. An interrupt when the LCD controller goes from active to inactive controller. An interrupt also provides unframed boundaries for Type B waveform. The LCD timing generation provides an interrupt that defines the LCD frame timing.

27.11.1 LCD INTERRUPT ON MODULE SHUTDOWN

An LCD interrupt is generated when the module completes shutting down (LCDA goes from '1' to '0').


27.11.2 LCD FRAME INTERRUPTS

A new frame is defined to begin at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 27-19. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame.

When the LCD driver is running with Type-B waveforms and the LMUX<1:0> bits are not equal to '00' (static drive), there are some additional issues that must be addressed. Since the DC voltage on the pixel takes two frames to maintain zero volts, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel. Therefore, when using Type-B waveforms, the user must synchronize the LCD pixel updates to occur within a subframe after the frame interrupt.

To correctly sequence writing while in Type-B, the interrupt will only occur on complete phase intervals. If the user attempts to write when the write is disabled, the WERR bit of the LCDCON register is set and the write does not occur.

Note:	The LCD frame interrupt is not generated							
	when the Type-A waveform is selected							
	and when the Type-B with no multiplex							
	(static) is selected.							

(TFWR/2 – (1 TCY + 40 ns)) → maximum = 1.5(TFRAME/4) – (1 TCY + 40 ns)

FIGURE 27-19: WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE (EXAMPLE – TYPE-B, NON-STATIC)

27.12 Operation During Sleep

The LCD module can operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Setting the SLPEN bit allows the LCD module to go to Sleep. Clearing the SLPEN bit allows the module to continue to operate during Sleep.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will cease all functions and go into a very low-current consumption mode. The module will stop operation immediately and drive the minimum LCD voltage on both segment and common lines. Figure 27-20 shows this operation.

The LCD module can be configured to operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Clearing SLPEN and correctly configuring the LCD module clock will allow the LCD module to operate during Sleep. Setting SLPEN and correctly executing the LCD module shutdown will disable the LCD module during Sleep and save power.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will immediately cease all functions, drive the outputs to Vss and go into a very low-current mode. The SLEEP instruction should only be executed after the LCD module has been disabled and the current cycle completed, thus ensuring that there are no DC voltages on the glass. To disable the LCD module, clear the LCDEN bit. The LCD module will complete the disabling process after the current frame, clear the LCDA bit and optionally cause an interrupt.

The steps required to properly enter Sleep with the LCD disabled are:

- Clear LCDEN
- Wait for LCDA = 0 either by polling or by interrupt
- Execute SLEEP

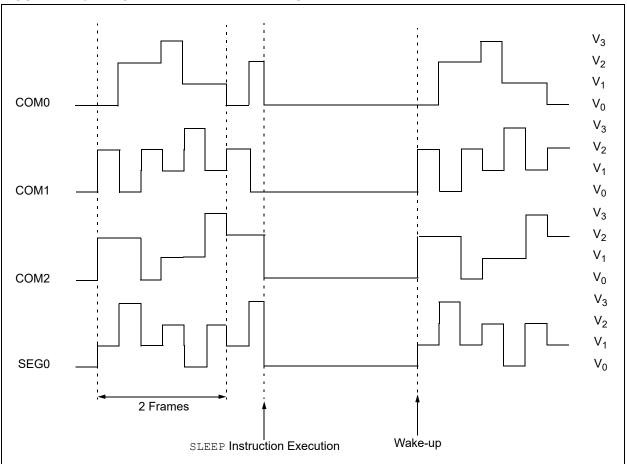
If SLPEN = 0 and SLEEP is executed while the LCD module clock source is FOSC/4, then the LCD module will halt with the pin driving the last LCD voltage pattern. Prolonged exposure to a fixed LCD voltage pattern will cause damage to the LCD glass. To prevent LCD glass damage, either perform the proper LCD module shutdown prior to Sleep, or change the LCD module clock to allow the LCD module to continue operation during Sleep.

If a SLEEP instruction is executed and SLPEN = 0 and the LCD module clock is either T1OSC or LFINTOSC, the module will continue to display the current contents of the LCDDATA registers. While in Sleep, the LCD data cannot be changed. If the LCDIE bit is set, the device will wake from Sleep on the next LCD frame boundary. The LCD module current consumption will not decrease in this mode; however, the overall device power consumption will be lower due to the shutdown of the CPU and other peripherals. Table 27-8 shows the status of the LCD module during a Sleep while using each of the three available clock sources.

Note	
	module will be disabled at the completion
	of frame. At this time, the port pins will
	revert to digital functionality. To minimize
	power consumption due to floating digital
	inputs, the LCD pins should be driven low
	using the PORT and TRIS registers.

If a SLEEP instruction is executed and SLPEN = 0, the module will continue to display the current contents of the LCDDATA registers. To allow the module to continue operation while in Sleep, the clock source must be either the LFINTOSC or T1OSC external oscillator. While in Sleep, the LCD data cannot be changed. The LCD module current consumption will not decrease in this mode; however, the overall consumption of the device will be lower due to shut down of the core and other peripheral functions.

Table 27-8 shows the status of the LCD module during Sleep while using each of the three available clock sources:


TABLE 27-8:	LCD MODULE STATUS
	DURING SLEEP

Clock Source	SLPEN	Operational During Sleep
T1OSC	0	Yes
11030	1	No
LFINTOSC	0	Yes
LFINTOSC	1	No
Fosc/4	0	No
FU3U/4	1	No

Note:	The LFINTOSC or external T1OSC									
	oscillator must be used to operate the									
	LCD module during Sleep.									

If LCD interrupts are being generated (Type-B waveform with a multiplex mode not static) and LCDIE = 1, the device will awaken from Sleep on the next frame boundary.

27.13 Configuring the LCD Module

The following is the sequence of steps to configure the LCD module.

- 1. Select the frame clock prescale using bits LP<3:0> of the LCDPS register.
- 2. Configure the appropriate pins to function as segment drivers using the LCDSEn registers.
- 3. Configure the LCD module for the following using the LCDCON register:
 - Multiplex and Bias mode, bits LMUX<1:0>
 - Timing source, bits CS<1:0>
 - Sleep mode, bit SLPEN
- 4. Write initial values to pixel data registers, LCD-DATA0 through LCDDATA11 (LCDDATA23 on PIC16F1938).
- 5. Clear LCD Interrupt Flag, LCDIF bit of the PIR2 register and if desired, enable the interrupt by setting bit LCDIE of the PIE2 register.
- Configure bias voltages by setting the LCDRL, LCDREF and the associated ANSELx registers as needed.
- 7. Enable the LCD module by setting bit LCDEN of the LCDCON register.

27.14 Disabling the LCD Module

To disable the LCD module, write all '0's to the LCDCON register.

27.15 LCD Current Consumption

When using the LCD module the current consumption consists of the following three factors:

- Oscillator Selection
- · LCD Bias Source
- Capacitance of the LCD segments

The current consumption of just the LCD module can be considered negligible compared to these other factors.

27.15.1 OSCILLATOR SELECTION

The current consumed by the clock source selected must be considered when using the LCD module. See the applicable Electrical Specifications Chapter for oscillator current consumption information.

27.15.2 LCD BIAS SOURCE

The LCD bias source, internal or external, can contribute significantly to the current consumption. Use the highest possible resistor values while maintaining contrast to minimize current.

27.15.3 CAPACITANCE OF THE LCD SEGMENTS

The LCD segments which can be modeled as capacitors which must be both charged and discharged every frame. The size of the LCD segment and its technology determines the segment's capacitance.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
LCDCON	LCDEN	SLPEN	WERR	—	CS<	<1:0> LMUX<1:0>		315	
LCDCST	_	—	_	—	_	l	_CDCST<2:0>	>	318
LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	319
LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	319
LCDDATA2	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	319
LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	319
LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	319
LCDDATA5	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	319
LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	319
LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	319
LCDDATA8	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	319
LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	319
LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	319
LCDDATA11	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	319
LCDPS	WFT	BIASMD	LCDA	WA		LP<	:3:0>		316
LCDREF	LCDIRE	LCDIRS	LCDIRI	_	VLCD3PE	VLCD2PE	VLCD1PE	_	317
LCDRL	LRLAI	P<1:0>	LRLBF	P<1:0>	_		LRLAT<2:0>		326
LCDSE0				SE	<7:0>				319
LCDSE1				SE	<15:8>				319
LCDSE2				SE<	<23:16>				319
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	89
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	92
T1CON	TMR1C	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	188

TABLE 27-9:	SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the LCD module.

28.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP[™] refer to the "*PIC16193X/PIC16LF193X Memory Programming Specification*" (DS41360A).

28.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

Some programmers produce VPP greater than VIHH (9.0V), an external circuit is required to limit the VPP voltage. See Figure 28-1 for example circuit.

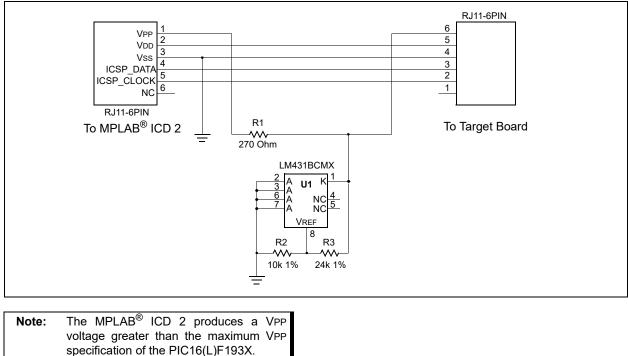


FIGURE 28-1: VPP LIMITER EXAMPLE CIRCUIT

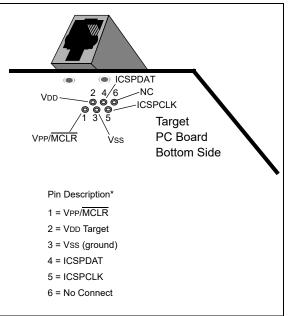
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F193X devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.4 "MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

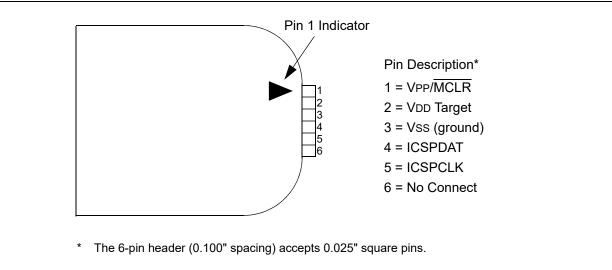
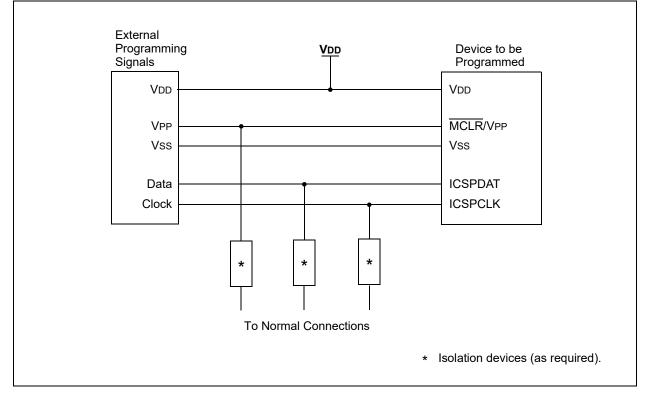

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.


FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

29.0 INSTRUCTION SET SUMMARY

Each PIC16 instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of four oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations
OPCODE d f (FILE #)
d = 0 for destination W d = 1 for destination f f = 7-bit file register address
Bit-oriented file register operations
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address f = 7-bit file register address
Literal and control operations
General
OPCODE k (literal)
k = 8-bit immediate value
CALL and GOTO instructions only
13 11 10 0
OPCODE k (literal)
k = 11-bit immediate value
MOVLP instruction only 13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
MOVLB instruction only
13 5 4 0
OPCODE k (literal)
k = 5-bit immediate value
BRA instruction only 13 9 8 0
OPCODE k (literal)
k = 9-bit immediate value
FSR Offset instructions
13 7 6 5 0
OPCODE n k (literal)
n = appropriate FSR k = 6-bit immediate value
FSR Increment instructions 13
OPCODE n m (mode)
n = appropriate FSR m = 2-bit mode value
OPCODE only
13 0 OPCODE

Mnen	nonic,	Description	0		14-Bit	Opcode	•	Status	N-4
Operands		Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE		RATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED	SKIP OPERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERA	TIONS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk		Z	1

TABLE 29-3: PIC16(L)F193X ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

Mnemonic, Operands		Description	Cycles		14-Bit Opcode			Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	Okkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS					•	•
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	•
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 29-3: PIC16(L)F193X ENHANCED INSTRUCTION SET (CONTINUED)

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

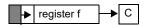
3: See Table in the MOVIW and MOVWI instruction descriptions.

29.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label]ADDFSR FSRn, k
Operands:	-32 ≤ k ≤ 31 n ∈ [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap-around.

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are ANDed with the 8-bit literal 'k'. The result is placed in the W register.			


ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>]ASRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in reg-

ister 'f'.

ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[<i>label</i>]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k	Syntax: Operands
Operands:	-256 ≤ label - PC + 1 ≤ 255 -256 ≤ k ≤ 255	Operation
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Af
Status Affected:	None	Descriptio
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + $1 + k$. This instruction is a 2-cycle instruction. This branch has a limited range.	

BRW	Relative Branch with W
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a 2-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	1 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ntax:	[<i>label</i>]BTFSS f,b
erands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
eration:	skip if (f) = 1
tus Affected:	None
scription:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<6:3>) \rightarrow PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT Status bits TO and PD are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRWClear WSyntax:[label] CLRWOperands:NoneOperation: $00h \rightarrow (W)$
 $1 \rightarrow Z$

	- / -
Status Affected:	Z
Description:	W register is cleared. Zero (Z) bit is set.

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	k → PC<10:0> PCLATH<6:3> → PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are ORed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

LSLF	Logical Left Shift	MOVF	Move f
Syntax:	[<i>label</i>]LSLF f{,d}	Syntax:	[<i>label</i>] MOVF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$
()	$(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$	Status Affected:	Z
Status Affected:C, ZDescription:The contents of register 'f' a one bit to the left through the A '0' is shifted into the LSb. the result is placed in W. If 'd	C, Z The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0',	Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$
	result is stored back in register 'f'.		is useful to test a file register since status flag Z is affected.
	C ← register f ← 0	Words:	1
		Cycles:	1
		Example:	MOVF FSR, 0
LSRF	Logical Right Shift		After Instruction W = value in FSR register
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1

Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0 → register f → C

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{FSR + 1 (preincrement)} \\ &\text{FSR - 1 (predecrement)} \\ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{FSR + 1 (all increments)} \\ &\text{FSR - 1 (all decrements)} \\ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \le k \le 15$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>] MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A
MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F
	After Instruction OPTION_REG = 0x4F W = 0x4E

W = 0x4F

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$n \in [0,1]$ mm $\in [00,01, 10, 11]$ -32 $\leq k \leq 31$
Operation:	$\label{eq:states} \begin{array}{l} W \rightarrow INDFn \\ Effective \ address \ is \ determined \ by \\ \bullet \ FSR + 1 \ (preincrement) \\ \bullet \ FSR + 1 \ (predecrement) \\ \bullet \ FSR + k \ (relative \ offset) \\ After \ the \ Move, \ the \ FSR \ value \ will \ be \\ either: \\ \bullet \ FSR + 1 \ (all \ increments) \\ \bullet \ FSR + 1 \ (all \ increments) \\ Unchanged \\ \end{array}$

Status Affected:

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

None

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[<i>label</i>] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[<i>label</i>] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft-ware.


RETFIE	Return from Interrupt	
Syntax:	[label] RETFIE	
Operands:	None	
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$	
Status Affected:	None	
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.	
Words:	1	
Cycles:	2	
Example:	RETFIE	
	After Interrupt PC = TOS GIE = 1	

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

RETLW	Return with literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1		C Register f
Cycles: <u>Example:</u>	2 CALL TABLE;W contains table ;offset value	Words: Cycles:	1
	• ;W now has table value	Example:	RLF REG1,0
TABLE	• • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ; End of table		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	Before Instruction W = 0x07 After Instruction		

W = value of k8

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SUBLW	Subtract W from literal	
Syntax:	[<i>label</i>] SUBLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$k - (W) \to (W)$	
Status Affected:	C, DC, Z	
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.	
	C = 0 W > k	
	C = 1 W ≤ k	

DC = 0

DC = 1

W<3:0> > k<3:0>

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The Power-Down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W	from f
Syntax:	[label] SL	IBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(f) - (W) \rightarrow (d	estination)
Status Affected:	C, DC, Z	
Description:	register from result is store	is '1', the result is stored
	C = 0	W > f
	C = 1	$W \leq f$
	DC = 0	W<3:0> > f<3:0>
	DC = 1	$W<3:0> \le f<3:0>$

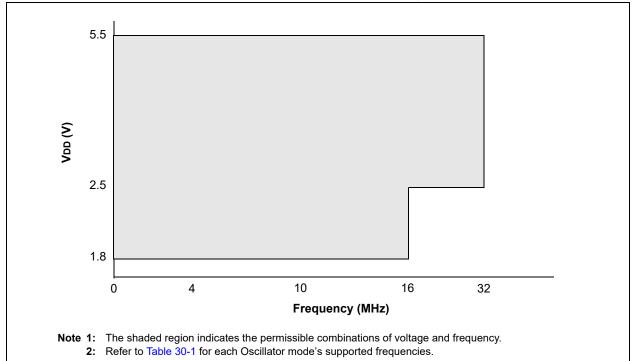
SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

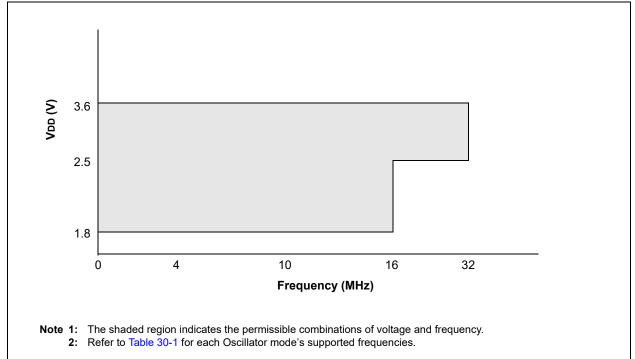
XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XORed with the 8-bit literal 'k'. The result is placed in the W register.

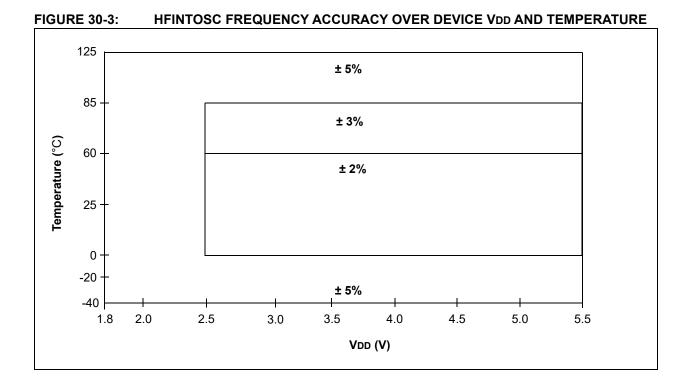
TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

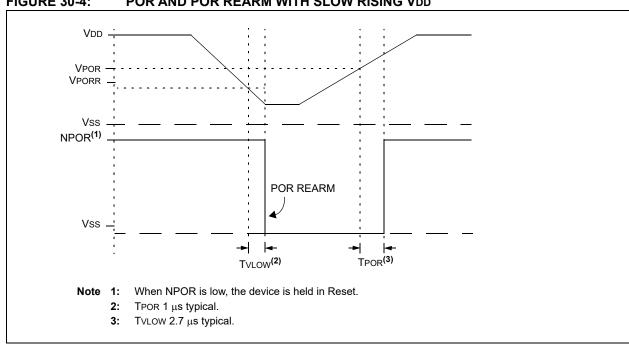

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)


Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1938/39	-0.3V to +6.5V
Voltage on VCAP pin with respect to Vss, PIC16F1938/39	-0.3V to +4.0V
Voltage on VDD with respect to Vss, PIC16LF1938/39	-0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	255 mA
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	105 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	170 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	
Clamp current, Iк (VPIN < 0 or VPIN > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $+\sum$ IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD + D) {(VD + D)}	$-$ VOH) x IOH} + Σ (VOI x IOL).
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause per device. This is a stress rating only and functional operation of the device at those or any ot indicated in the operation listings of this specification is not implied. Exposure above maximum cause per device at the operation specification is not implied.	ther conditions above those


extended periods may affect device reliability.

PIC16LF	1938/39		Operati	ing temp	erature	-40° -40°	(unless otherwise stated) C \leq TA \leq +85°C for industrial C \leq TA \leq +125°C for extended	
PIC16F1	938/39		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
		PIC16LF1938/39	1.8 2.5	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D001		PIC16F1938/39	1.8 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾			•		•	
		PIC16LF1938/39	1.5		—	V	Device in Sleep mode	
D002*		PIC16F1938/39	1.7	_	—	V	Device in Sleep mode	
	VPOR*	Power-on Reset Release Voltage						
D002A		PIC16LF1938/39	_	1.6	—	V		
D002A		PIC16F1938/39		1.6	_	V		
	VPORR*	Power-on Reset Rearm Voltage						
D002B		PIC16LF1938/39		0.8	—	V	Device in Sleep mode	
D002B		PIC16F1938/39		1.5	_	V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8	—	6	%	1.024V, VDD ≥ 2.5V 2.048V, VDD ≥ 2.5V 4.096V, VDD ≥ 4.75V	
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11	—	7	%	1.024V, VDD ≥ 2.5V 2.048V, VDD ≥ 2.5V 4.096V, VDD ≥ 4.75V	
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias, Initial Accuracy	-11	—	10	%	$3.072V, \text{Vdd} \geq 3.6V$	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 6.1 "Power-on Reset (POR)" for details.	


30.1 DC Characteristics: PIC16(L)F1938/39-I/E (Industrial, Extended)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

FIGURE 30-4: POR AND POR REARM WITH SLOW RISING VDD

30.2 DC Characteristics: PIC16F/LF1938/39-I/E (Industrial, Extended)

PIC16LF	1938/9		rd Operat ng temper	•	ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
PIC16F1	938/9		rd Operat ng temper	•	litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param	Device	Min.	Trant	Max.	Units		Conditions		
No.	Characteristics	Min. Typ†		Wax.	Units	Vdd	Note		
	Supply Current (IDD) ⁽¹	, 2)							
D009	9 LDO Regulator		350	—	μA	—	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled		
		—	50		μA		All VCAP pins disabled		
		—	30		μA		VCAP enabled on RA0, RA5 or RA6		
		—	5	—	μA	_	LP Clock mode and Sleep (requires FVR and BOR to be disabled)		
D010		_	5.2	16	μA	1.8	Fosc = 32 kHz		
		—	7.6	20	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C		
D010		_	26	45	μA	1.8	Fosc = 32 kHz		
		_	32	50	μA	3.0	LP Oscillator mode (Note 4, 5), -40°C \leq TA \leq +85°C		
		—	35	55	μA	5.0			
D010A		_	5.2	16	μA	1.8	Fosc = 32 kHz		
		—	7.6	20	μA	3.0	LP Oscillator mode (Note 4) -40°C ≤ TA ≤ +125°C		
D010A		_	26	55	μA	1.8	Fosc = 32 kHz		
		_	32	70	μA	3.0	LP Oscillator mode (Note 4, 5) -40°C \leq TA \leq +125°C		
		—	35	75	μA	5.0	$-40.0 \leq 14 \leq +125.0$		
D011		—	54	130	μA	1.8	Fosc = 1 MHz		
		_	110	170	μA	3.0	XT Oscillator mode		
D011		_	80	150	μA	1.8	Fosc = 1 MHz		
		—	140	210	μA	3.0	XT Oscillator mode (Note 5)		
		—	190	280	μA	5.0			
D012		—	200	300	μA	1.8	Fosc = 4 MHz		
		—	350	480	μA	3.0	XT Oscillator mode		
D012		_	220	320	μA	1.8	Fosc = 4 MHz		
		_	390	520	μA	3.0	XT Oscillator mode (Note 5)		
		—	470	630	μA	5.0			

Note 1: The test conditions for all IDD measurements in <u>active</u> operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

- 4: FVR and BOR are disabled.
- 5: 0.1 μ F capacitor on VCAP (RA0).
- 6: 8 MHz crystal oscillator with 4x PLL enabled.

30.2 DC Characteristics: PIC16F/LF1938/39-I/E (Industrial, Extended) (Continued)

PIC16LF	1938/9		rd Operat ng temper	•	-40°C ≤ 1	Ā ≤ +85°	erwise stated) C for industrial °C for extended		
PIC16F1	938/9		rd Operat ng temper		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param	Device	Min.	Trent	Max.	Units		Conditions		
No.	Characteristics	WIIII.	Тур†	wax.	Units	VDD	Note		
	Supply Current (IDD) ⁽¹	, 2)							
D013		_	4.7	130	μA	1.8	Fosc = 500 kHz		
			24	200	μA	3.0	EC Oscillator Low-Power mode		
D013		_	26	120	μA	1.8	Fosc = 500 kHz		
			49	220	μA	3.0	EC Oscillator Low-Power mode (Note 5)		
			53	250	μA	5.0			
D014		_	170	250	μA	1.8	Fosc = 4 MHz		
		—	310	420	μA	3.0	EC Oscillator mode Medium-Power mode		
D014		_	200	280	μA	1.8	Fosc = 4 MHz		
			340	470	μA	3.0	EC Oscillator mode (Note 5) Medium-Power mode		
		—	430	550	μA	5.0			
D015			2.6	3.5	mA	3.0	Fosc = 32 MHz		
		—	3.3	4.2	mA	3.6	EC Oscillator High-Power mode		
D015			2.7	3.5	mA	3.0	Fosc = 32 MHz		
			3.0	3.9	mA	5.0	EC Oscillator High-Power mode (Note 5)		
D016			3.1	12	μA	1.8	Fosc = 32 kHz		
			5.5	16	μA	3.0	LFINTOSC mode, 85°C		
D016		_	24	48	μA	1.8	Fosc = 32 kHz		
			30	53	μA	3.0	LFINTOSC mode, 85°C (Note 5)		
		_	31	58	μA	5.0			

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).

6: 8 MHz crystal oscillator with 4x PLL enabled.

30.2 DC Characteristics: PIC16F/LF1938/39-I/E (Industrial, Extended) (Continued)

PIC16LF1	1938/9		$\begin{array}{llllllllllllllllllllllllllllllllllll$									
PIC16F19	938/9		rd Operating temper	-	litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended							
Param	Device	Min.	Typ†	Max.	Units		Conditions					
No.	Characteristics		.961	maxi	Unito	VDD	Note					
	Supply Current (IDD) ^{(1,}	2)										
D017		—	90	160	μA	1.8	Fosc = 500 kHz					
			120	190	μΑ	3.0	MFINTOSC mode					
D017		_	120	190	μΑ	1.8	Fosc = 500 kHz					
		_	150	240	μA	3.0	MFINTOSC mode (Note 5)					
			190	320	μA	5.0						
D018		—	0.6	0.8	mA	1.8	Fosc = 8 MHz					
		—	1.0	1.3	mA	3.0	HFINTOSC mode					
D018		—	0.7	0.9	mA	1.8	Fosc = 8 MHz					
			1.0	1.4	mA	3.0	HFINTOSC mode (Note 5)					
		—	1.2	1.5	mA	5.0						
D019			1.0	1.2	mA	1.8	Fosc = 16 MHz					
		—	1.6	2.0	mA	3.0	HFINTOSC mode					
D019			1.0	1.3	mA	1.8	Fosc = 16 MHz					
			1.6	2.0	mA	3.0	HFINTOSC mode (Note 5)					
		—	1.8	2.2	mA	5.0						
D020			3.0	3.9	mA	3.0	Fosc = 32 MHz HFINTOSC mode					
		—	3.7	4.6	mA	3.6	HFINTOSC mode					
D020		_	3.0	3.9	mA	3.0	Fosc = 32 MHz					
		_	3.3	4.1	mA	5.0	HFINTOSC mode					
D021			200	300	μΑ	1.8	Fosc = 4 MHz					
		—	350	490	μΑ	3.0	EXTRC mode (Note 3)					
D021		_	210	300	μA	1.8	Fosc = 4 MHz					
			370	500	μA	3.0	EXTRC mode (Note 3, Note 5)					
		—	460	590	μA	5.0						
D022			3.0	3.9	mA	3.0	Fosc = 32 MHz					
		—	3.7	4.6	mA	3.6	HS Oscillator mode (Note 6)					
D022			3.0	3.9	mA	3.0	Fosc = 32 MHz					
		—	3.3	4.1	mA	5.0	HS Oscillator mode (Note 5, Note 6)					

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

- 4: FVR and BOR are disabled.
- 5: 0.1 μF capacitor on VCAP (RA0).
- 6: 8 MHz crystal oscillator with 4x PLL enabled.

30.3 DC Characteristics: PIC16(L)F1938/39-I/E (Power-Down)

PIC16LF1	938/39		rd Opera ng tempe		$\begin{array}{l} \mbox{-aditions (unless otherwise stated)} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$					
PIC16F19	38/39		rd Opera ng tempe			TA ≤ +85	herwise 5°C for inc 25°C for e	lustrial		
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions		
No.	Device onaracteristics		ואני	+85°C	+125°C	onita	VDD	Note		
	Power-down Base Current	(IPD) ⁽²⁾								
D023	Base IPD		0.06	1.0	8.0	μΑ	1.8	WDT, BOR, FVR, and T1OSC		
			0.08	2.0	9.0	μΑ	3.0	disabled, all Peripherals Inactive		
D023	Base IPD		15	35	45	μA	1.8	WDT, BOR, FVR, and T1OSC		
			18	40	50	μΑ	3.0	disabled, all Peripherals Inactive		
		—	19	45	55	μA	5.0			
D024			0.5	6.0	9.0	μΑ	1.8	LPWDT Current (Note 1)		
		—	0.8	7.0	10	μA	3.0			
D024		_	16	35	45	μA	1.8	LPWDT Current (Note 1)		
			19	40	50	μA	3.0			
		—	20	45	55	μA	5.0			
D025			8.5	23	30	μA	1.8	FVR current		
			8.5	26	33	μA	3.0			
D025		_	32	55	70	μA	1.8	FVR current (Note 4)		
			39	72	80	μA	3.0			
		—	70	100	110	μA	5.0			
D026		—	7.5	25	28	μA	3.0	BOR Current (Note 1)		
D026			34	57	67	μA	3.0	BOR Current (Note 1, Note 4)		
		—	67	120	130	μA	5.0			
D027		_	0.6	5.0	9.0	μA	1.8	T1OSC Current (Note 1)		
			1.8	6.0	12	μA	3.0			
D027			16	45	50	μA	1.8	T1OSC Current (Note 1)		
			21	50	55	μA	3.0	-		
		—	25	55	65	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

4: 0.1 μF capacitor on VCAP (RA0).

30.3 DC Characteristics: PIC16(L)F1938/39-I/E (Power-Down) (Continued)

PIC16LF1	938/39		rd Opera ng tempe		$\begin{array}{l} \mbox{-ditions (unless otherwise stated)} \\ \mbox{-40}^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ \mbox{-40}^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$					
PIC16F19	38/39		rd Opera ng tempe	•	ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended					
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions		
No.				+85°C	+125°C		VDD	Note		
	Power-down Base Current	(IPD) ⁽²⁾			-					
D028		_	0.1	5.0	8.0	μA	1.8	A/D Current (Note 1, Note 3), no		
		_	0.1	6.0	9.0	μΑ	3.0	conversion in progress		
D028			16	35	45	μA	1.8	A/D Current (Note 1, Note 3), no		
			21	40	50	μA	3.0	conversion in progress		
			25	50	60	μA	5.0			
D028A			250		—	μA	1.8	A/D Current (Note 1, Note 3),		
		—	250		—	μA	3.0	conversion in progress		
D028A		—	280		—	μA	1.8	A/D Current (Note 1, Note 3),		
			280	_	—	μA	3.0	conversion in progress		
		—	280		—	μA	5.0			
D029*		—	3.5		_	μA	1.8	Cap Sense, Low-Power mode		
		_	7.0		—	μA	3.0			
D029*		—	17		—	μA	1.8	Cap Sense, Low-Power mode		
			21		_	μA	3.0			
		—	22		_	μA	5.0			
D030		—	1	_	_	μA	3.0	LCD Bias Ladder, Low power		
		—	10	_	_	μA	3.0	LCD Bias Ladder, Medium power		
		—	75	_	_	μA	3.0	LCD Bias Ladder, High power		
D030		—	1		—	μΑ	5.0	LCD Bias Ladder, Low power		
			10		—	μΑ	5.0	LCD Bias Ladder, Medium power		
		—	75		_	μA	5.0	LCD Bias Ladder, High power		
D031		_	7.6	22	25	μA	1.8	Comparator, Low-Power mode		
			8.0	23	27	μΑ	3.0			
D031			24	50	60	μΑ	1.8	Comparator, Low-Power mode		
		_	26	70	80	μΑ	3.0			
			28	75	85	μA	5.0]		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

4: 0.1 μF capacitor on VCAP (RA0).

30.4 DC Characteristics: PIC16(L)F1938/39-I/E

	DC C	HARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \leq TA \leq +85°C for industrial} \\ \mbox{-40°C \leq TA \leq +125°C for extended} \end{array}$						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D032		with TTL buffer	—		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D032A			—		0.15 Vdd	V	$1.8V \le V\text{DD} \le 4.5V$		
D033		with Schmitt Trigger buffer	—		0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$		
		with I ² C levels		_	0.3 VDD	V			
		with SMBus levels		_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$		
D034		MCLR, OSC1 (RC mode) ⁽¹⁾		_	0.2 Vdd	V			
D034A		OSC1 (HS mode)		_	0.3 VDD	V			
	VIH	Input High Voltage							
		I/O ports:							
D040		with TTL buffer	2.0		_	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD + 0.8	—	-	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D041		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \le V\text{DD} \le 5.5V$		
		with I ² C levels	0.7 Vdd		_	V			
		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$		
D042		MCLR	0.8 VDD		_	V			
D043A		OSC1 (HS mode)	0.7 Vdd		_	V			
D043B		OSC1 (RC mode)	0.9 Vdd		_	V	(Note 1) VDD > 2.0V		
	lı∟	Input Leakage Current ⁽²⁾					1 · · · ·		
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high- impedance @ 85°C		
				± 5	± 1000	nA	125°C		
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \leq V \text{PIN} \leq V \text{DD} \ \textcircled{0} \ 85^\circ C$		
	Ipur	Weak Pull-up Current							
D070*			25	100	200		VDD = 3.3V, VPIN = VSS		
			25	140	300	μA	VDD = 5.0V, VPIN = VSS		
	Vol	Output Low Voltage ⁽⁴⁾			1	1	T		
D080		I/O ports	_	_	0.6	v	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V		
	Vон	Output High Voltage ⁽⁴⁾	1		1	L	, -		
D090		I/O ports	Vdd - 0.7	_	_	v	ІОН = 3.5mA, VDD = 5V ІОН = 3mA, VDD = 3.3V ІОН = 1mA, VDD = 1.8V		

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

30.4 DC Characteristics: PIC16(L)F1938/39-I/E (Continued)

	DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended						
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions			
		Capacitive Loading Specs or	n Output Pins	;						
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101A*	Сю	All I/O pins	_		50	pF				
		VCAP Capacitor Charging								
D102		Charging current	_	200	_	μA				
D102A		Source/sink capability when charging complete	_	0.0	—	mA				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

30.5 Memory Programming Requirements

DC CHA	ARACTE	RISTICS	Standard C Operating to				ess otherwise stated) 125°C
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP/RE3 pin	8.0	—	9.0	V	(Note 3, Note 4)
D111	Iddp	Supply Current during Programming	_	—	10	mA	
D112		VDD for Bulk Erase	2.7	—	V _{DD} max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.	—	V _{DD} max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	_	1.0	_	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	_	mA	
		Data EEPROM Memory					
D116	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C
D117	Vdrw	VDD for Read/Write	Vdd min.	—	V _{DD} max.	V	
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms	
D119	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D120	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	_	E/W	-40°C to +85°C (Note 1)
D122	Vprw	VDD for Read/Write	Vdd min.	_	V _{DD} max.	V	
D123	TIW	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.

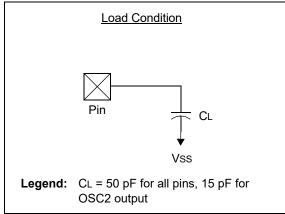
30.6 **Thermal Considerations**

		Conditions (unless otherwise stated) re $-40^{\circ}C \le TA \le +125^{\circ}C$			
Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60.0	°C/W	28-pin SPDIP package
			69.7	°C/W	28-pin SOIC package
			71.0	°C/W	28-pin SSOP package
			27.5	°C/W	28-pin UQFN 4x4mm package
			31.1	°C/W	28-pin QFN 6x6mm package
			81.2	°C/W	28-pin VQFN (4x4mm) package
			47.2	°C/W	40-pin PDIP package
			28.9	°C/W	40-pin QFN 5x5 mm package
			41.0	°C/W	40-pin UQFN 5x5 mm package
			49.8	°C/W	44-pin TQFP package
			29.0	°C/W	44-pin QFN 8x8mm package
TH02	θJC	Thermal Resistance Junction to Case	29.0	°C/W	28-pin SPDIP package
			18.9	°C/W	28-pin SOIC package
			24.0	°C/W	28-pin SSOP package
			24.0	°C/W	28-pin UQFN 4x4mm package
			5.0	°C/W	28-pin QFN 6x6mm package
			3.99	°C/W	28-pin VQFN (4x4mm) package
			24.7	°C/W	40-pin PDIP package
			50.5	°C/W	40-pin UQFN 5x5 mm package
			26.7	°C/W	44-pin TQFP package
			2.0	°C/W	44-pin QFN 8x8mm package
TH03	Тјмах	Maximum Junction Temperature	150	°C	—
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power		W	Pder = PDmax - (ΤJ - ΤΑ)/θJA ⁽²⁾

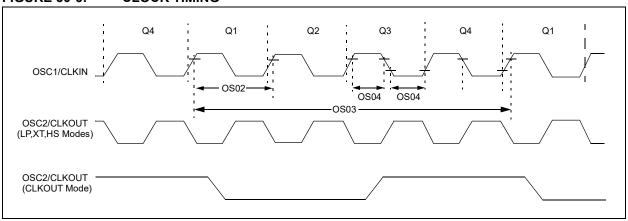
Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature


30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

Z. TPPS				
т				
F	Frequency	Т	Time	
Lowerc	ase letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O PORT	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	ase letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 30-5: LOAD CONDITIONS

30.8 AC Characteristics: PIC16(L)F1938/39-I/E

FIGURE 30-6: CLOCK TIMING

TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

	d Operati g tempera	ng Conditions (unless otherwise ature $-40^{\circ}C \le TA \le +125^{\circ}C$	e stated)				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	—	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	4	MHz	HS Oscillator mode
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	~	μs	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			50	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	—	μs	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	_	—	μs	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	_	∞	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator
			0	—	8	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

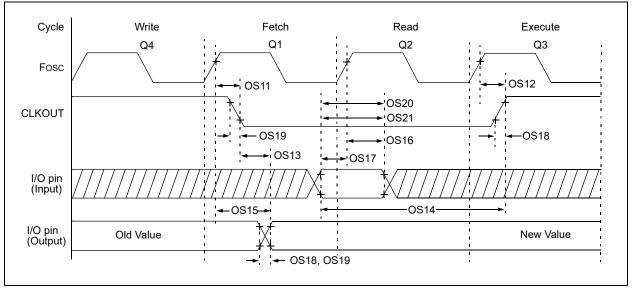
TABLE 30-2: OSCILLATOR PARAMETERS

	Standard Operating Conditions (unless otherwise stated) Deprating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions			
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2% ±3%		16.0 16.0		MHz MHz	$0^{\circ}C \le TA \le +60^{\circ}C, VDD \ge 2.5V$ $60^{\circ}C \le TA \le 85^{\circ}C, VDD \ge 2.5V$			
			±5%		16.0	—	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			
OS08A	MFosc	Internal Calibrated MFINTOSC Frequency ⁽¹⁾	±2% ±3%	_	500 500	_	kHz kHz	$0^{\circ}C \le TA \le +60^{\circ}C, VDD \ge 2.5V$ $60^{\circ}C \le TA \le 85^{\circ}C, VDD \ge 2.5V$			
			±5%		500	—	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			
OS09	LFosc	Internal LFINTOSC Frequency	_		31	_	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	—	—	3.2	8	μS				
		MFINTOSC Wake-up from Sleep Start-up Time	—	—	24	35	μS				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

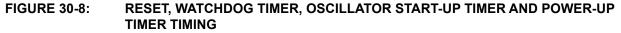

TABLE 30-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)

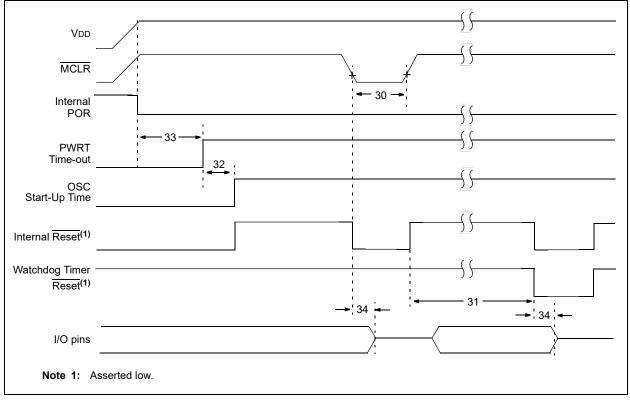
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4		8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	—	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	—	+0.25%	%	

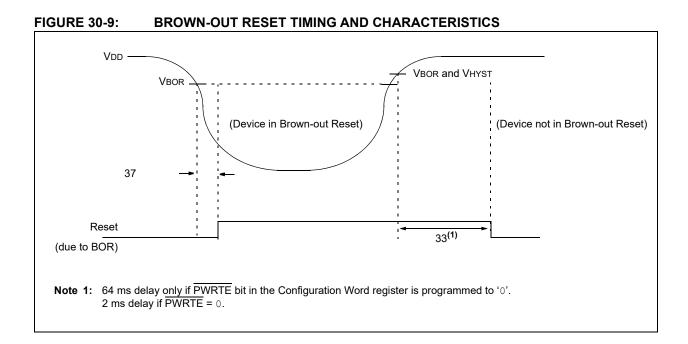
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-7: CLKOUT AND I/O TIMING




	Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	VDD = 3.3-5.0V				
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V				
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_	_	20	ns					
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns					
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V				
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-5.0V				
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns					
OS18	TioR	Port output rise time		40 15	72 32	ns	VDD = 1.8V VDD = 3.3-5.0V				
OS19	TioF	Port output fall time		28 15	55 30	ns	VDD = 1.8V VDD = 3.3-5.0V				
OS20*	Tinp	INT pin input high or low time	25		—	ns					
OS21*	Tioc	Interrupt-on-change new input level time	25	_	_	ns					

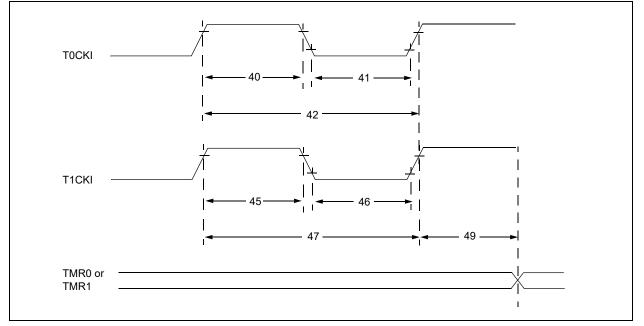

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

TABLE 30-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
30	ТмсL	MCLR Pulse Width (low)	2		_	μs				
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:512 Prescaler used			
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024	_	Tosc				
33*	TPWRT	Power-up Timer Period, PWRTE = 0	40	65	140	ms				
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS				
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 1.80	2.7 1.9	2.85 2.11	V V	BORV = 0 BORV = 1			
36*	VHYST	Brown-out Reset Hysteresis	20	35	60	mV	-40°C to +85°C			
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$V\text{DD} \leq V\text{BOR}$			


These parameters are characterized but not tested.

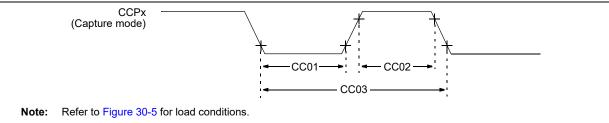
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Standard Operating Conditions (unless otherwise stated) Operating Temperature 40° C < TA < $\pm 125^{\circ}$ C

	ng Temperatur		≤ +125°C						
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	ulse Width No Prescaler (0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—		ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	Тт0Р	T0CKI Period	I				_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, I	No Prescaler	0.5 Tcy + 20	_	_	ns	
		Time			15	—	—	ns	
			Asynchronous		30	—		ns	
46*	TT1L	T1CKI Low	Synchronous, I	No Prescaler	0.5 Tcy + 20	—		ns	
		Time	Synchronous, v	with Prescaler	15	—	_	ns	
			Asynchronous		30	—	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous	,		—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	_	ns	
48	F⊤1		ator Input Frequency Range abled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ed	dge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Svm. Characteristic				Тур†	Max.	Units	Conditions				
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20			ns					
			With Prescaler	20			ns					
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20			ns					
			With Prescaler	20			ns					
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 30-8: PIC16(L)F1938/39 A/D CONVERTER (ADC) CHARACTERISTICS:(1),(2),(3)

	Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at 25°C										
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions				
AD01	Nr	Resolution	—	_	10	bit					
AD02	Eı∟	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V				
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V				
AD04	EOFF	Offset Error	_	±1	±2.5	LSb	VREF = 3.0V				
AD05	Egn	Gain Error	_	±1	±2.0	LSb	VREF = 3.0V				
AD06	Vref	Reference Voltage ⁽⁴⁾	1.8	_	Vdd	V	VREF = (VREF+ minus VREF-)				
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V					
AD08	Zain	Recommended Impedance of Analog Voltage Source			10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

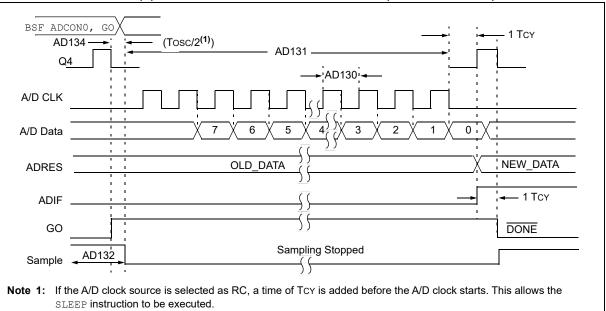
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

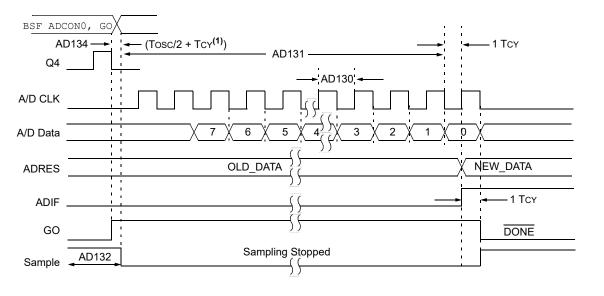
3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

4: ADC Reference Voltage (Ref+) is the selected reference input, VREF+ pin, VDD pin or the FVR Buffer1. When the FVR is selected as the reference input, the FVR Buffer1 output selection must be 2.048V or 4.096V, (ADFVR<1:0> = 1x).

TABLE 30-9: PIC16(L)F1938/39 A/D CONVERSION REQUIREMENTS


	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator	1.0 1.0	2.5	9.0 6.0	μS uS	Tosc-based ADCS<1:0> = 11 (ADRC mode)				
		Period	1.0	2.0	0.0	μσ					
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time	—	5.0	_	μS					

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

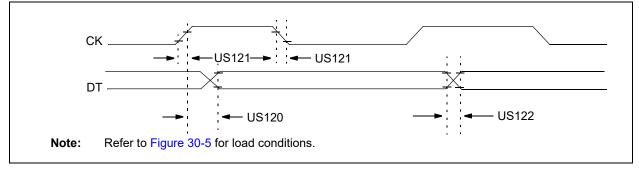
Operating	Operating Conditions: 1.8V < V _{DD} < 5.5V, -40°C < T _A < +125°C (unless otherwise stated).										
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments				
CM01	VIOFF	Input Offset Voltage	—	±7.5	±60	mV	High-Power mode, Vicм = VDD/2				
CM02	VICM	Input Common Mode Voltage	0	_	Vdd	V					
CM03	CMRR	Common Mode Rejection Ratio	_	50	_	dB					
CM04A		Response Time Rising Edge	—	400	800	ns	High-Power mode				
CM04B	Torop	Response Time Falling Edge	_	200	400	ns	High-Power mode				
CM04C	TRESP	Response Time Rising Edge	—	1200	_	ns	Low-Power mode				
CM04D		Response Time Falling Edge	_	550	_	ns	Low-Power mode				
CM05	TMC2OV	Comparator Mode Change to Output Valid*	—	—	10	μs					
CM06	CHYSTER	Comparator Hysteresis	—	45	—	mV	Hysteresis ON				

TABLE 30-10: COMPARATOR SPECIFICATIONS

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.


TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating	Operating Conditions: 2.5V < V _{DD} < 5.5V, -40°C < T _A < +125°C (unless otherwise stated).										
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments				
DAC01*	CLSB	Step Size	_	VDD/32	_	V					
DAC02*	CACC	Absolute Accuracy	_	—	± 1/2	LSb					
DAC03*	CR	Unit Resistor Value (R)		5000	_	Ω					
DAC04*	CST	Settling Time ⁽¹⁾		—	10	μs					

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

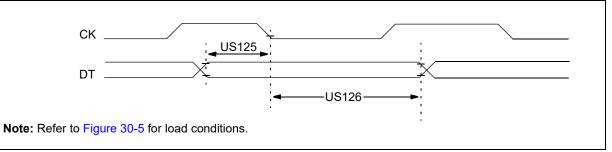

FIGURE 30-14: USART SYNCHRONOUS TRANSMISSION (HOST/CLIENT) TIMING

TABLE 30-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

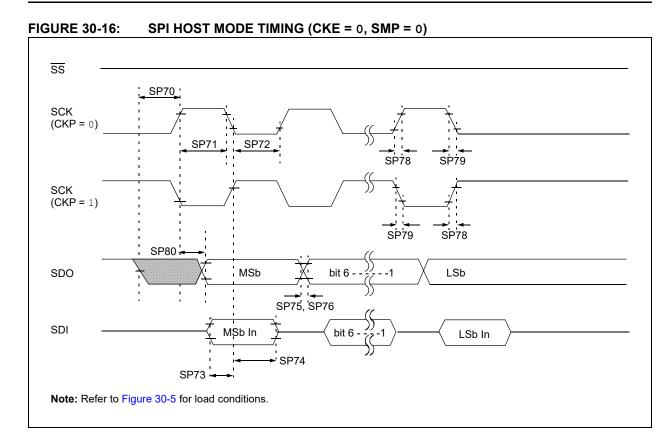
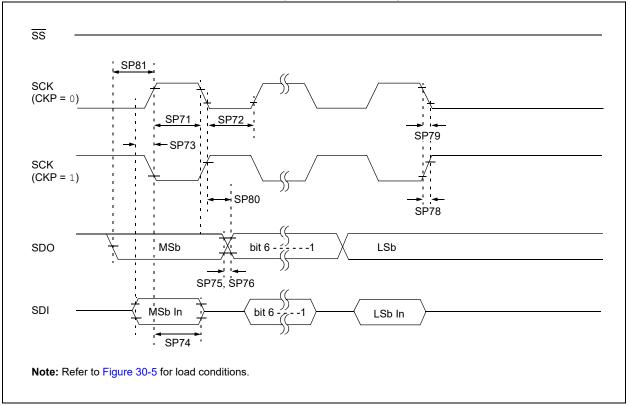
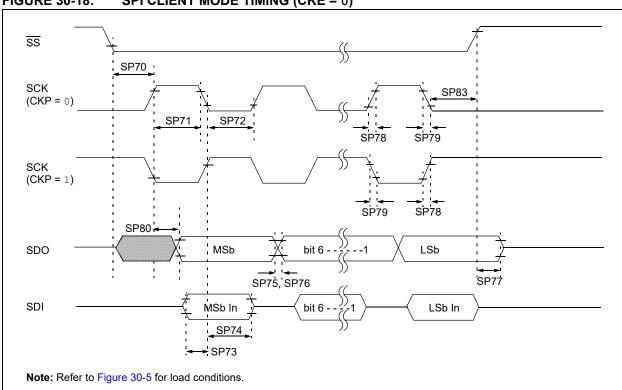

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions			
US120 TCKH2DTV		SYNC XMIT (Host and Client) Clock high to data-out valid	3.0-5.5V	_	80	ns				
	1.8-5.5V		—	100	ns					
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns				
		(Host mode)	1.8-5.5V	—	50	ns				
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns				
			1.8-5.5V	—	50	ns				

FIGURE 30-15: USART SYNCHRONOUS RECEIVE (HOST/CLIENT) TIMING




TABLE 30-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.SymbolCharacteristicMin.Max.UnitsCondition								
US125	TDTV2CKL	SYNC RCV (Host and Client) Data-hold before $CK \downarrow$ (DT hold time)	10		ns			
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns			

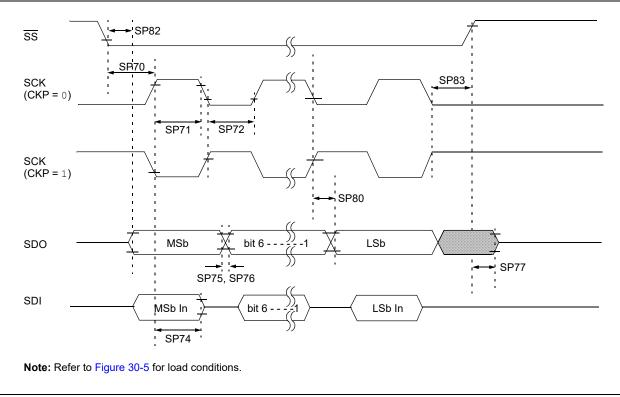
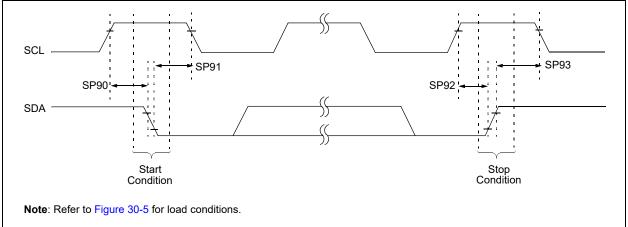

FIGURE 30-17: SPI HOST MODE TIMING (CKE = 1, SMP = 1)

FIGURE 30-18: SPI CLIENT MODE TIMING (CKE = 0)

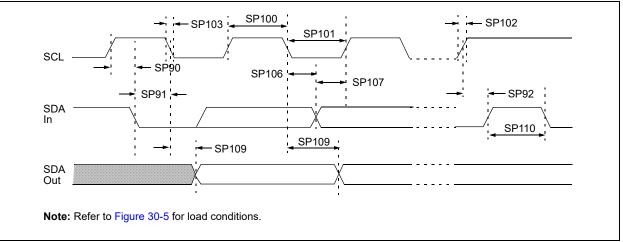


Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү		_	ns		
SP71*	TscH	SCK input high time (Client mode	e)	Tcy + 20	_	—	ns	
SP72*	TscL	SCK input low time (Client mode))	Tcy + 20		_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to S	CK edge	100	—	—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SC	100	—	—	ns		
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP76*	TDOF	SDO data output fall time		_	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impeda	10		50	ns		
SP78*	TscR	SCK output rise time	3.0-5.5V	_	10	25	ns	
		(Host mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCK output fall time (Host mode))	_	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after	3.0-5.5V	—	_	50	ns	
	TscL2doV	SCK edge	1.8-5.5V	_		145	ns	
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge		Тсу	_	_	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	—	-	ns		

TABLE 30-14: SPI MODE REQUIREMENTS

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

FIGURE 30-20: I²C BUS START/STOP BITS TIMING



Param No.	Symbol	Charact	teristic	Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700			ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	—		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first
		Hold time	400 kHz mode	600	_	—		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	_	—		
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	—	ns	
		Hold time	400 kHz mode	600				

TABLE 30-15: I²C BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

FIGURE 30-21: I²C BUS DATA TIMING

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy			
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP102*	Tr	SDA and SCL rise time	100 kHz mode	_	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns	
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	T Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100		ns	
SP109*	ΤΑΑ	A Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission can start
SP111	Св	Bus capacitive loadir	ng	—	400	pF	

TABLE 30-16: I²C BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

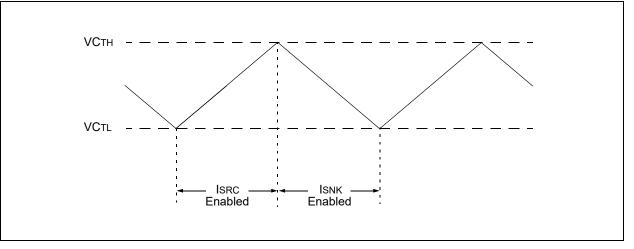
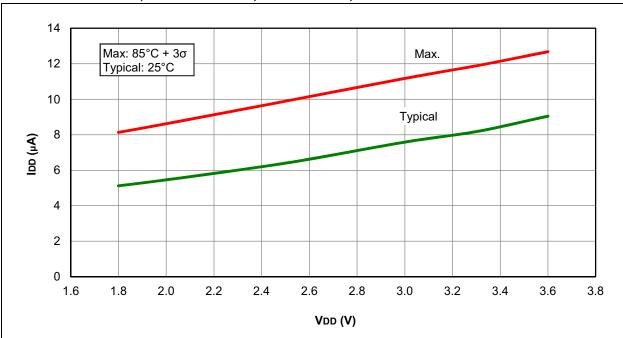

Param. No.	Symbol	Characte	eristic	Min.	Тур†	Max.	Units	Conditions
CS01*	ISRC	Current Source	High	_	-8	_	μA	
			Medium	—	-1.5	_	μA	
			Low	—	-0.3	_	μA	
CS02*	Isnk	Current Sink	High	—	7.5	_	μA	
			Medium	—	1.5	_	μA	
			Low	—	0.25	—	μA	
CS03*	VСтн	Cap Threshold		—	0.8	_	V	
CS04*	VCTL	Cap Threshold		—	0.4	_	V	
CS05*	VCHYST	Cap Hysteresis	High	—	525	_	mV	
		(VCTH-VCTL)	Medium Low		375 300	_	mV mV	

TABLE 30-17: CAP SENSE OSCILLATOR SPECIFICATIONS

These parameters are characterized but not tested.

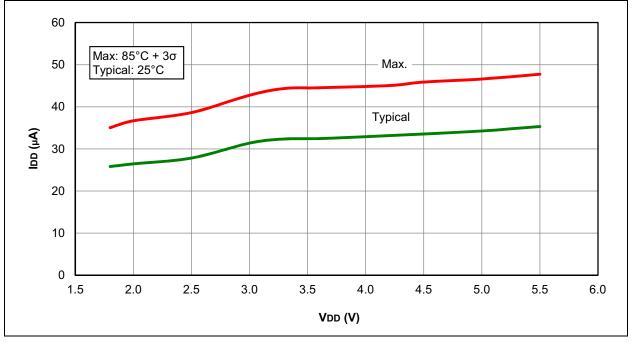
t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-22: CAP SENSE OSCILLATOR


31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

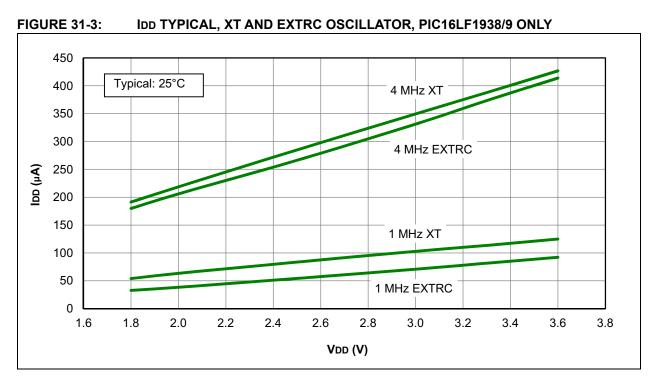
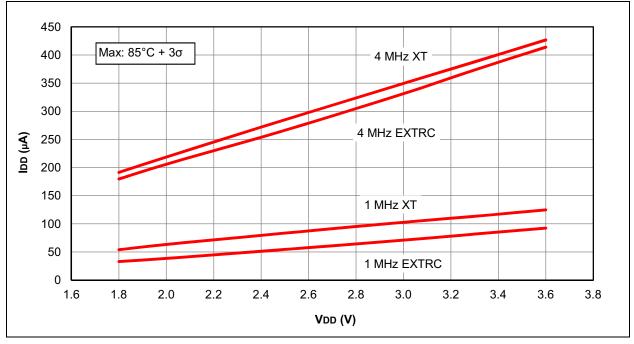
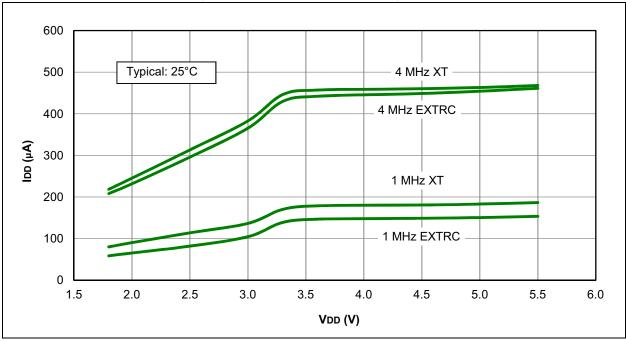




FIGURE 31-4: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16LF1938/9 ONLY

FIGURE 31-5: IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC16F1938/9 ONLY

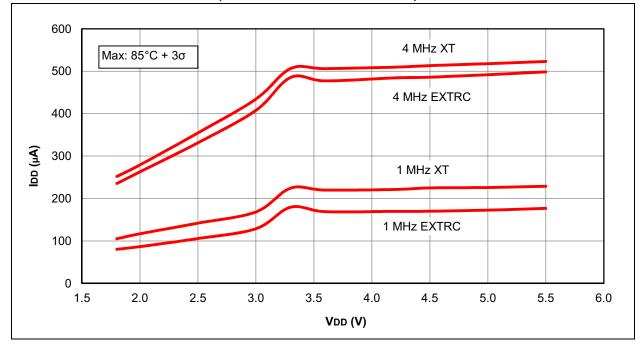


FIGURE 31-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1938/9 ONLY

FIGURE 31-7: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 32 kHz, PIC16LF1938/9 ONLY

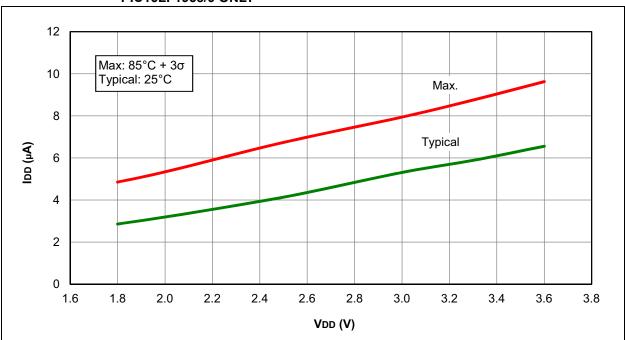


FIGURE 31-8: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 32 kHz, PIC16F1938/9 ONLY

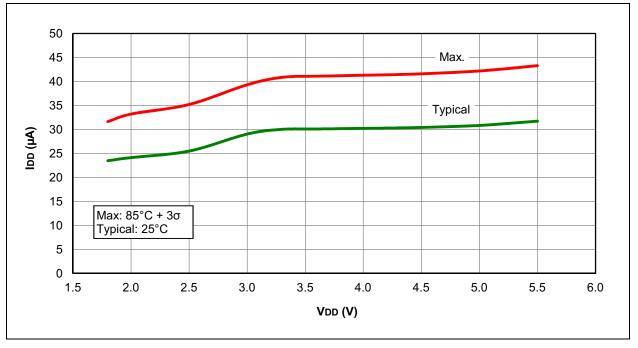


FIGURE 31-9: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16LF1938/9 ONLY

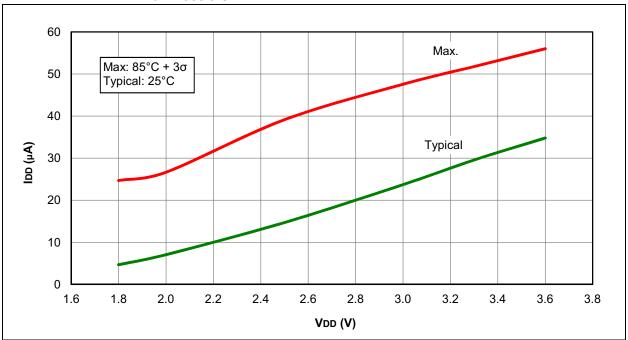


FIGURE 31-10: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16F1938/9 ONLY

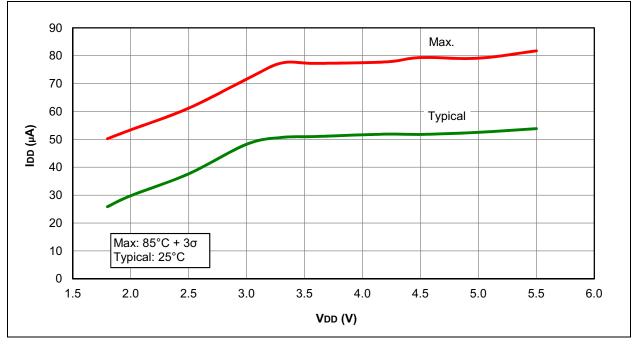


FIGURE 31-11: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

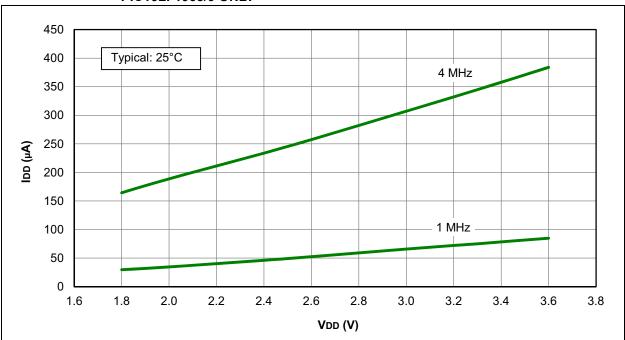
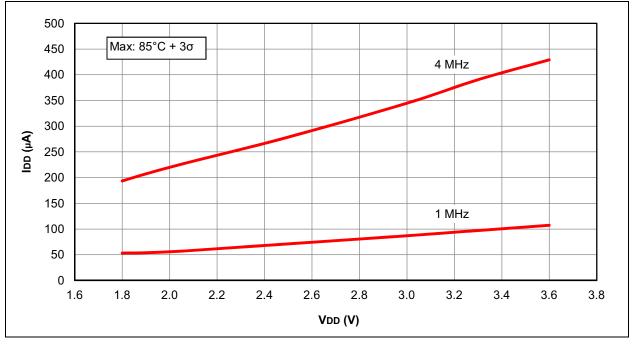



FIGURE 31-12: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

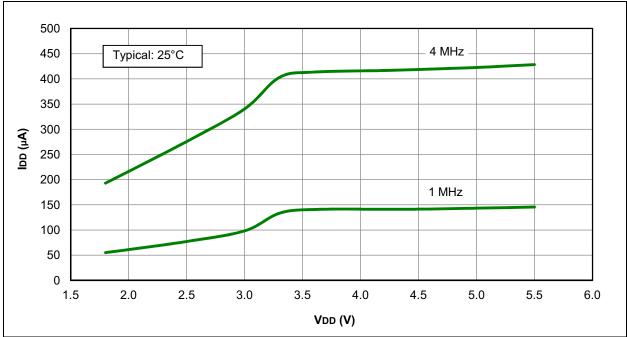


FIGURE 31-14: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16F1938/9 ONLY

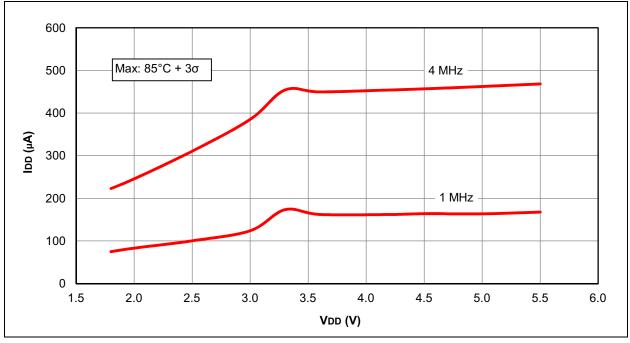


FIGURE 31-15: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1938/9 ONLY

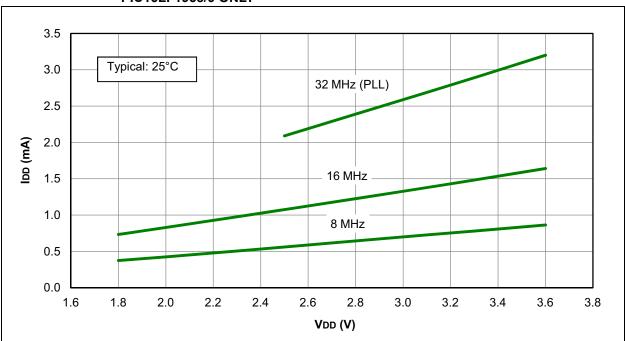
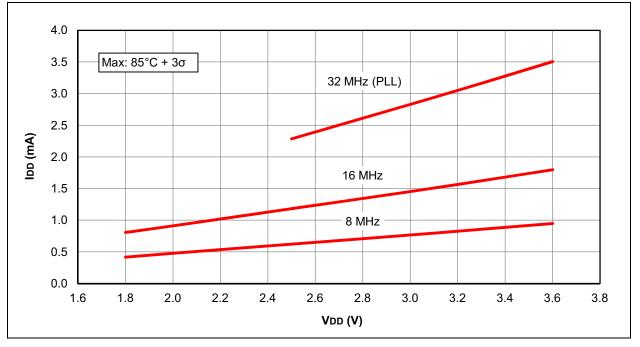



FIGURE 31-16: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1938/9 ONLY

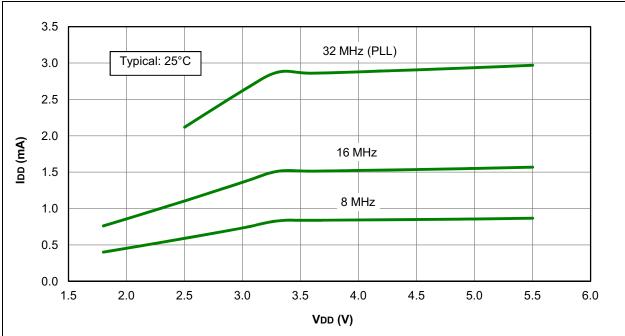
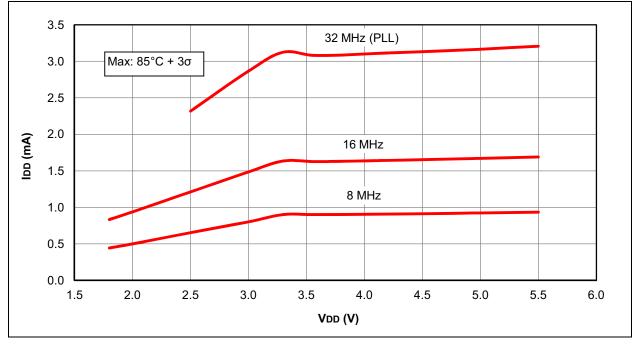



FIGURE 31-18: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16F1938/9 ONLY

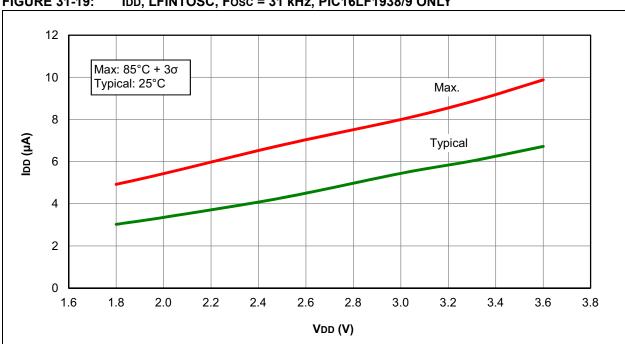
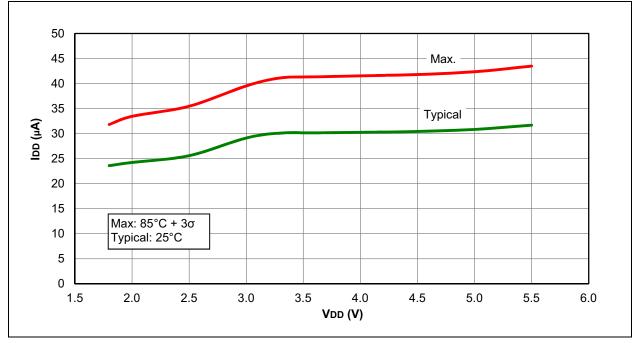
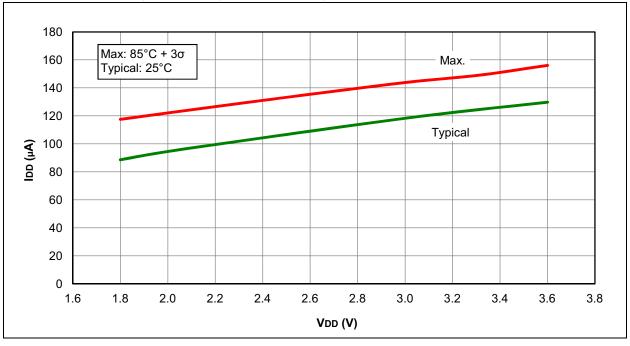
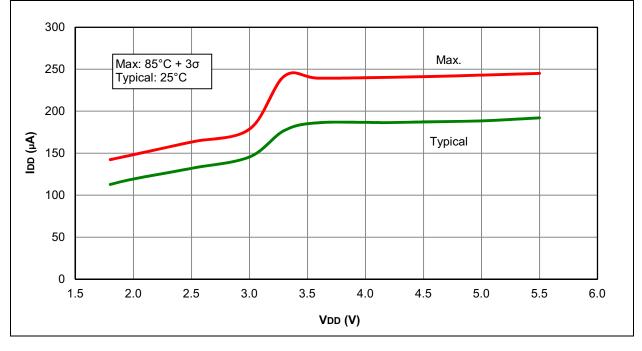
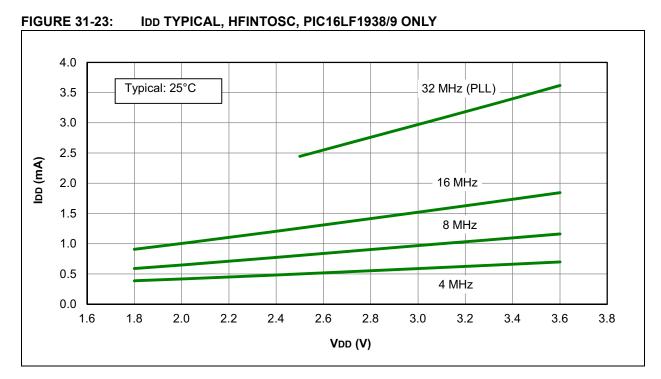
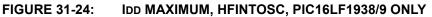
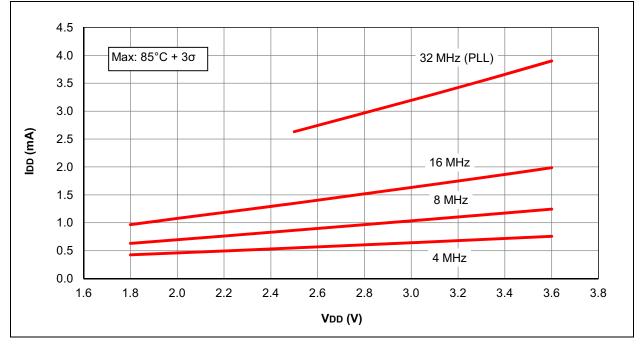


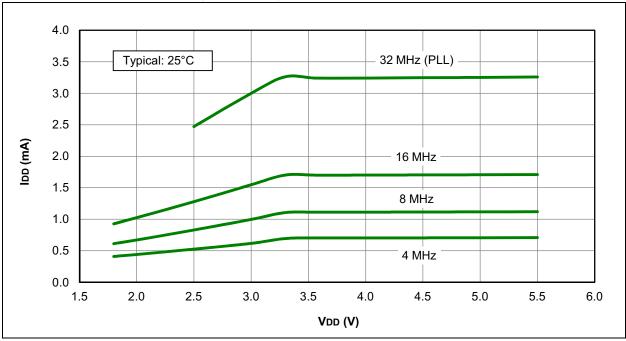
FIGURE 31-20: IDD, LFINTOSC, Fosc = 31 kHz, PIC16F1938/9 ONLY

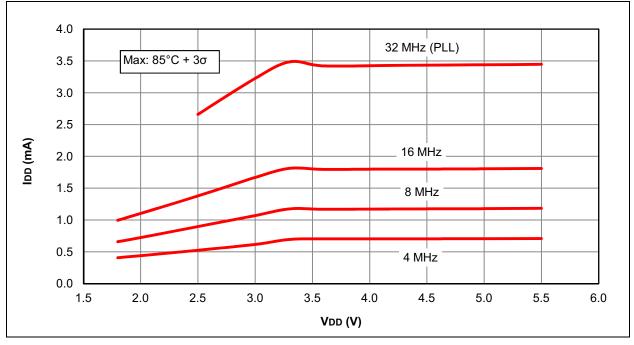




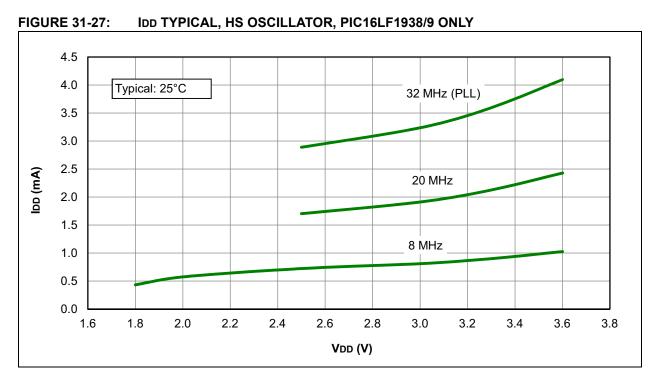
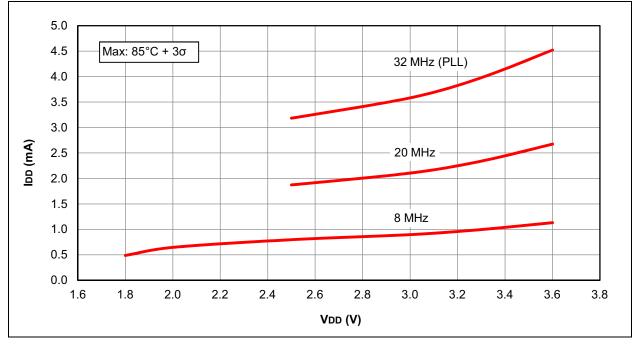
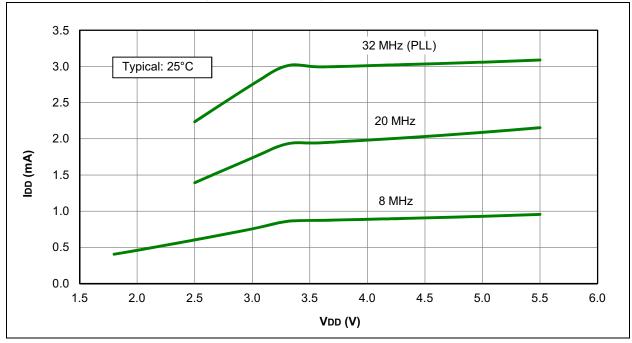

FIGURE 31-19: IDD, LFINTOSC, Fosc = 31 kHz, PIC16LF1938/9 ONLY

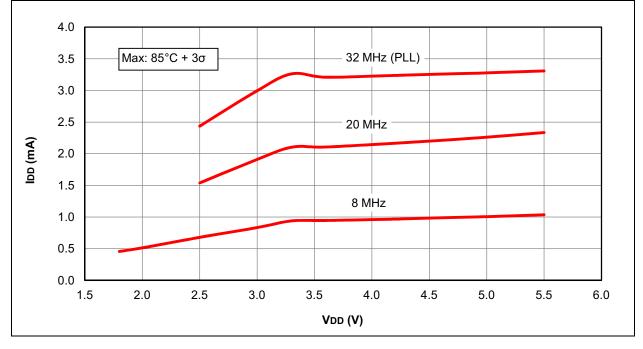









FIGURE 31-28: IDD MAXIMUM, HS OSCILLATOR, PIC16LF1938/9 ONLY

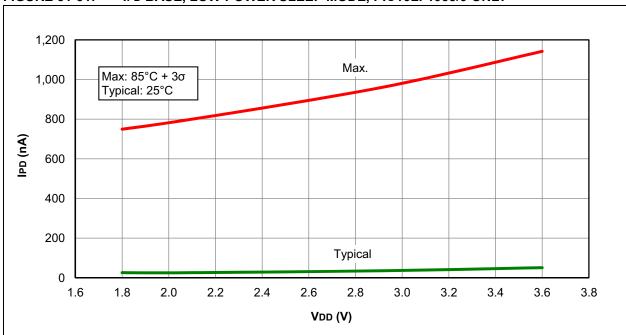
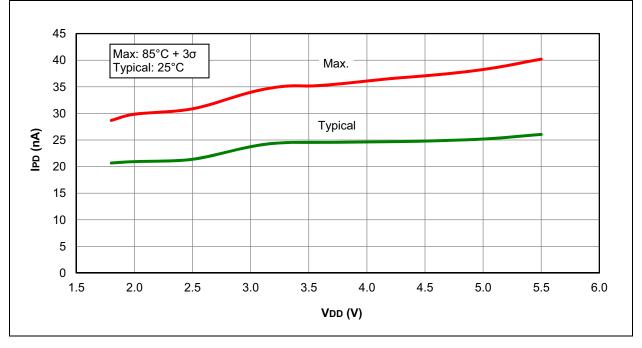
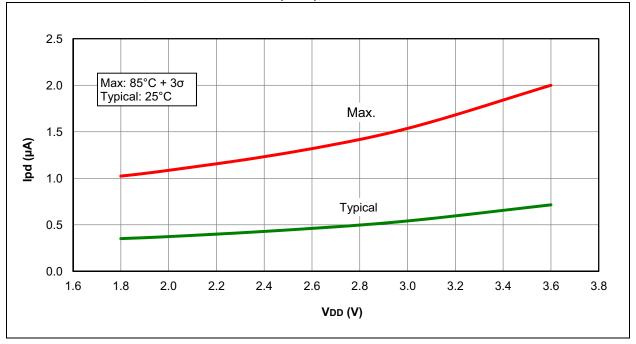




FIGURE 31-31: IPD BASE, LOW-POWER SLEEP MODE, PIC16LF1938/9 ONLY

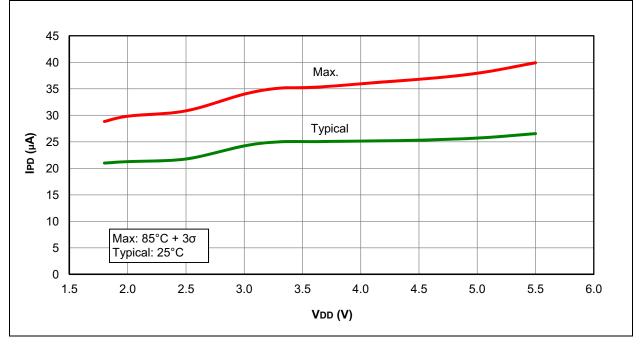
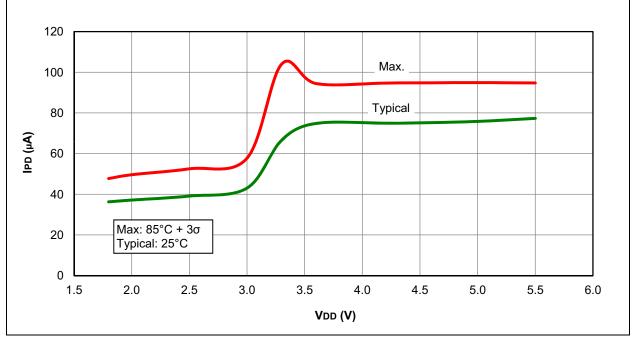
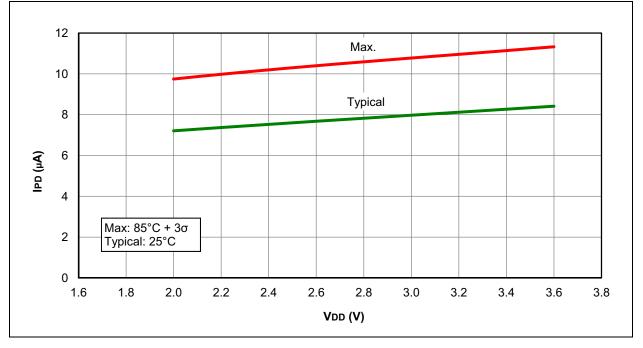
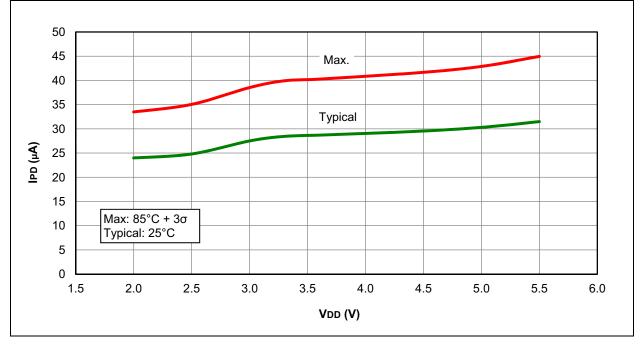




FIGURE 31-35: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16LF1938/9 ONLY 14 Max. 12 10 Typical 8 (Pu (JuA) 6 4 Max: 85°C + 3σ 2 Typical: 25°C 0 2.0 1.6 1.8 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)



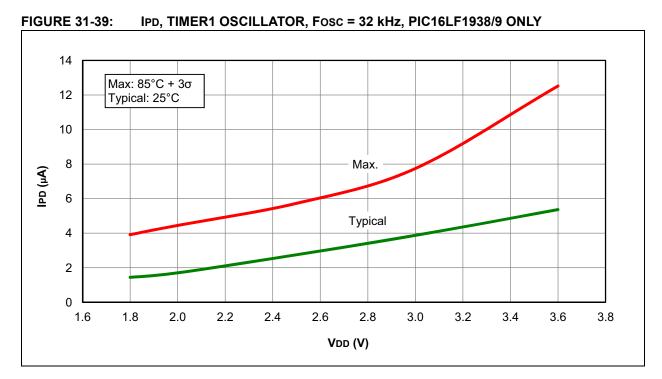
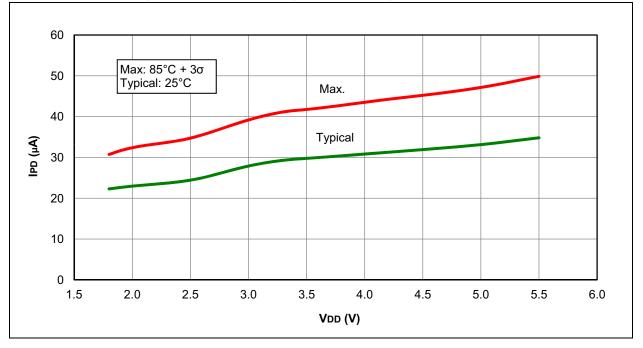
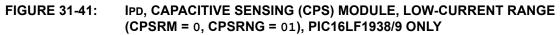




FIGURE 31-40: IPD, TIMER1 OSCILLATOR, Fosc = 32 kHz, PIC16F1938/9 ONLY

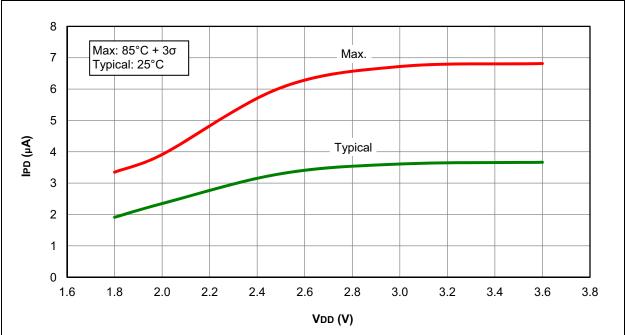


FIGURE 31-42: IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE (CPSRM = 0, CPSRNG = 01), PIC16F1938/9 ONLY

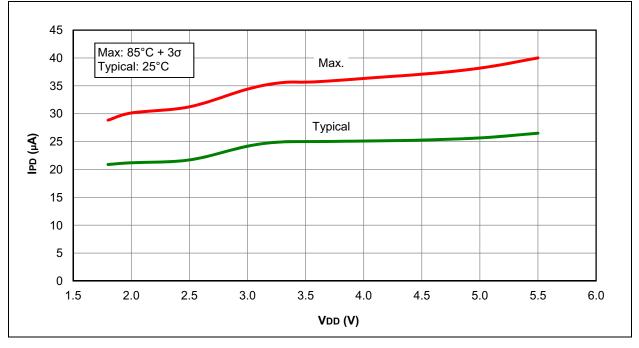


FIGURE 31-43: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE (CPSRM = 0, CPSRNG = 10), PIC16LF1938/9 ONLY

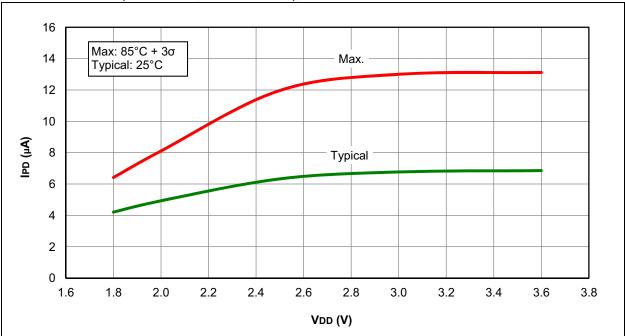
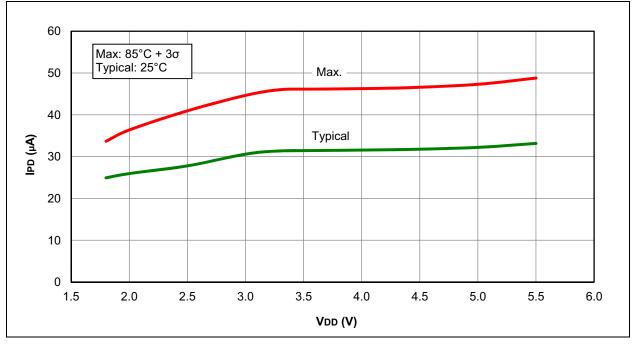
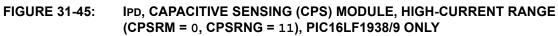




FIGURE 31-44: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE (CPSRM = 0, CPSRNG = 10), PIC16F1938/9 ONLY

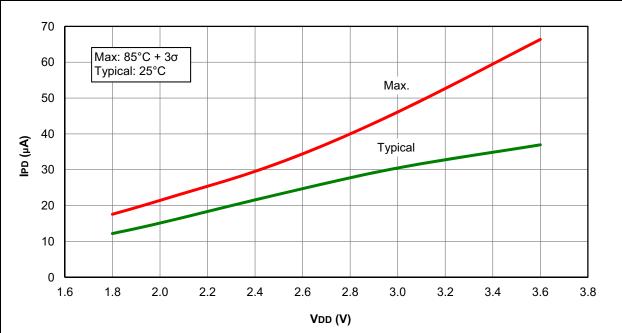
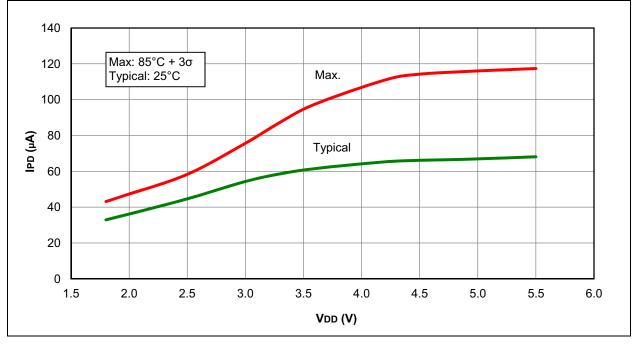
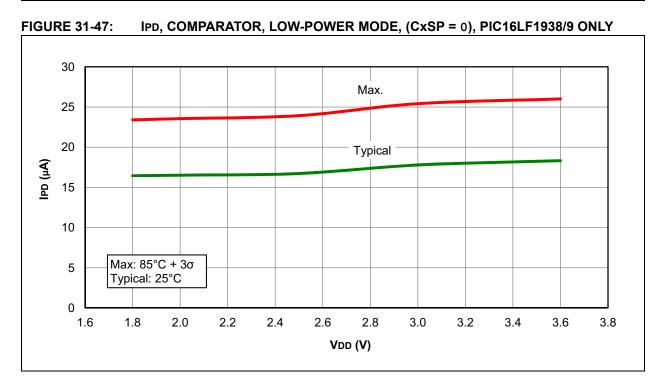




FIGURE 31-46: IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE (CPSRM = 0, CPSRNG = 11), PIC16F1938/9 ONLY

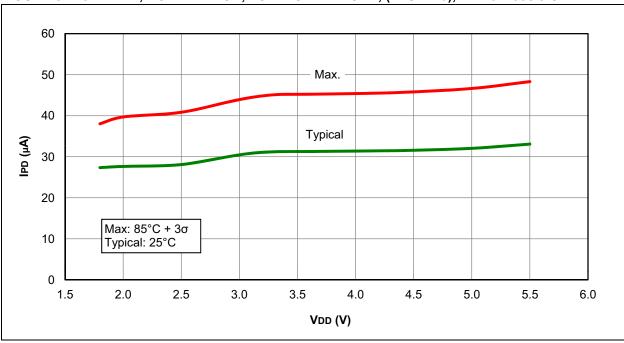


FIGURE 31-48: IPD, COMPARATOR, LOW-POWER MODE, (CxSP = 0), PIC16F1938/9 ONLY

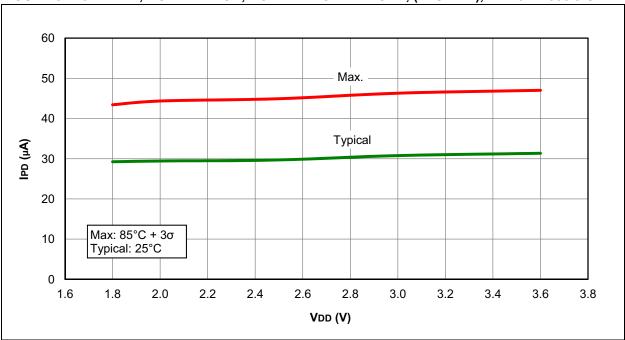


FIGURE 31-50: IPD, COMPARATOR, NORMAL-POWER MODE, (CxSP = 1), PIC16F1938/9 ONLY

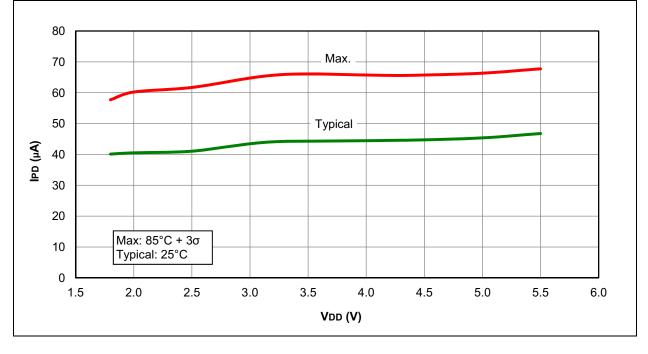
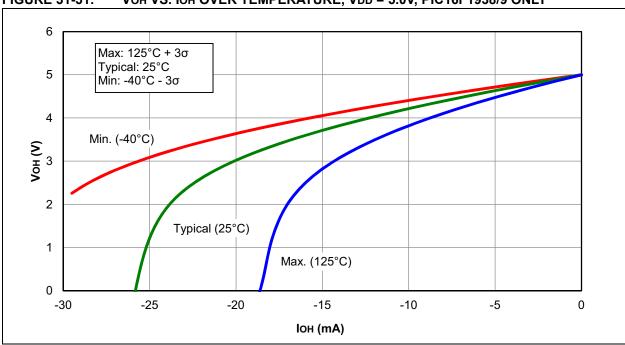
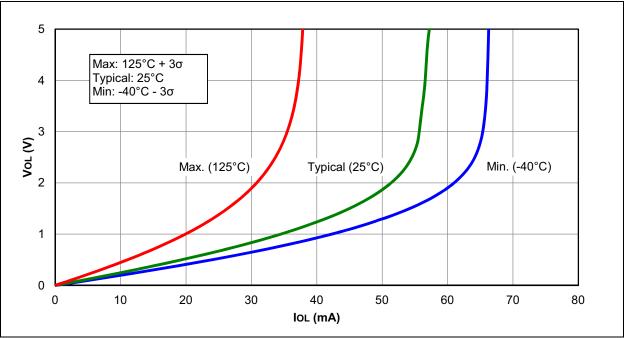
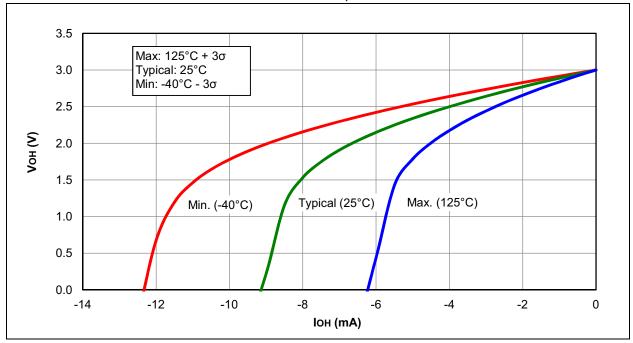
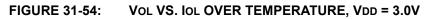
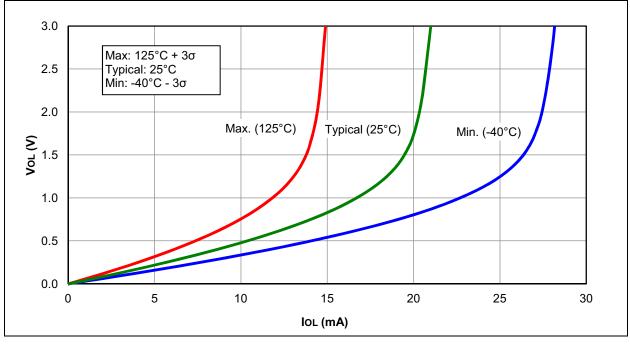
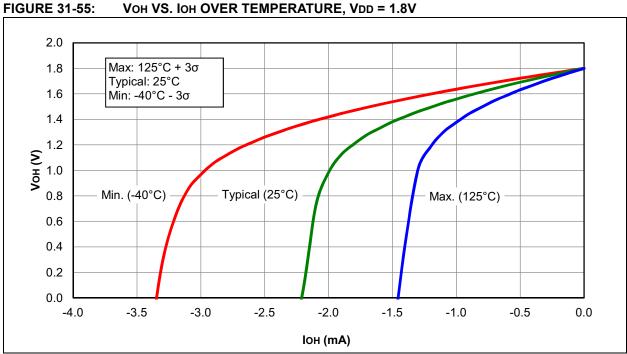


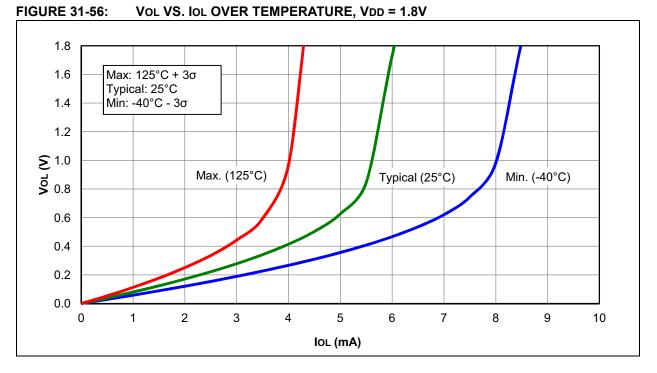
FIGURE 31-49: IPD, COMPARATOR, NORMAL-POWER MODE, (CxSP = 1), PIC16LF1938/9 ONLY

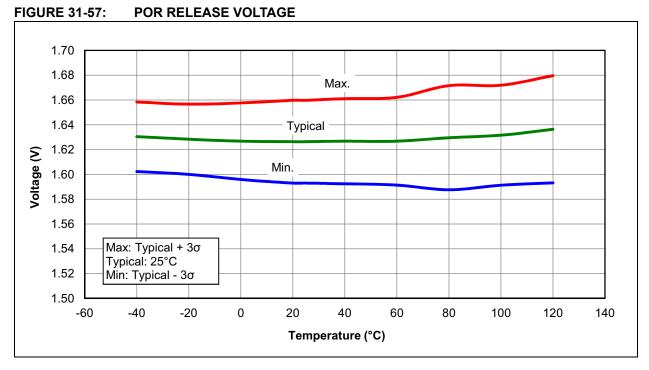




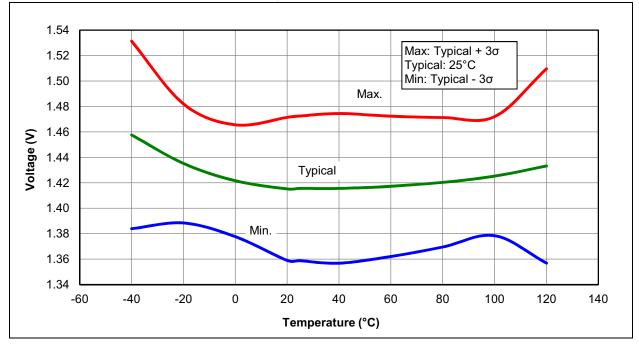

FIGURE 31-51: VOH VS. IOH OVER TEMPERATURE, VDD = 5.0V, PIC16F1938/9 ONLY

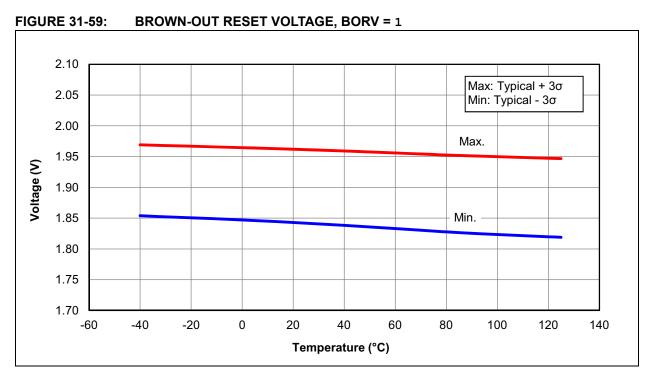




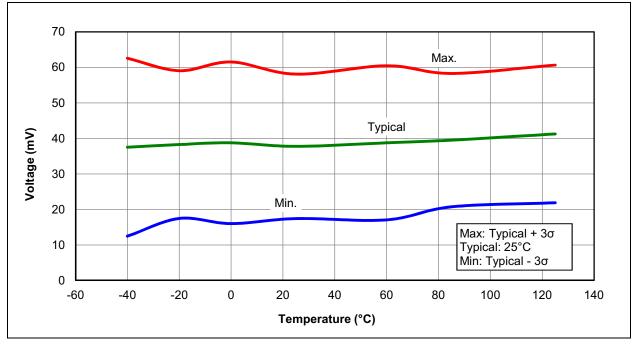


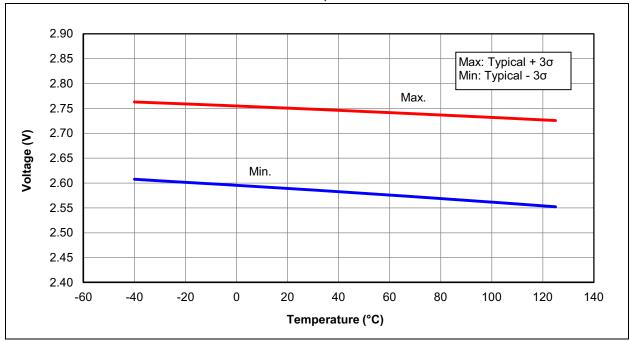


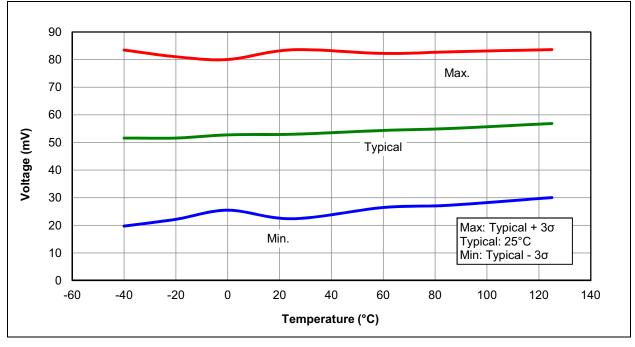


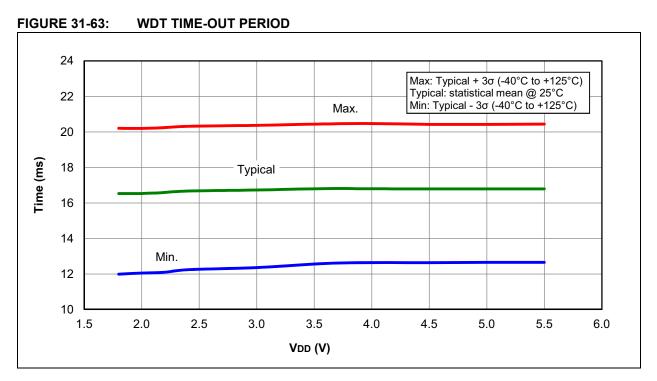


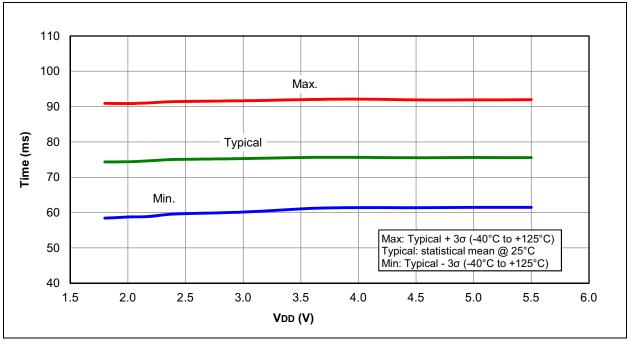
 $\ensuremath{\textcircled{}}$ © 2011-2021 Microchip Technology Inc. and its subsidiaries











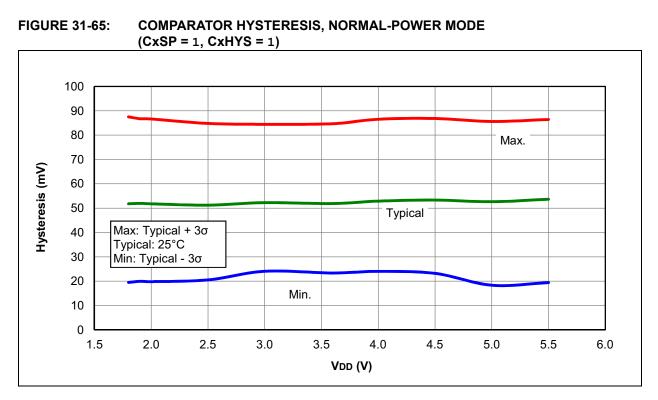
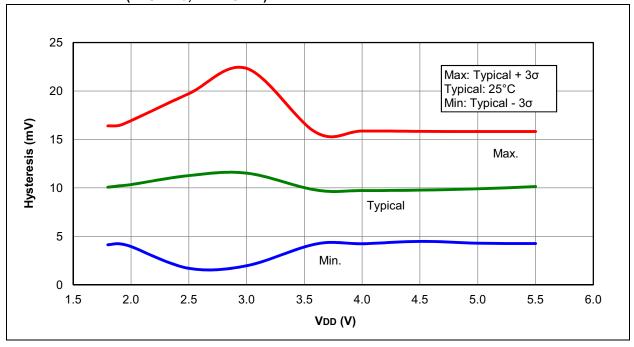



FIGURE 31-66: COMPARATOR HYSTERESIS, LOW-POWER MODE (CxSP = 0, CxHYS = 1)

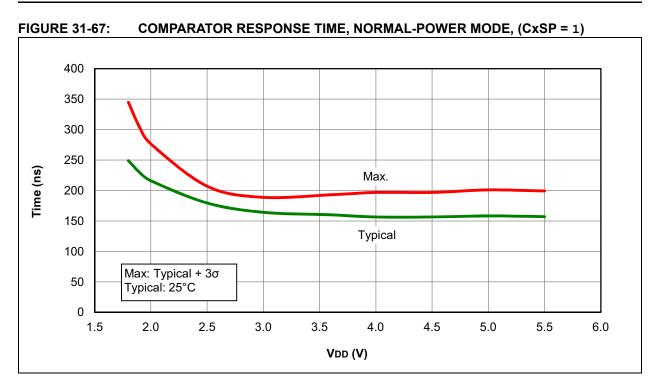
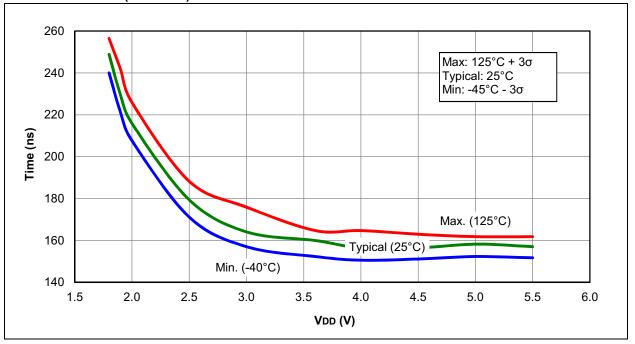
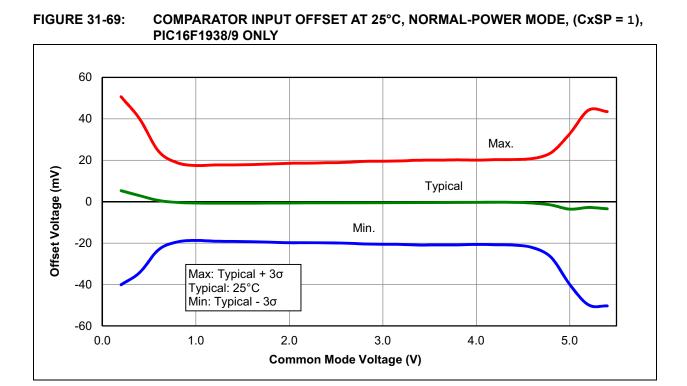
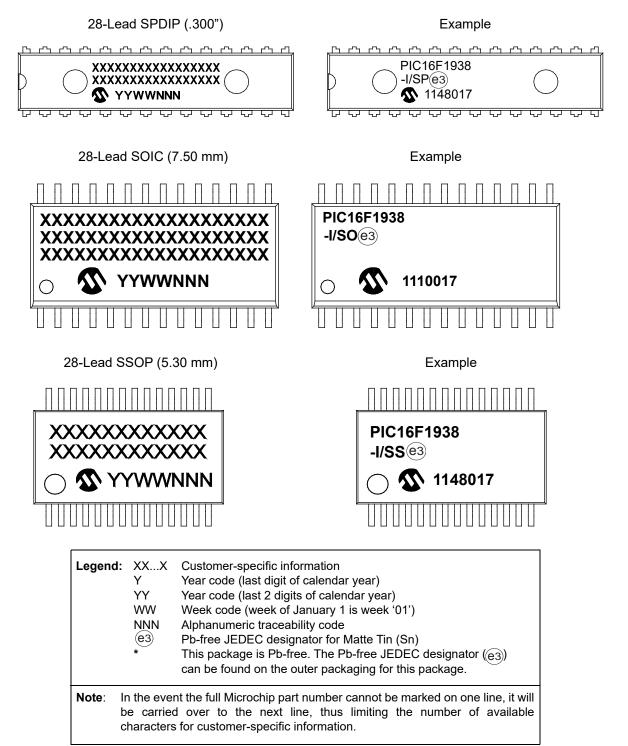




FIGURE 31-68: COMPARATOR RESPONSE TIME OVER TEMPERATURE, NORMAL-POWER MODE (CxSP = 1)

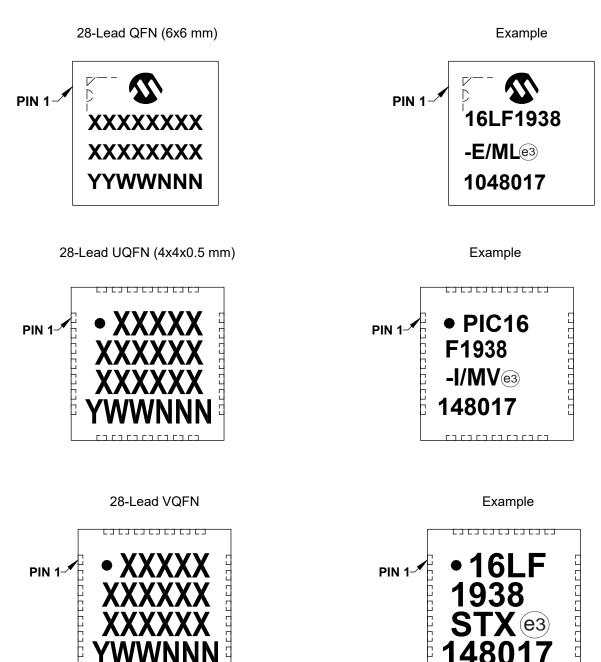
32.0 DEVELOPMENT SUPPORT

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB[®] X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

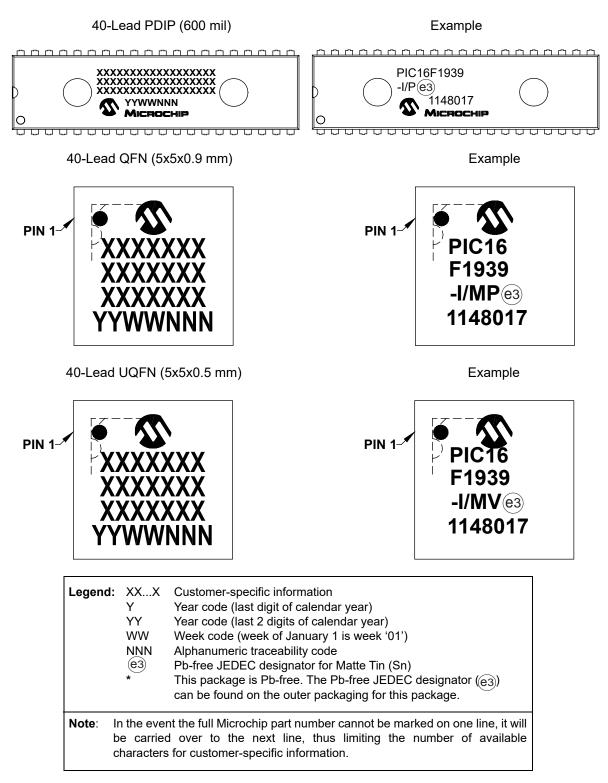

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as $PIC^{@}$ MCUs, $AVR^{@}$ MCUs, SAM MCUs and $dsPIC^{@}$ DSCs. MPLAB X tools are compatible with Windows[®], Linux[®] and Mac[®] operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

https://www.microchip.com/development-tools/

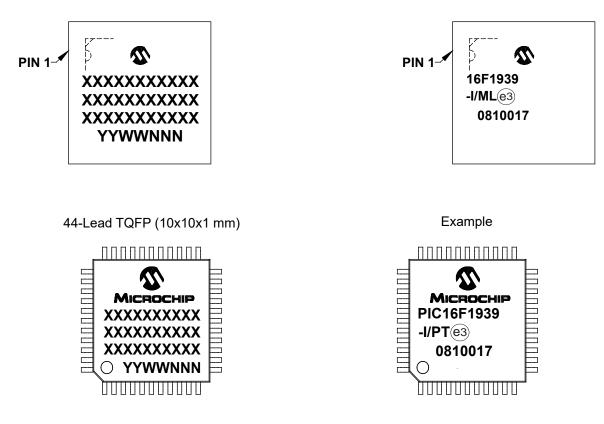

33.0 PACKAGING INFORMATION

33.1 Package Marking Information


* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Continued)

7 6 7 6 7 6 7


Package Marking Information (Continued)

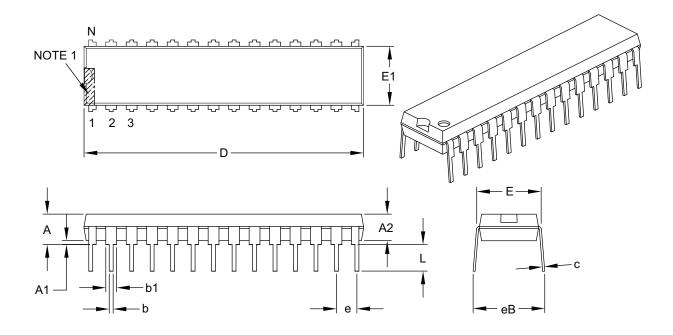
* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Continued)

44-Lead QFN (8x8x0.9 mm)

	Legend:	* XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.			
Î	Note : In the event the full Microchip part number cannot be marked on one line, be carried over to the next line, thus limiting the number of avai characters for customer-specific information.					

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.


Example

33.2 Package Details

The following sections give the technical details of the packages.

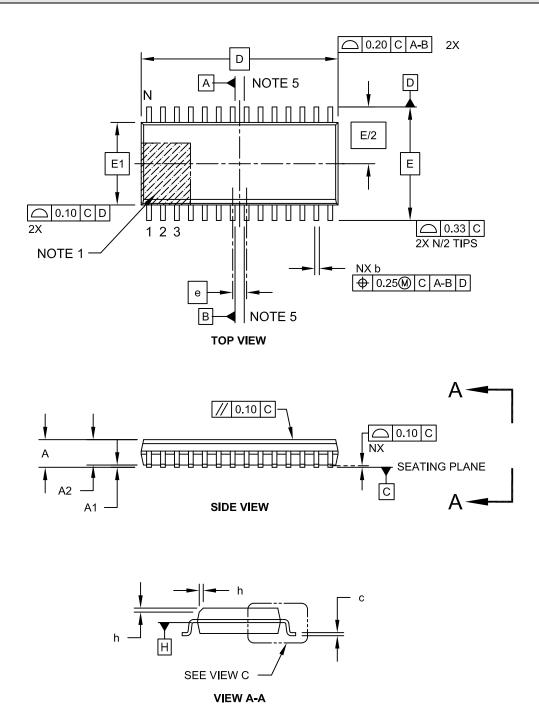
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Di	mension Limits	MIN	NOM	MAX
Number of Pins			28	
Pitch e		.100 BSC		
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	_	.430

Notes:

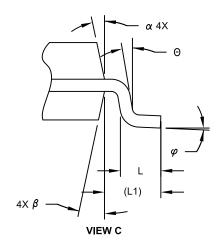
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

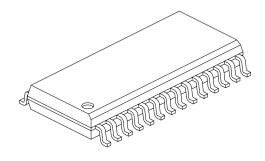

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension L		MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

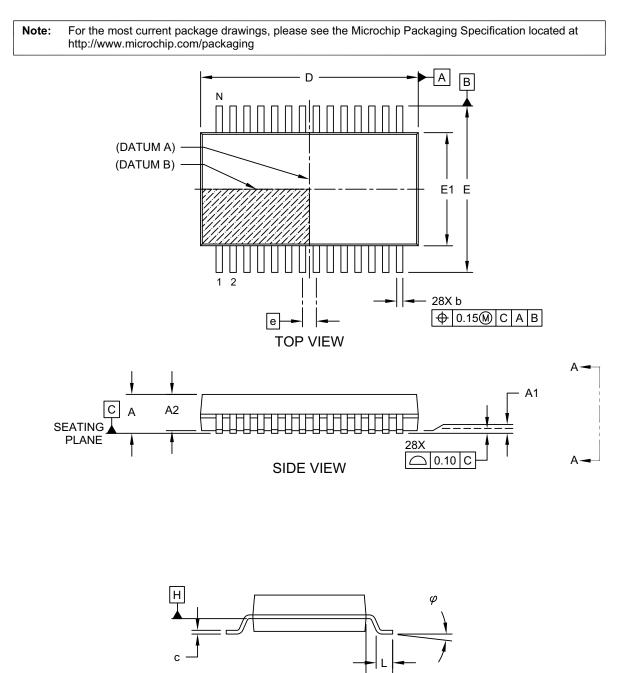
- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

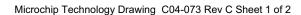
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN


Units		MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	ct Pitch E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

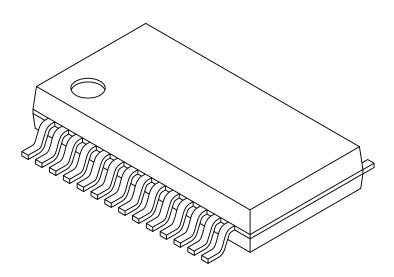
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]



(L1)

VIEW A-A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

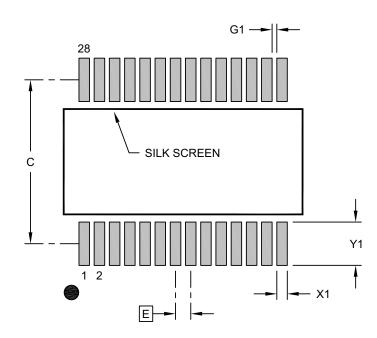
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		0.65 BSC			
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

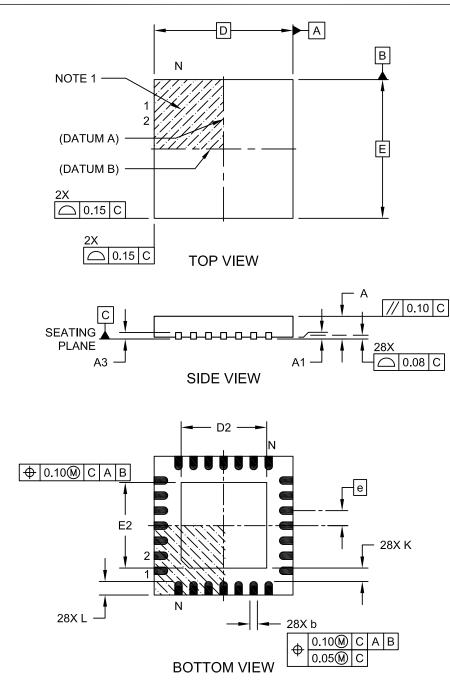
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch E			0.65 BSC	
Contact Pad Spacing	С		7.00	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.85
Contact Pad to Center Pad (X26)	G1	0.20		

Notes:

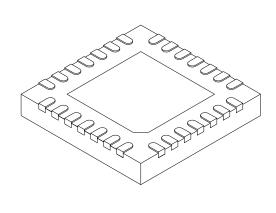
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

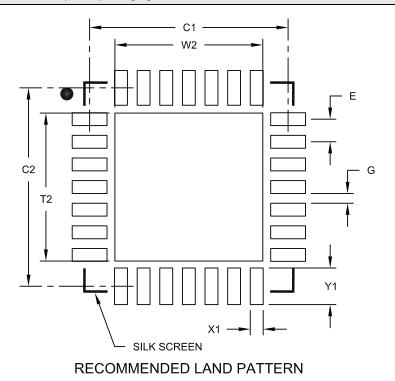
	Units	М	LLIMETERS	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch			0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

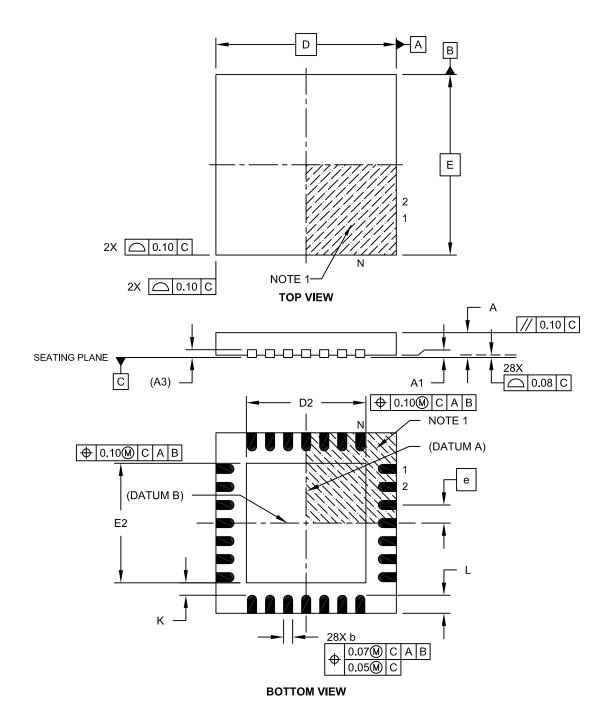
Microchip Technology Drawing C04-105C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

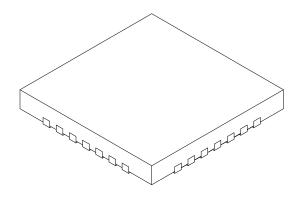
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

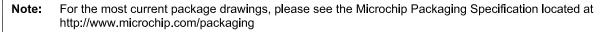
28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

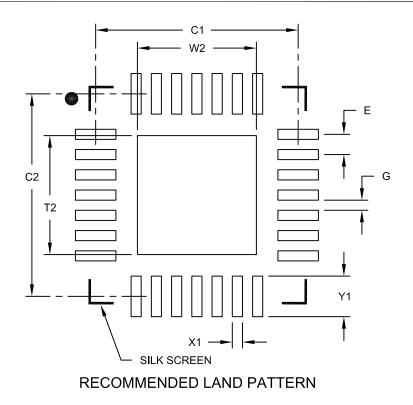

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


· · · · · · · · · · · · · · · · · · ·						
	Units			s		
Dimensior	Dimension Limits		NOM	MAX		
Number of Pins	N		28			
Pitch	е		0.40 BSC			
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.55	2.65	2.75		
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.55	2.65	2.75		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		


Notes:

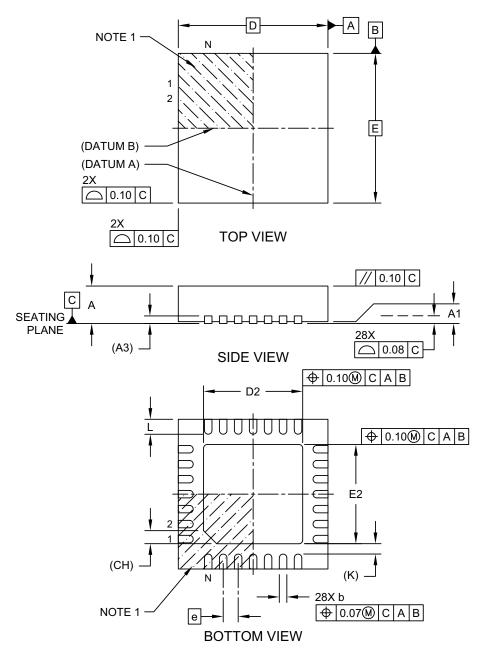
- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2 Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

Units		MILLIMETERS			
		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	Contact Pitch E		0.40 BSC		
Optional Center Pad Width	W2			2.35	
Optional Center Pad Length	T2			2.35	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

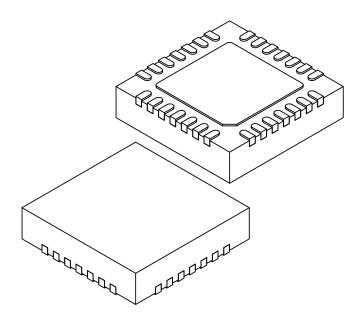

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4x1.0 mm Body [VQFN] With 2.65x2.65 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-456 Rev C Sheet 1 of 2

Note: Custom package option requires Microchip approval and a minimum order quantity.

28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4x1.0 mm Body [VQFN] With 2.65x2.65 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Li		MIN	NOM	MAX	
Number of Terminals	Ν	28			
Pitch	е	0.40 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.203 REF			
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.55	2.65	2.75	
Overall Width	Е	4.00 BSC			
Exposed Pad Width	E2	2.55	2.65	2.75	
Exposed Pad Corner Chamfer	СН	0.35 REF			
Terminal Width	b	0.15	0.20	0.25	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.275 REF			

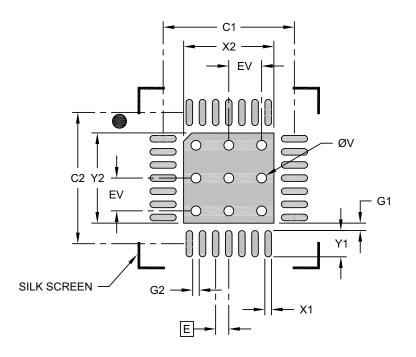
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-456 Rev C Sheet 2 of 2

Note: Custom package option requires Microchip approval and a minimum order quantity.

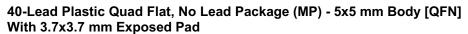
28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4x1.0 mm Body [VQFN] With 2.65x2.65 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

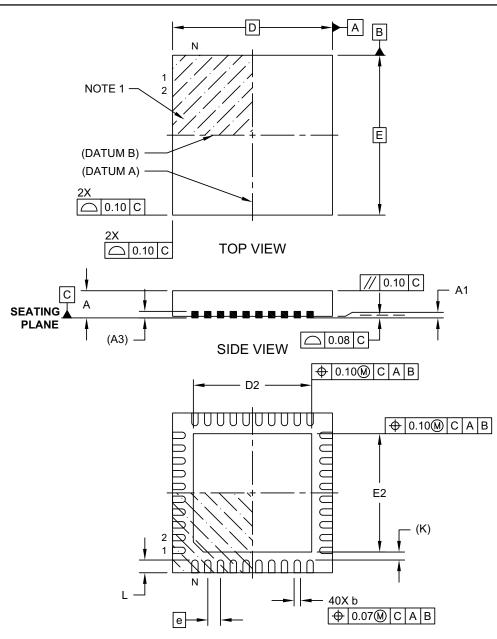
RECOMMENDED LAND PATTERN

	Ν	ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Contact Pitch E		0.40 BSC	
Optional Center Pad Width	X2			2.75
Optional Center Pad Length	Y2			2.75
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Contact Pad to Center Pad (X28)	G1	0.23		
Contact Pad to Contact Pad (X24)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

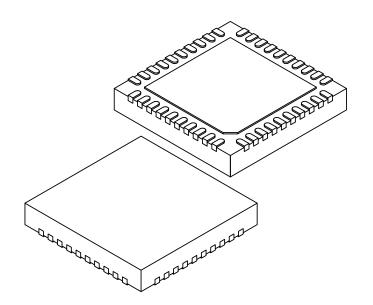

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2456 Rev C

Note: Custom package option requires Microchip approval and a minimum order quantity.


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-047-MP Rev C Sheet 1 of 2

40-Lead Plastic Quad Flat, No Lead Package (MP) - 5x5 mm Body [QFN] With 3.7x3.7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

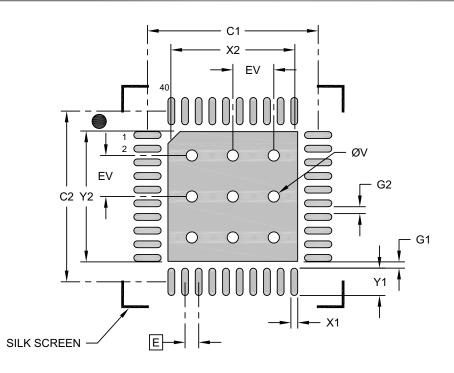
Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		40	
Pitch	е		0.40 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	5.00 BSC		
Exposed Pad Width	E2	3.60 3.70 3.80		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.60	3.70	3.80
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.25 REF		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-047-MP Rev B Sheet 2 of 2

40-Lead Plastic Quad Flat, No Lead Package (MP) - 5x5 mm Body [QFN] With 3.7x3.7 mm Exposed Pad

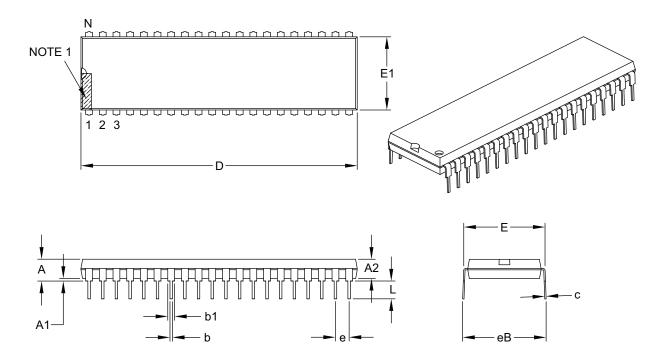
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	/ILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	X2			3.80
Optional Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X40)	X1			0.20
Contact Pad Length (X40)	Y1			0.80
Contact Pad to Center Pad (X40)	G1	0.20		
Contact Pad to Contact Pad (X36)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2047-MP Rev C

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

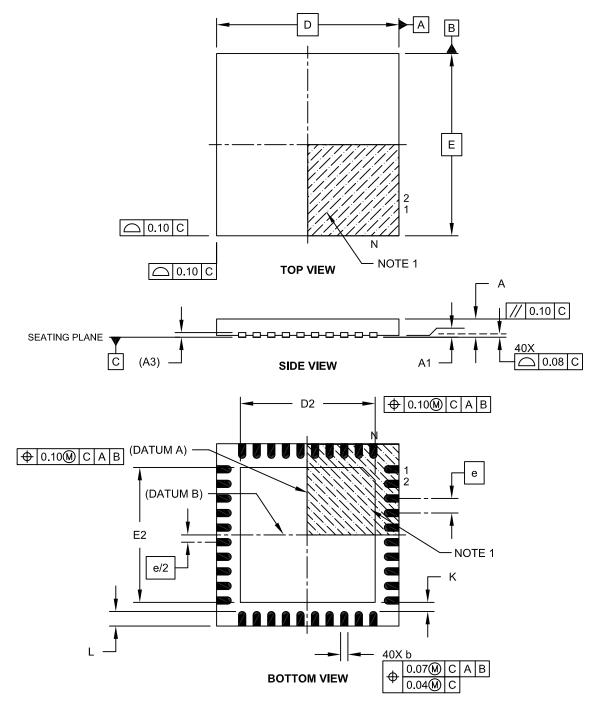
	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		40	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	_	_	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

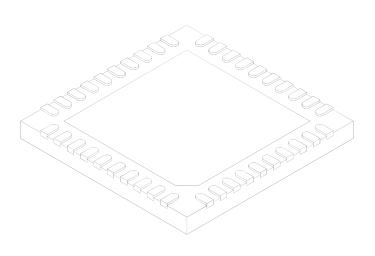
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

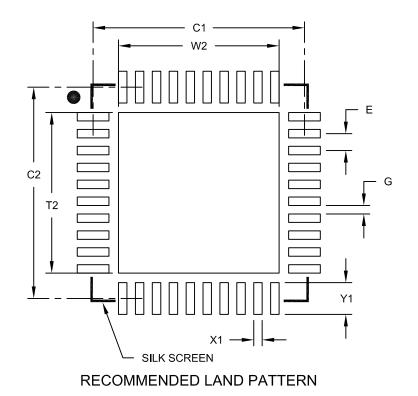

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		40		
Pitch	е		0.40 BSC		
Overall Height	А	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60 3.70 3.80			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

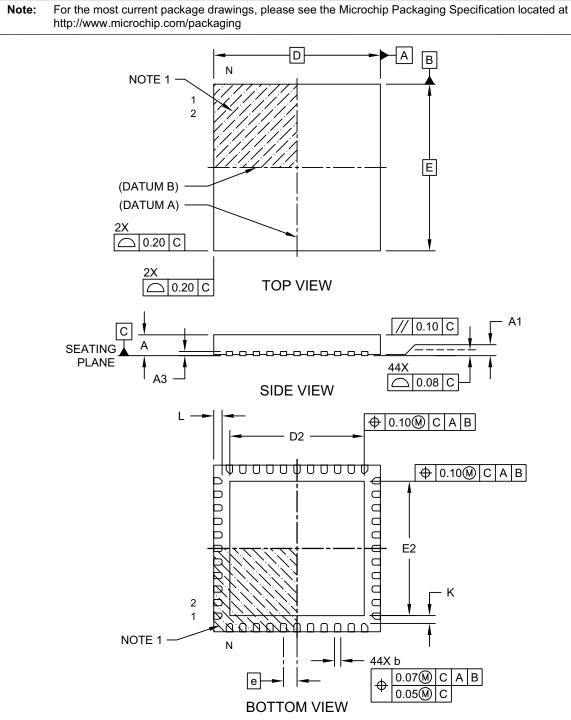
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER	S
Dimensior	ı Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	W2			3.80
Optional Center Pad Length	T2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X40)	X1			0.20
Contact Pad Length (X40)	Y1			0.75

G

0.20

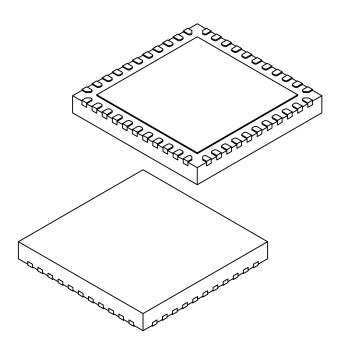
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B

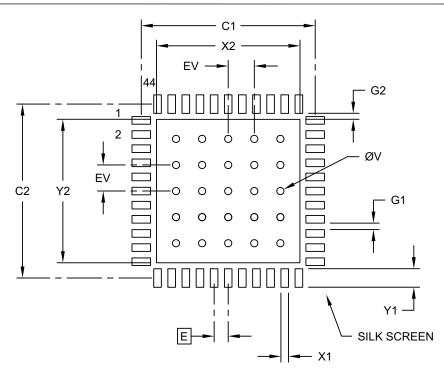

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	Е	8.00 BSC		
Exposed Pad Width	E2	6.25 6.45 6.60		
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

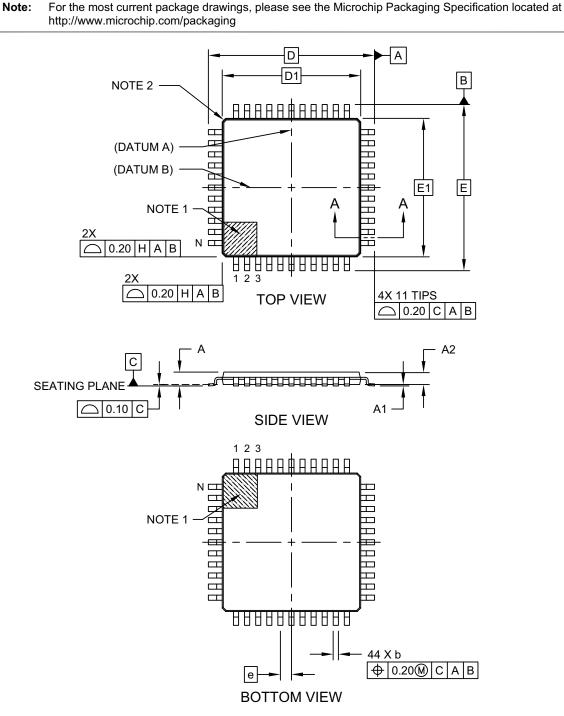
Microchip Technology Drawing C04-103D Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		Ν	ILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

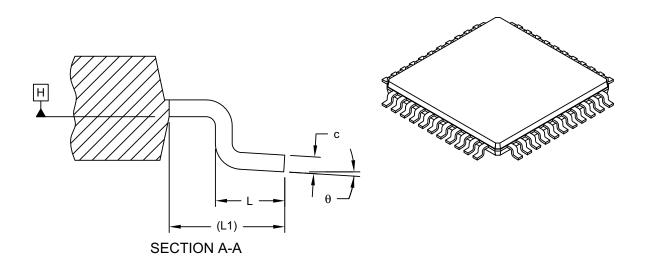

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C



44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

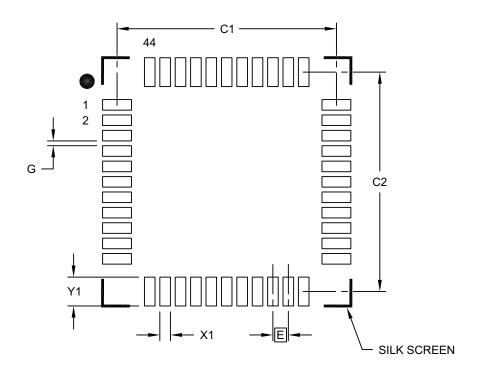
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		N	IILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	Е	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1		10.00 BSC	
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		Ν	IILLIMETER	S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision E (11/2021)

Added the 40-lead QFN package. Other minor corrections.

Revision D (08/2017)

Updated data sheet to add 28-pin VQFN package.

Updated Examples 3-2 and 15-1; Figures 5-7, 6-1, 9-1 and 23-2; Register 24-4; Sections 15.1.2, 15.2.6, 23.3, 23.4.3 and 24.6; Tables 24-4 and 30-6.

Added Section 5.3.5: Clock Switching Before Sleep.

Revision C (06/2013)

Revised Data Sheet to Final status.

Revision B (02/2012)

Added new Family Types table; Updated Register 4-3; Added DC and AC Characteristics Graphs; Updated the Electrical Specifications section; Updated the Packaging Information section; Other minor corrections.

Revision A (05/2011)

Original release of this data sheet.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{8}}$ devices to the PIC16(L)F193X family of devices.

B.1 PIC16F917 to PIC16(L)F193X

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F917	PIC16F1938
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	512
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
AUSART/EUSART	1/0	0/1
Extended WDT	Y	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	30 kHz - 8 MHz	500 kHz - 32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/3
Enhanced PIC16 CPU	N	Y
MSSP/SSP	0/1	1/0
LCD	Y	Y

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	[X] ⁽¹⁾ - X /XX XXX T I I I Tape and Reel Temperature Package Pattern Option Range	 Examples: a) PIC16LF1938 - I/P = Industrial temp., Plastic DIP package, low-voltage VDD limits. b) PIC16F1939 - I/PT = Industrial temp., TQFP package, standard VDD limits.
Device:	PIC16F1938, PIC16LF1938 PIC16F1939, PIC16LF1939	 c) PIC16F1939 - E/ML = Extended temp., QFN package, standard VDD limits.
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	$ \begin{array}{rcl} I & = & -40^{\circ} C \text{ to } +85^{\circ} C \\ E & = & -40^{\circ} C \text{ to } +125^{\circ} C \end{array} $	
Package:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. 2: Custom package option requires Microchip approval and a minimum order quantity.

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2011-2021, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-5224-9298-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 63-2-634-9065

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Tel: 886-2-2508-8600

Tel: 39-049-7625286

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Malaysia - Kuala Lumpur

Malaysia - Penang

Philippines - Manila

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Taiwan - Taipei

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

China - Zhuhai