

# **DSC612**

# **Two-Output Low Power MEMS Clock Generator**

#### **Features**

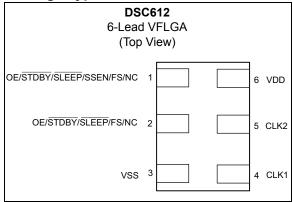
- MEMS-Based Clock Generator Eliminates the Need for External Crystal or Reference Clock
- Two LVCMOS Output Clocks: 2 kHz to 100 MHz
- Low Power Consumption: ~5 mA (Both Outputs Active)
- · Wide Supply Voltage Range: 1.71V to 3.63V
- · Ultra-Small Package Sizes:
  - 1.6 mm x 1.2 mm
  - 2.0 mm x 1.6 mm
  - 2.5 mm x 2.0 mm
- High Frequency Stability: ±20 ppm, ±25 ppm, ±50 ppm
- · Wide Temperature Range:
  - Automotive: -40°C to +125°C
  - Ext. Industrial: -40°C to +105°C
  - Industrial: -40°C to +85°C
  - Commercial: -20°C to +70°C
- · Excellent Shock and Vibration Immunity:
  - Shock: Qualified to MIL-STD-883E Method 2002.3. Test Condition G (30,000g)
  - Vibration: Qualified to MIL-STD-883E Method 2007.2, Test Condition C (70g)
- · High Reliability
- · Lead-Free and RoHS-Compliant
- · Automotive Option AEC-Q100 Available

#### **Applications**

- Low Power/Portable Applications: IoT, Embedded/Smart Devices
- Consumer: Home Healthcare, Fitness Devices, Home Automation
- Industrial: Building/Factory Automation, Surveillance Cameras

#### **General Description**

The DSC612 is a MEMS low power, ultra-small footprint, crystal-less family of clock generators. The DSC612 family is factory-configurable and generates up to two independent LVCMOS outputs. Each output can be configured to generate any frequency from 2 kHz to 100 MHz.


The DSC612 implements Microchip's proven PureSilicon™ MEMS technology to provide low jitter and high stability across a wide range of supply voltages and temperatures. By eliminating the external quartz crystal, Microchip's crystal-less™ clock generators significantly enhance reliability and accelerate product development.

The DSC612 has two control inputs that can be configured to function as output enable/disable, standby, sleep, spread spectrum enable, and frequency select. The DSC612 is available in space saving 6-pin, 1.6 mm x 1.2 mm, 2.0 mm x 1.6 mm, and 2.5 mm x 2.0 mm VFLGA plastic packages.

The DSC612 spread spectrum function includes both center and down spreading, and is explained further in the Spread Spectrum section.

The DSC612 is a highly configurable device and is factory programmed to meet the customer's needs. Microchip's ClockWorks Configurator must be used to choose the necessary options, create the final part number, data sheet, and order samples.

#### Package Type



# **Functional Block Diagram**



#### 1.0 ELECTRICAL CHARACTERISTICS

#### **Absolute Maximum Ratings †**

| Supply Voltage       |  |
|----------------------|--|
| Input Voltage        |  |
| ESD Protection (HBM) |  |
| ESD Protection (MM)  |  |
| ESD Protection (CDM) |  |

**† Notice:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

**Electrical Characteristics:**  $V_{DD}$  = 1.8V ±5% to 3.3V ±10%;  $T_A$  = -40°C to +125°C, unless noted.

| Parameter                                      | Symbol             | Min.                     | Тур. | Max.                     | Units | Conditions                                                                    |
|------------------------------------------------|--------------------|--------------------------|------|--------------------------|-------|-------------------------------------------------------------------------------|
| Supply Voltage                                 | $V_{DD}$           | 1.71                     | _    | 3.63                     | V     | Note 1                                                                        |
| Active Supply Current                          | I <sub>DD</sub>    |                          | 5    | 6                        | mA    | $f_{CLK1}$ = 27 MHz, $f_{CLK2}$ = 25 MHz, $V_{DD}$ = 1.8V, No Load            |
| Active Supply Current (Sleep Mode, 1 PLL Off)  | I <sub>DDSL</sub>  | l                        | 3    | _                        | mA    | $CLK2 = SLEEP, f_{CLK1} = 25 MHz,$<br>$V_{DD} = 1.8V, No Load$                |
| Active Supply Current (32.768 kHz Output Only) | I <sub>DD32k</sub> | l                        | 1.4  | _                        | mA    | CLK2 = SLEEP, f <sub>CLK1</sub> = 32.768 kHz, V <sub>DD</sub> = 1.8V, No Load |
| Standby Supply Current,                        | 1                  |                          | 1.0  | _                        | μA    | $V_{DD} = 1.8V/2.5V$                                                          |
| Note 2                                         | ISTDBY             |                          | 1.5  | _                        | μΛ    | $V_{DD} = 3.3V$                                                               |
|                                                |                    |                          |      | ±20                      |       |                                                                               |
| Frequency Stability, Note 3                    | Δf                 | _                        | _    | ±25                      | ppm   | All temperature ranges                                                        |
|                                                |                    | _                        | _    | ±50                      |       |                                                                               |
| Aging                                          | Δf                 |                          |      | ±5                       | nnm   | 1st year @ +25°C                                                              |
| Aging                                          | Ді                 | _                        | _    | ±1                       | ppm   | Per year after the first year                                                 |
| Startup Time                                   | t <sub>SU</sub>    | _                        | _    | 1.5                      | ms    | From 90% V <sub>DD</sub> to valid clock output, T = +25°C                     |
| Input Logic Lovels Note 4                      | V <sub>IH</sub>    | 0.7 x<br>V <sub>DD</sub> | _    | _                        | V     | Input logic high                                                              |
| Input Logic Levels, Note 4                     | V <sub>IL</sub>    |                          |      | 0.3 x<br>V <sub>DD</sub> | V     | Input logic low                                                               |
| Output Disable Time                            | t <sub>DA</sub>    |                          |      | 200 + 2<br>Periods       | ns    | Note 5                                                                        |
| Output Enable Time                             | t <sub>EN</sub>    | _                        | 1.0  | _                        | μs    | Note 6                                                                        |
| Enable Pull-Up Resistor                        | _                  |                          | 300  | _                        | kΩ    | Note 7                                                                        |
|                                                | V <sub>OHY</sub>   | 0.8 x<br>V <sub>DD</sub> | _    | _                        | V     | I = 6 mA (high drive) or I = 3 mA (standard drive)                            |
| Output Logic Levels                            | V <sub>OLY</sub>   | _                        | _    | 0.2 x<br>V <sub>DD</sub> | V     | I = -6 mA (high drive) or I = -3 mA (standard drive)                          |

# **DSC612**

TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

**Electrical Characteristics:**  $V_{DD}$  = 1.8V ±5% to 3.3V ±10%;  $T_A$  = -40°C to +125°C, unless noted.

| Parameter                    | Symbol                             | Min.  | Тур. | Max. | Units | Conditions                                                                        |
|------------------------------|------------------------------------|-------|------|------|-------|-----------------------------------------------------------------------------------|
|                              | 4 /4                               | _     | 1.2  | 2.0  | ns    | Standard drive 20% - 80% C <sub>L</sub> = 10 pF, V <sub>DD</sub> = 1.8V           |
| Output Transition Time, Rise | t <sub>RY1</sub> /t <sub>FY1</sub> | _     | 0.6  | 1.2  | ns    | Standard drive 20% - 80% C <sub>L</sub> = 10 pF, V <sub>DD</sub> = 2.5V/3.3V      |
| Time/Fall Time               | + /+                               |       | 1.0  | 1.5  | ns    | High drive 20% - 80% $C_L$ = 15 pF, $V_{DD}$ = 1.8 $V$                            |
|                              | t <sub>RY2</sub> /t <sub>FY2</sub> |       | 0.5  | 1.0  | ns    | High drive 20% - 80% $C_L$ = 15 pF, $V_{DD}$ = 2.5V/3.3V                          |
| Frequency                    | f0                                 | 0.002 |      | 100  | MHz   | _                                                                                 |
| Output Duty Cycle            | SYM                                | 45    | _    | 55   | %     | _                                                                                 |
|                              | J <sub>PER</sub>                   |       | 17   |      |       | f <sub>CLK1</sub> = 24 MHz, f <sub>CLK2</sub> = 27 MHz,<br>V <sub>DD</sub> = 1.8V |
| Period Jitter, RMS           |                                    |       | 14   |      | ps    | $f_{CLK1}$ = 24 MHz, $f_{CLK2}$ = 27 MHz, $V_{DD}$ = 3.3V                         |
|                              |                                    |       | 9    |      |       | $f_{CLK1}$ = 27 MHz, $f_{CLK2}$ = 27 MHz or 32.768 kHz, $V_{DD}$ = 3.3V           |
|                              |                                    | I     | 120  |      |       | $f_{CLK1}$ = 24 MHz, $f_{CLK2}$ = 27 MHz, $V_{DD}$ = 1.8V                         |
| Period Jitter, Peak-to-Peak  | J <sub>PER</sub>                   |       | 100  | _    | ps    | $f_{CLK1}$ = 24 MHz, $f_{CLK2}$ = 27 MHz,<br>$V_{DD}$ = 3.3V                      |
|                              |                                    |       | 80   | _    |       | $f_{CLK1}$ = 27 MHz, $f_{CLK2}$ = 27 MHz or 32.768 kHz, $V_{DD}$ = 3.3V           |
| Cycle-to-Cycle Jitter (peak) | J <sub>Cy-Cy</sub>                 | 1     | 105  |      | ps    | $f_{CLK1}$ = 24 MHz, $f_{CLK2}$ = 27 MHz,<br>$V_{DD}$ = 1.8V                      |
|                              |                                    | _     | 90   |      |       | $f_{CLK1}$ = 24 MHz, $f_{CLK2}$ = 27 MHz,<br>$V_{DD}$ = 3.3V                      |
|                              |                                    | _     | 70   | _    |       | $f_{CLK1}$ = 27 MHz, $f_{CLK2}$ = 27 MHz or 32.768 kHz, $V_{DD}$ = 3.3V           |

Note 1:  $V_{DD}$  pin should be filtered with a 0.1  $\mu F$  capacitor.

- 2: Excludes input pull-up current.
- 3: Includes frequency variations due to initial tolerance, temperature, and power supply voltage.
- 4: Input waveform must be monotonic with rise/fall time < 10 ms.
- **5:** Output disable time takes up to two Periods of the output waveform, plus 200 ns.
- **6:** For parts configured with OE, not Standby.
- 7: Output is enabled if pad is floated or not connected.

# **TEMPERATURE SPECIFICATIONS (Note 1)**

| Parameters                     | Sym.           | Min. | Тур. | Max. | Units | Conditions     |
|--------------------------------|----------------|------|------|------|-------|----------------|
| Temperature Ranges             |                |      |      |      |       |                |
| Junction Operating Temperature | TJ             | _    | _    | +150 | °C    | _              |
| Storage Temperature Range      | T <sub>S</sub> | -55  | _    | +150 | °C    | _              |
| Lead Temperature               | _              | _    | +260 | _    | °C    | Soldering, 40s |

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T<sub>A</sub>, T<sub>J</sub>, θ<sub>JA</sub>). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

#### 2.0 PIN DESCRIPTIONS

The DSC612 is a highly configurable device and can be factory programmed in many different ways to meet the customer's needs. Microchip's ClockWorks Configurator <a href="http://clockworks.microchip.com/Timing/">http://clockworks.microchip.com/Timing/</a> must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: DSC612 PIN FUNCTION TABLE

| Pin Number | Pin Name | Description                                                                                 |
|------------|----------|---------------------------------------------------------------------------------------------|
|            | OE       | Output Enable: H = Active, L = Disabled (High Impedance).                                   |
|            | STDBY    | Standby: H = Device is active, L = Device is in standby (Low Power Mode).                   |
|            | FS       | Frequency Select: H = Output Frequency 1, L = Output Frequency 2.                           |
| 1          | SLEEP    | Sleep: H= Output Enabled, L= Output and associated PLL Disabled.                            |
|            | SSEN     | Spread Spectrum: H = Enabled, L = Disabled.                                                 |
|            | NC       | Non-functional, do not connect.                                                             |
|            | OE       | Output Enable: H = Active, L = Disabled (High Impedance).                                   |
|            | STDBY    | Standby: H = Device is active, L = Device is in standby (Low Power Mode).                   |
| 2          | FS       | Frequency Select: H = Output Frequency 1, L = Output Frequency 2.                           |
|            | SLEEP    | Sleep: H= Output Enabled, L= Output and associated PLL Disabled                             |
|            | NC       | Non-functional, do not connect.                                                             |
| 3          | VSS      | Ground.                                                                                     |
| 4          | CLK1     | Factory configurable LVCMOS clock output 1: 2 kHz to 100 MHz, standard drive or high drive. |
| 5          | CLK2     | Factory configurable LVCMOS clock output 2: 2 kHz to 100 MHz, standard drive or high drive. |
| 6          | VDD      | Power Supply: 1.71V to 3.63V.                                                               |

An explanation of the different options listed in Table 2-1 follows:

#### 2.1 Pin 1 and Pin 2

These are control pins and each may be configured to fulfill one of six different functions. If not actively driven, a 10 k $\Omega$  pull-up resistor is recommended.

#### 2.1.1 OUTPUT ENABLE (OE)

Both pin 1 and pin 2 may be configured as Output Enable. Either or both outputs may be turned on and off according to the state of the pins.

#### 2.1.2 STANDBY

Either pin 1 or pin 2 (but not both) may be configured as standby. When the pin is low, both outputs will be off and the device will enter a low power mode.

#### 2.1.3 SLEEP

Either pin 1 or pin 2 (but not both) may be configured as sleep. When the pin is low, one phase lock loop (PLL) will shut down, enabling power saving. Any output driven by that PLL will be turned off.

# 2.1.4 SPREAD SPECTRUM ENABLE (SSEN)

Only pin 1 may be configured as SSEN. When the pin is high, the associated output will be spread in frequency. When the pin is low, no spreading will occur.

#### 2.1.5 FREQUENCY SELECT (FS)

Both pin 1 and pin 2 may be configured as FS. Each output may be set to one of two pre-programmed frequencies (four pre-programmed frequencies in total).

#### 2.1.6 NC

Both pin 1 and pin 2 may be configured as NC. In this case, the pins are non-functional and the device is programmed and fixed according to the choices in ClockWorks Configurator.

#### 2.2 Pins 3 through 6

Pins 3 and 6 are the supply terminals,  $V_{SS}$  and  $V_{DD}$  respectively. Pins 4 and 5 are the two clock outputs, CLK1 and CLK2 respectively. CLK1 and CLK2 outputs are programmable to Standard and High Drive strengths settings through ClockWorks Configurator.

#### 3.0 SPREAD SPECTRUM

Spread spectrum is a slow modulation of the clock frequency over time. The PLL inside the MEMS oscillator is modulated with a triangular wave at 33 kHz. With such a slow modulation, the peak spectral energy of both the fundamental and all the harmonics is spread over a wider frequency range. This significantly reduces peak energy density, thus providing an EMI reduction. The triangular wave is chosen because of its flat spectral density.

The DSC612 MEMS oscillator family offers several modulation options: the spreading is either center spread or down spread with respect to the clock frequency. Center spreading ranges from  $\pm 0.25\%$  to  $\pm 2.5\%$ , while down spreading ranges from -0.25% to -3%.

If the clock frequency is 100 MHz and center spreading with  $\pm 1\%$  is chosen, the output clock will range from 99 MHz to 101 MHz. If down spreading with -2% is chosen, the output clock will range from 98 MHz to 100 MHz.

Figure 3-1 and Figure 3-2 show a spectrum example of the DSC612 with a 33.333 MHz clock, modulated with central spread of ±1%.

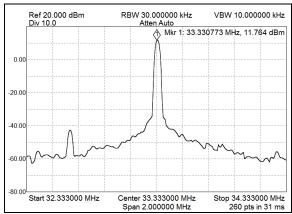



FIGURE 3-1: DSC612 Spectrum at 33.333 MHz with Modulation Turned Off.

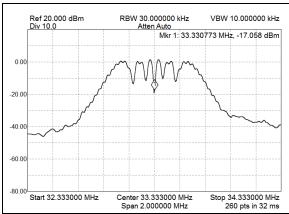



FIGURE 3-2: DSC612 Spectrum at 33.333 MHz with Modulation Turned On.

It is noticeable that the spread spectrum provides a reduction of about 10 dB from the peak power. Such a reduction may also be estimated by the following equation:

#### **EQUATION 3-1:**

EMI Reduction =  $10 \times Log10(|S| \times fc \div RBW)$  Where:

S Peak-to-peak spread percentage (0.01, this example).

fc Carrier frequency (33.333 MHz, this example).

RBW Resolution bandwidth of the spectrum analyzer (30 kHz, this example).

The theoretical calculation for this example provides 10.45 dB, which is consistent with the measurement.

Similarly to the fundamental frequency, all the harmonics are spread and attenuated in similar fashion. Figure 3-3 shows how the DSC612 fundamental at 33.333 MHz and its odd harmonics are attenuated when various types of modulations are selected. For picture clarity, only the center spread options are shown. However, down spread with corresponding percentage provides the same level of harmonic attenuation (e.g. central spread of  $\pm 1\%$  provides the same harmonics attenuation of down spread with -2%).

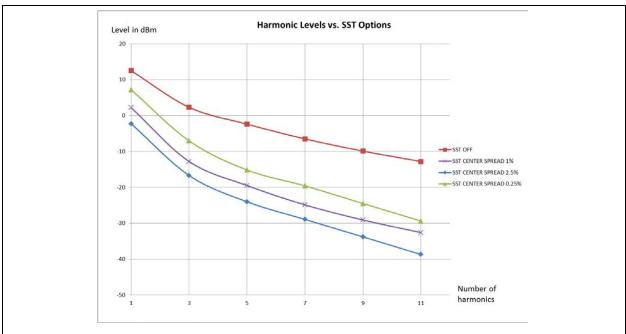



FIGURE 3-3: DSC612 Harmonic Levels with Various Spread Spectrum Options.

Visit Microchip's ClockWorks Configurator to select Spread Spectrum options.

# 4.0 OUTPUT WAVEFORM

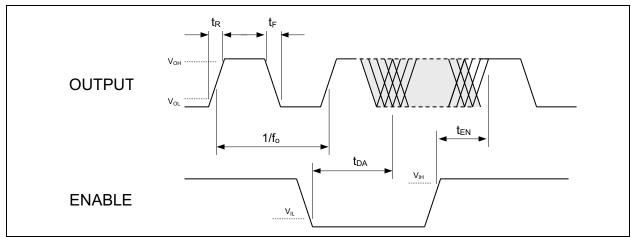



FIGURE 4-1: DSC612 Output Waveform.

#### 5.0 BOARD LAYOUT

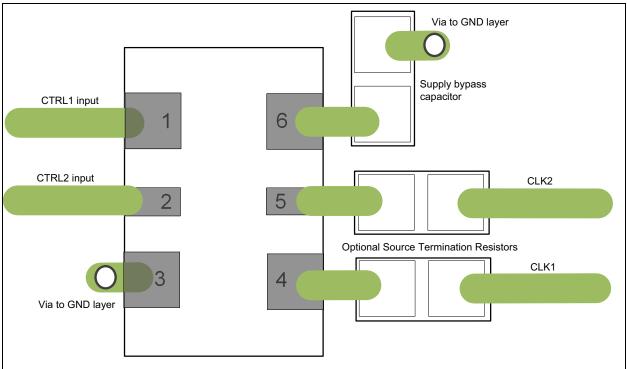



FIGURE 5-1: DSC612 Board Layout.

#### 6.0 SOLDER REFLOW PROFILE

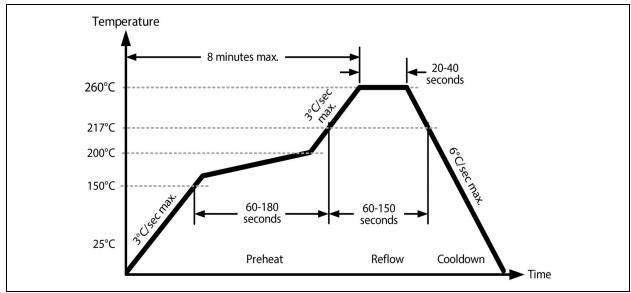



FIGURE 6-1: Solder Reflow Profile.

TABLE 6-1: SOLDER REFLOW

| MSL 1 @ 260°C Refer to JSTD-020C   |                |  |  |  |  |
|------------------------------------|----------------|--|--|--|--|
| Ramp-Up Rate (200°C to Peak Temp.) | 3°C/sec. max.  |  |  |  |  |
| Preheat Time 150°C to 200°C        | 60 to 180 sec. |  |  |  |  |
| Time Maintained above 217°C        | 60 to 150 sec. |  |  |  |  |
| Peak Temperature                   | 255°C to 260°C |  |  |  |  |
| Time within 5°C of Actual Peak     | 20 to 40 sec.  |  |  |  |  |
| Ramp-Down Rate                     | 6°C/sec. max.  |  |  |  |  |
| Time 25°C to Peak Temperature      | 8 minutes max. |  |  |  |  |

#### 7.0 PACKAGING INFORMATION

#### 7.1 Package Marking Information

6-Lead VFLGA\* (2.5mm x 2.0mm)

XXXX DCPYYWW 0SSS

6-Lead VFLGA\* (1.2mm x 1.6mm) (1.6mm x 2.0mm)

XXXX • SSS Example

0024 DCP1721 0K17

Example

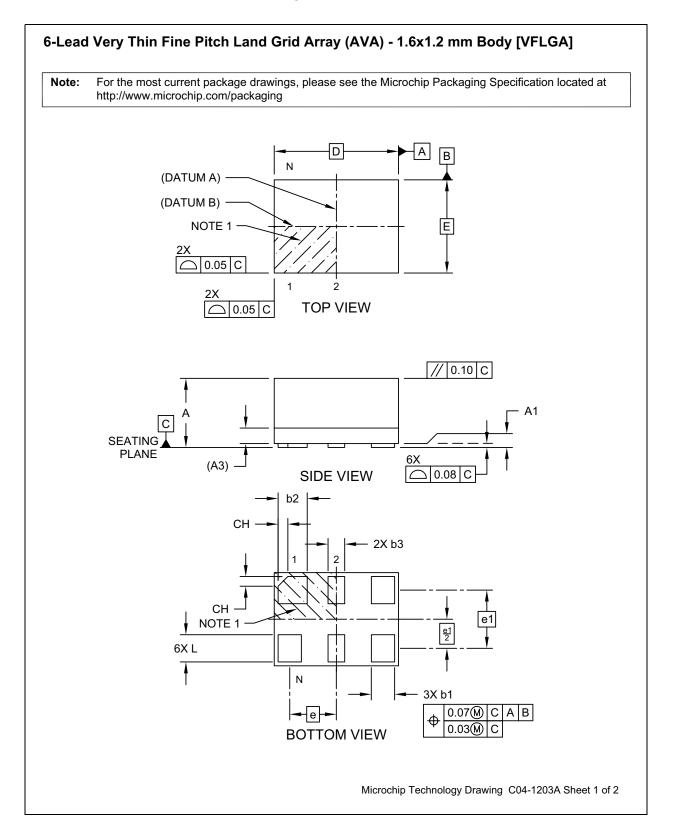
00AE D13

Legend: XX...X Product code or customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

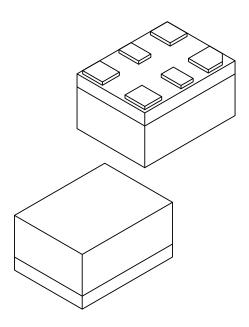
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

**Note**: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.


Underbar (\_) and/or Overbar (¯) symbol may not be to scale.

## 6-Lead 1.6 mm x 1.2 mm VFLGA Package Outline and Recommended Land Pattern



#### 6-Lead Very Thin Fine Pitch Land Grid Array (AVA) - 1.6x1.2 mm Body [VFLGA]

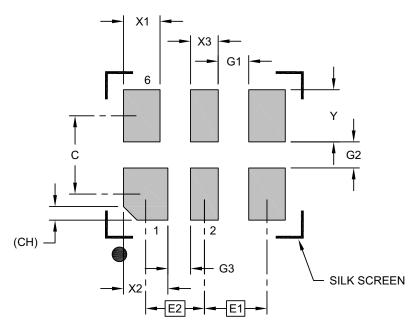
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                                      | MILLIMETERS |          |          |       |
|--------------------------------------|-------------|----------|----------|-------|
| Dimension                            | Limits      | MIN      | NOM      | MAX   |
| Number of Terminals                  | Ν           |          | 6        |       |
| Terminal Pitch                       | е           |          | 0.60 BSC |       |
| Terminal Pitch                       | e1          |          | 0.75 BSC |       |
| Overall Height                       | Α           | 0.79     | 0.84     | 0.89  |
| Standoff                             | A1          | 0.00     | 0.02     | 0.05  |
| Substrate Thickness (with Terminals) | A3          | 0.20 REF |          |       |
| Overall Length                       | D           | 1.60 BSC |          |       |
| Overall Width                        | Е           |          | 1.20 BSC |       |
| Terminal Width                       | b1          | 0.25     | 0.30     | 0.35  |
| Terminal Width                       | b2          | 0.325    | 0.375    | 0.425 |
| Terminal Width                       | b3          | 0.20     | 0.25     | 0.30  |
| Terminal Length                      | Ĺ           | 0.30     | 0.35     | 0.40  |
| Terminal 1 Index Chamfer             | СН          | -        | 0.125    | -     |

#### Notes:

- ${\it 1. \ Pin\ 1\ visual\ index\ feature\ may\ vary,\ but\ must\ be\ located\ within\ the\ hatched\ area.}$
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1203A Sheet 2 of 2

#### 6-Lead Very Thin Fine Pitch Land Grid Array (AVA) - 1.6x1.2 mm Body [VFLGA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



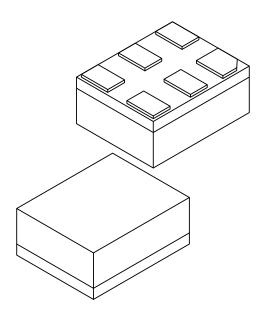
RECOMMENDED LAND PATTERN

|                             | MILLIMETERS |                |          |      |
|-----------------------------|-------------|----------------|----------|------|
| Dimension                   | MIN         | NOM            | MAX      |      |
| Contact Pitch (X3)          | E1          |                | 0.60 BSC |      |
| Contact Pitch               | E2          |                | 0.56 BSC |      |
| Contact Spacing             | С           |                | 0.75     |      |
| Contact Width (X3)          | X1          |                |          | 0.35 |
| Contact Width               | X2          |                |          | 0.43 |
| Contact Width (X2)          | X3          |                |          | 0.27 |
| Contact Pad Length (X6)     | Υ           |                |          | 0.50 |
| Space Between Contacts (X4) | G1          | 0.29           |          |      |
| Space Between Contacts (X3) | G2          | 0.25           |          |      |
| Space Between Contacts      | G3          | 0.22           |          |      |
| Contact 1 Index Chamfer     | CH          | 0.13 X 45° REF |          |      |

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-3203A

# 6-Lead 2.0 mm x 1.6 mm VFLGA Package Outline and Recommended Land Pattern



#### 6-Lead Very Thin Fine Pitch Land Grid Array (ATA) - 2.0x1.6 mm Body [VFLGA]

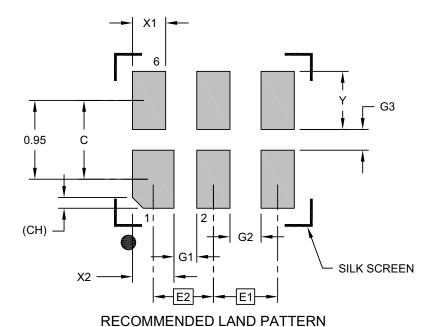
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                                      | MILLIMETERS |                |           |      |
|--------------------------------------|-------------|----------------|-----------|------|
| Dimension                            | MIN         | NOM            | MAX       |      |
| Number of Terminals                  | N           |                | 6         |      |
| Terminal Pitch                       | е           |                | 0.775 BSC |      |
| Terminal Pitch                       | e1          | 0.95 BSC       |           |      |
| Overall Height                       | Α           | 0.79 0.84 0.89 |           |      |
| Standoff                             | A1          | 0.00 0.02 0.05 |           |      |
| Substrate Thickness (with Terminals) | A3          | 0.20 REF       |           |      |
| Overall Length                       | D           | 2.00 BSC       |           |      |
| Overall Width                        | Е           |                | 1.60 BSC  |      |
| Terminal Width                       | b1          | 0.30           | 0.35      | 0.40 |
| Terminal Width                       | b2          | 0.40           | 0.45      | 0.50 |
| Terminal Length                      | L           | 0.50 0.55 0.60 |           |      |
| Terminal 1 Index Chamfer             | CH          | -              | 0.15      | -    |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only. \\$ 

Microchip Technology Drawing C04-1201A Sheet 2 of 2

#### 6-Lead Very Thin Fine Pitch Land Grid Array (ATA) - 2.0x1.6 mm Body [VFLGA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

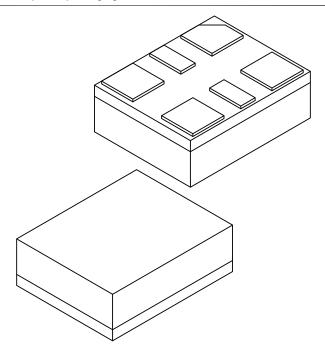


MILLIMETERS Units **Dimension Limits** MIN NOM MAX Contact Pitch E1 0.78 BSC Contact Pitch E2 0.73 BSC Contact Spacing С Contact Width (X4) X1 0.40 Contact Width (X2) X2 0.45 Contact Pad Length (X6) Υ 0.70 Space Between Contacts (X4) G1 0.28 Space Between Contacts (X3) G2 0.38 G3 0.25 Space Between Contacts (X3) СН 0.13 X 45° REF Contact 1 Index Chamfer

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-3201A

#### 6-Lead 2.5 mm x 2.0 mm VFLGA Package Outline and Recommended Land Pattern

# 6-Lead Very Thin Fine Pitch Land Grid Array (AWA) - 2.5x2.0 mm Body [VFLGA] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D Ν (DATUM A) (DATUM B) NOTE 1 ○ 0.05 C **TOP VIEW** 0.05 C // 0.10 C C SEATING, **PLANE** (A3)0.08 C SIDE VIEW CH -2X b2 - CH NOTE 1 6XL Ν 4X b1 0.07M C A B 0.03(M)**BOTTOM VIEW** Microchip Technology Drawing C04-1204A Sheet 1 of 2

### 6-Lead Very Thin Fine Pitch Land Grid Array (AWA) - 2.5x2.0 mm Body [VFLGA]

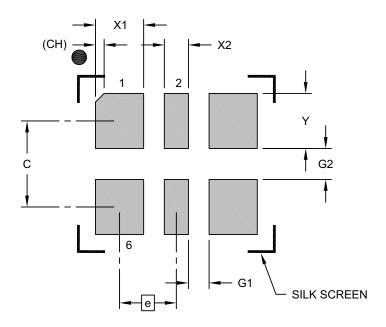
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                                      | MILLIMETERS |                |           |      |
|--------------------------------------|-------------|----------------|-----------|------|
| Dimension                            | Limits      | MIN            | NOM       | MAX  |
| Number of Terminals                  | N           |                | 6         |      |
| Terminal Pitch                       | е           |                | 0.825 BSC |      |
| Terminal Pitch                       | e1          |                | 1.25 BSC  |      |
| Overall Height                       | Α           | 0.79 0.84 0.8  |           |      |
| Standoff                             | A1          | 0.00 0.02 0.   |           |      |
| Substrate Thickness (with Terminals) | A3 0.20 REF |                |           |      |
| Overall Length                       | О           |                | 2.50 BSC  |      |
| Overall Width                        | Е           |                | 2.00 BSC  |      |
| Terminal Width                       | b1          | 0.60           | 0.65      | 0.70 |
| Terminal Width                       | b2          | 0.25           | 0.30      | 0.35 |
| Terminal Length                      | Ĺ           | 0.60 0.65 0.70 |           |      |
| Terminal 1 Index Chamfer             | CH          | -              | 0.225     | -    |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M  $\,$


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1204A Sheet 2 of 2

## 6-Lead Very Thin Fine Pitch Land Grid Array (AWA) - 2.5x2.0 mm Body [VFLGA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### RECOMMENDED LAND PATTERN

|                             | MILLIMETERS |                |     |  |  |
|-----------------------------|-------------|----------------|-----|--|--|
| Dimension                   | MIN         | NOM            | MAX |  |  |
| Contact Pitch               | Е           | 0.825 BSC      |     |  |  |
| Contact Spacing             | С           | 1.25 BSC       |     |  |  |
| Contact Width (X4)          | X1          | 0.70           |     |  |  |
| Contact Width (X2)          | X2          | 0.35           |     |  |  |
| Contact Pad Length (X6)     | Υ           | 0.80           |     |  |  |
| Space Between Contacts (X4) | G1          | 0.30           |     |  |  |
| Space Between Contacts (X3) | G2          | 0.45           |     |  |  |
| Contact 1 Index Chamfer     | CH          | 0.13 X 45° REF |     |  |  |

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

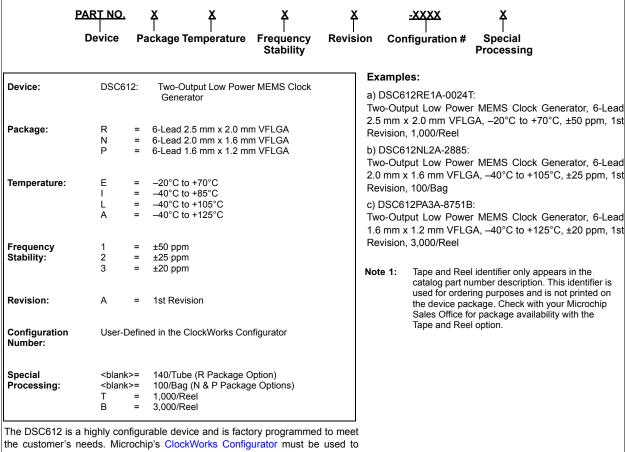
Microchip Technology Drawing C04-3204A

# **DSC612**

NOTES:

## APPENDIX A: REVISION HISTORY

# **Revision A (October 2018)**


• Initial release of DSC612 as Microchip data sheet DS20006023A.

# **DSC612**

NOTES:

#### PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.



choose the necessary options, create the final part number, data sheet, and order samples.

# **DSC612**

NOTES:

#### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949

#### **Trademarks**

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3787-1



# **Worldwide Sales and Service**

#### **AMERICAS**

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

**Austin, TX** Tel: 512-257-3370

**Boston** 

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

**Raleigh, NC** Tel: 919-844-7510

New York, NY Tel: 631-435-6000

**San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270

**Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078

#### ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

**China - Beijing** Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

**China - Dongguan** Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

**China - Shenzhen** Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

**China - Xiamen** Tel: 86-592-2388138

**China - Zhuhai** Tel: 86-756-3210040

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

**Singapore** Tel: 65-6334-8870

**Taiwan - Hsin Chu** Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

**Taiwan - Taipei** Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

#### **EUROPE**

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

**Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

**Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

**Italy - Padova** Tel: 39-049-7625286

**Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

**Poland - Warsaw** Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**Sweden - Gothenberg** Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820