

PD69104B1 4-Port PoE Manager Datasheet

Product Overview

Microchip's PD69104B1 Power over Ethernet (PoE) Manager enables network devices to share power and data over a single cable. PD69104B1 PoE-Manager chip is employed by both Ethernet switches and midspans. The device integrates power, analog circuitry, and state-of-the-art control logic into a single 48-pin plastic Quad Flat No-leads (QFN) package.

PD69104B1 device is a 4-port, mixed-signal, high-voltage PoE Manager. PD69104B1 supports the following modes of operation.

- Extended Auto mode—A stand-alone mode in which the PD69104B1 detects IEEE[®] 802.3AF-2003 compliant Powered Devices (PDs) and IEEE 802.3AT-2009 high-power devices, ensuring safe power feeding and disconnection of ports based on a power management algorithm while employing a minimum of external components.
- Semi Auto mode—Allows the host to control which devices are powered and which are not, as well as communicate with PD69104B1 and configuring it.

PD69104B1 executes all real-time functions as specified in IEEE 802.3AF-2003 (AF) and IEEE 802.3AT high-power (AT) standards. This includes load detection, AF and AT classifications. In addition, the PD69104B1 device features Multiple Classification Attempts (MCA) port status monitoring.

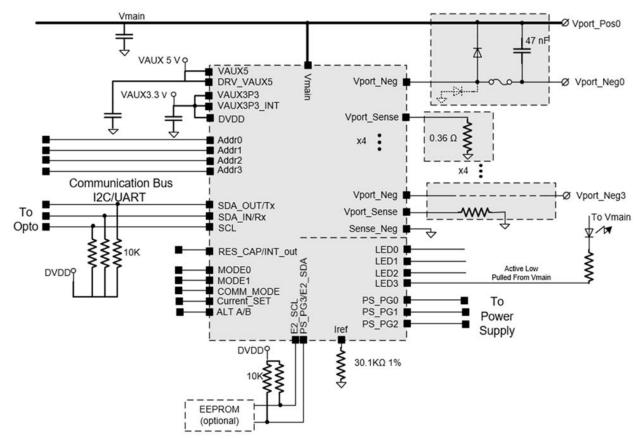
PD69104B1 supports detection of legacy/pre-standard PD devices. It also provides PD real-time protection through the following mechanisms: overload, under-load, over-voltage, over-temperature, and short-circuit. PD69104B1 supports supply voltages between 44V and 57V, with no need for additional power supply sources, and has built-in thermal protection.

PD69104B1 is a low-power device that uses internal MOSFETs and external 0.36Ω sense resistors, and is available in a 48-lead, 8 mm × 8 mm QFN package.

Features

The following features are included in PD69104B1:

- Supports IEEE 802.3AF and IEEE 802.3AT, including two-event classifications
- · Extended auto and semi auto
- Supports pre-standard PD detection
- Supports Cisco device detection
- Single DC voltage input (44 V to 57 V)
- Wide temperature range: -10 °C to 85 °C (PD69104B1F: -40 °C to 85 °C)
- Low-power dissipation (0.36 Ω sense resistor)
- Drives independent 4/2-pairs power port
- Supports Extended PoE Protocol and Register Map
- Includes two selectable communication modes (IC and UART). Consult Microchip before beginning a design based on UART.
- Includes Reset command pin integrated with an RPD/MRPD mechanism
- · Continuously monitoring port and system data
- Parameter setting using input pins


- Parameters setting from external serial EEPROM device
- Built-in dynamic power management and emergency power management mechanisms with 3x power supply power-good pins
- Power soft start mechanism
- On-chip thermal protection
- On-chip continual thermal monitoring
- Voltage/current and temperature monitoring/protection
- Built-in 3.3V and 5V regulators
- Internal power on Reset
- MSL 3
- · RoHS compliant

Typical Application

The following figure shows a typical application with a simple plug-and-play PoE solution for a single Ethernet port, switch, or hub.

Plug the positive (POS) and negative (NEG) signals into the RJ45 switch jack.

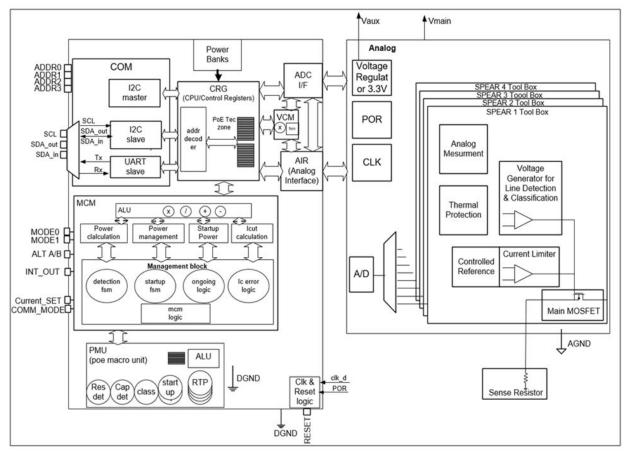
Figure 1. Typical Application

Note: Fuses per port are not required for use in circuits with total power level of up to 3 kW, as the PD69104B1 designed to fulfill Limited Power Source (LPS) requirements per the latest editions of IEC60950-1 and EN60950-1. For more information on detailed schematics of application and layout recommendations, contact Microchip.

Table of Contents

Pro	duct O	verview	1
	1.	Features	1
	2.	Typical Application	2
1.	Funct	ional Descriptions	5
	1.1.	Internal Block Diagram	
	1.1.	Logic Main Control Module	
	1.2. 1.3.	Line Detection Generator	
	1.3. 1.4.	Classification Generator	
	1. 4 . 1.5.	Current Limiter	
	1.5. 1.6.	Main MOSFET	
	1.0. 1.7.		
	1.7.	IC and Port Parameters Monitoring	
	1.o. 1.9.	Power-on Reset (PoR)	
		Voltage Regulator	
		Clock (CLK) I ² C Address Selection	
		Mode of Operation	
		IC Communication Functional Description	
		I ² C High-Level Layer UART Communication Functional Description	
2.	Electr	ical Specifications	. 14
	2.1.	Electrical Characteristics	
	2.2.	Dynamic Characteristics	16
	2.3.	Absolute Maximum Ratings	17
3.	Pin D	escriptions	. 19
4.	Packa	age Information	. 24
	4.1.	Package Outline Drawing	24
	4.2.	Thermal Specifications	
	4.3.	RoHS and Solder Reflow Information	
	4.4.	Tape and Reel Packaging Information	
5.	oilaaA	cation Information	29
	5.1.	Line Detection	
	5.2.	Legacy (Cap) Detection	
	5.3.	Classification	
	5.4.	Port Startup	
	5.5.	Over-Load Detection and Port Shut Down	
	5.6.	Disconnect Detection	
	5.0. 5.7.	Over-Temperature Protection	
	5.8.	V _{MAIN} Out of Range Protection	
	5.9.	Serial EEPROM Load Mechanism	
		Reset Mechanism	
6.	Order	ing Information	. 35

7. Revision History	36
The Microchip Website	. 37
Product Change Notification Service	.37
Customer Support	37
Microchip Devices Code Protection Feature	. 37
Legal Notice	37
Trademarks	38
Quality Management System	39
Worldwide Sales and Service	.40


1. Functional Descriptions

The following sections describe the functions of the PD69104B1 device.

1.1 Internal Block Diagram

The following illustration shows the internal block diagram for the PD69104B1 device.

Figure 1-1. Internal Block Diagram

1.2 Logic Main Control Module

The logic main control block includes the digital timing mechanisms and the state machines, synchronizing and activating the following PoE functions.

- Real-Time Protection (RTP)
- Start-up macro (DVDT)
- Load-signature detection (RES DET)
- Classification macro (CLASS)
- Voltage and current monitoring registers (VMC)
- ADC interfacing
- Direct digital signals with analog block

1.3 Line Detection Generator

When a request is made from the main control module, the line detection generator creates four different voltage levels. This ensures robust AF/AT line detection functionality.

1.4 Classification Generator

When a request is made from the main control module, the state machine applies regulated class event and mark event voltages to the ports, as required by the IEEE standard.

1.5 Current Limiter

This circuit continuously monitors the current of the powered ports and limits it to a specific value, according to predefined limits set using the Current_Set pin. In case the current exceeds this specific level, the system starts measuring the elapsed time. If this period is longer than the preset threshold, the port is disconnected.

1.6 Main MOSFET

Main power switching FET is used for controlling the PoE current that streams into the load.

1.7 IC and Port Parameters Monitoring

A 10-bit analog-to-digital converter is used for converting analog signals into digital registers.

- IC main voltage monitoring—The chip main voltage is sampled every 1 mS. Each measurement is an average
 of four consecutive ADC measurements and stored in the relevant register. The main voltage measurement
 resolution is 5.835 mV/count ±5 %.
- IC thermal monitoring—The PD69104B1 contains a thermal sensor that is sampled to register every 1 mS so the PD69104B1 die temperature can be monitored at all time.
- Port current/voltage monitoring—After the ports start to deliver the power the current/voltage is sampled every 1 mS on each port. Each measurement is an average of four consecutive ADC measurements and stored in the relevant register. Current measurement resolution is 122.07 µA/count ±5% and voltage measurement resolution is 5.835 mV/count ±5% (see the PD69104B1 User Guide register map document for more details).

1.8 Power-on Reset (PoR)

This element monitors the internal 3.3 V_{DC} levels. If this voltage drops below specific thresholds, a Reset signal is generated and the PD69104B1 is reset.

1.9 Voltage Regulator

The voltage regulator generates 3.3 V_{DC} and 5 V_{DC} for the internal circuitry. These voltages are derived from the V_{MAIN} supply.

1.10 Clock (CLK)

This is an internal 8 MHz CLK oscillator.

1.11 I²C Address Selection

The following table lists the I^2C address selection for the PD69104B1 device.

Table 1-1. I²C Address Selection

CONST Bits	ADDR3 Client 1 Bit	ADDR2 Client 0 Bit	ADDR1 ID1 Bit	ADDR0 ID0 Bit	IC/UART Address
010	0	0	0	0	010000b
010	0	0	0	1	0100001b
010	0	0	1	0	0100010b
010	0	0	1	1	0100011b
010	0	1	0	0	0100100b
010	0	1	0	1	0100101b
010	0	1	1	0	0100110b
010	0	1	1	1	0100111b
010	1	0	0	0	0101000b
010	1	0	0	1	0101001b
010	1	0	1	0	0101010b
010	1	0	1	1	0101011b
010	1	1	0	0	0101100b
010	1	1	0	1	0101101b
010	1	1	1	0	0101110b
010	1	1	1	1	0101111b

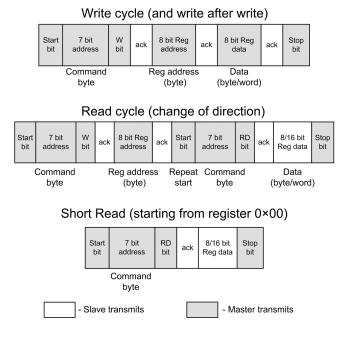
Notes:

- Address 0000000b is the global address in Extended mode operation IC (MODE<1:0>='00').
- Address 0110000b is the global address in Semi-Auto mode operations (MODE<1:0>='01' or '11').
- All clients respond to the global address.
- Avoid global read transactions.
- Address 0001100b is used for extended PoE address (alert response address) in Semi-Auto mode operations.
- When reading from this alert response address, only clients that assert the Int_out pin will send bytes that consist of their own addresses.

1.12 Mode of Operation

The following table lists the modes of operation for the PD69104B1 device.

Table 1-2. Mode of Operation


Mode 1	Mode 0	Mode	Comm to the IC	Functionality
0	0	Extended Auto mode	IC or UART (see COMM_MODE pin)	Fully autonomous operation without a need for host controller (MCU). This mode supports extended registers map.
				Default operation—with no interrupt function (interrupt can be enabled by communication command).
0	1	Semi-Auto mode	IC or UART (see COMM_MODE pin)	Host should manage the ports.

Note: Consult Microchip before beginning a design based on UART.

1.13 IC Communication Functional Description

The following figure shows the IC communication format of the data write/read access for the PD69104B1 device.

Figure 1-2. Packet Structure

1.13.1 Address Phase

This phase is common to both read and write accesses.

- Both accesses (read and write) begin with a Start indication.
- The address of the client is following the Start indication. In case of a miss match, the client ignores the rest of the access and waits for the Stop indication to close the current access. However, in case the client address matches, the next bit indicates the type of the access (read or write).
- The matched client acknowledges the first byte.

• The following byte is the internal register address. The client should acknowledge the byte.

1.13.2 Data Phase

In this phase, the read and write accesses behave differently.

- Write Access
 - Byte of write data is transmitted to the client; the client acknowledges it.
 - A Stop indication from the host closes the current access.
- Read Access
 - Another command byte is received, comprised of the client address and the real command type (in this case, read). The client acknowledges the byte.
 - At this stage, the host is ready to continue the communication and to sample the read data; hence, the read data must be ready on the next rise of the clock pulse.
 - A byte of data is transmitted to the host; the host acknowledges it.

1.14 I²C High-Level Layer

The following figure shows the supported I²C high-level packet structure.

Figure 1-3. High-Level Packet Structure

1.14.1 Byte/Word Read/Write Transaction

- The first byte is the control byte that consists of the chip address and a read/write operation indication.
- The second byte is the internal chip's address register.
- The following bytes/words are data bytes. For a read operation, they are read from the client, and for a a write operation, they are written to the client.

1.14.2 Successive Read/Write Transaction

- The host can continue sending bytes that the clients write, or continue receiving data from a client during the address phase.
- The client will continue to send/receive data bytes from/to the host until a stop bit is asserted by the host.
- Each byte received by the client (or each byte to be read from the registers) is received from the next register address (each byte address is increased by 1).

1.14.3 Read Byte Transaction

The client supports a send byte transaction.

- The host begins with a start bit. The following byte consists of the chip address and a read bit.
- If the chip address is correct, the client acknowledges the byte and immediately (at the next sck phase) sends a data byte from a constant address (addr 7'h00).
- A send byte transaction continues with successive read transactions (address 1, address 2, and so on) until the host asserts a stop bit.

1.14.4 Broadcast Support

All clients answer a general address sent by the host. For Semi-Auto modes, the general address is 7'h30, and for of Extended Auto mode, the general address is 7'h0. The broadcast is for host writing only; read access is ignored in a broadcast transaction.

1.14.5 Timeout Mechanism

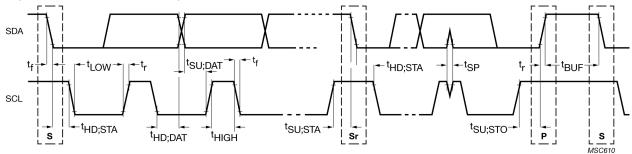
The IC has an internal counter of 14 ms. The counter resets each time the SCL rises or falls. If the SCL is "stuck" for 14 ms, the IC returns to Idle state and transaction is ignored (the timeout mechanism is active between the start bit and the stop bit).

1.14.6 I²C Timing Constraints

The following table lists the characteristics of the SDA and SCL bus lines for F/A-mode I²C-bus.

Table 1-3. Characteristics of the SDA and SCL Bus Lines for F/A-Mode I²C-Bus

		Standard M	ode	Fast Mode	Fast Mode		
Parameter	Symbol	Min	Max	Min	Мах	Unit	
SCL clock frequency	f _{SCL}	0	100	0	400	kHz	
Hold time (repeated) Start condition. After this period, the first clock pulse is generated	t _{HD;STA}	4.0	-	0.6	-	μs	
Low period of the SCL clock	t _{LOW}	4.7	_	1.3	-	μs	
High period of the SCL clock	t _{HIGH}	4.0	-	0.6	-	μs	
Set-up time for a repeated Start condition	t _{SU;STA}	4.7	-	0.6	-	μs	
Data hold time:	t _{HD;DAT}						
CBUS compatible hosts		5.0	-	-	-	μs	
I ² C-bus devices		0 ¹	3.34 ²	0 ¹	0.9 ²	μs	
Data set-up time	t _{SU;STA}	250	-	100 ³		ns	
Rise time of both SDA and SCL signals	t _r	-	1000	20 + 0.1C _b ⁴	300	ns	
Fall time of both SDA and SCL signals	t _f	-	300	20 + 0.1C _b ⁴	300	ns	
Set-up time for Stop condition	t _{SU;STO}	4.0	-	0.6	-	μs	
Bus free time between a Stop and Start condition	t _{BUF}	4.7	-	1.3	-	μs	
Capacitive load for each bus line	C _b	-	400	-	400	pF	
Noise margin at the low level for each connected device (including hysteresis)	V _{nL}	0.1 V _{DD}	-	0.1 V _{DD}	-	V	
Noise margin at the high level for each connected device (including hysteresis)	V _{nH}	0.2 V _{DD}	-	0.2 V _{DD}	-	V	


Notes:

- A device must internally provide a hold time of at least 300 ns for the SDA signal (refers to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of the SCL.
- 2. The maximum t_{HD:DAT} has to be met only if the device does not stretch the low period (t_{LOW}) of the SCL signal.
- 3. A fast mode I²C bus device can be used in a standard mode I²C bus system, but the requirement t_{SU;DAT} ³ 250 ns must then be met. This is in case the device does not stretch the LOW period of the SCL signal.
- If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + t_{SU;DAT} = 1000 ns + 250 ns = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line can be released.

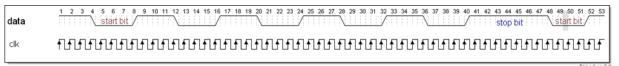
Note: All values refer to V_{IHmin} and V_{ILmax} levels. For more information, see Electrical Characteristics section.

The following figure shows the definition of timing for F/S-mode devices on the I²C-bus.

Figure 1-4. Definition of Timing for F/S-mode Devices on the I²C-bus

1.15 UART Communication Functional Description

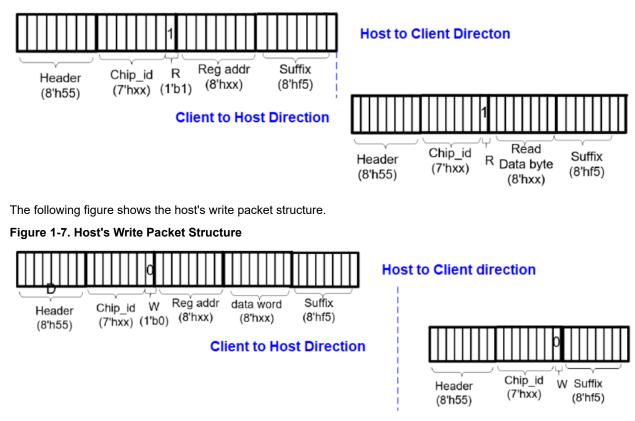
The UART is supported by the PD69104B1 platform to allow communication between PD69104B1 IC's and an external host. The PD69104B1 platform supports UART only as a client. The following is a list of features for the UART communication mode. Consult Microchip before beginning a design on the UART interface.


- Client mode
- Supports 4,800 to 115,200 Baud rate, auto-learning mechanism
- Supports 8-bit address
- Supports 8-bit data access
- Supports general broadcast transmission
- 8N1
 - 8-bits data
 - No parity
 - 1 stop bit
- Frame transaction—header, payload, and suffix
- Timeout mechanism (time-out for frame and per byte)
- No successive read/write—one transaction per register (read/write)
- · Half-duplex implementation-Rx starts after Tx ends
- · A filter for glitches cancelling on the Rx pin

1.15.1 The Physical Layer

The UART protocol has two data lines; the Rx, from where PD69104B1 receives its data, and the Tx, where data is transmitted. UART is a byte protocol in which every byte starts with a start bit and ends with a stop bit.

The following figure shows the UART read/write frame.


Figure 1-5. UART Read/Write Frame

The data is sent in a constant frame in order to be synchronized.

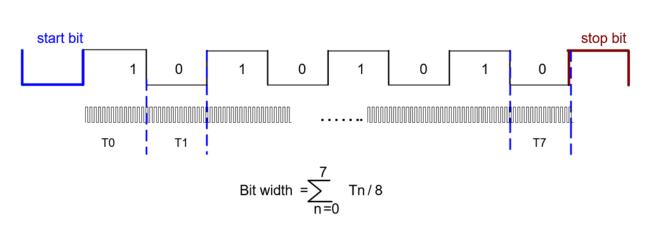
The following figure shows the host's read packet structure.

Figure 1-6. Host's Read Packet Structure

1.15.2 Broadcast Support

All clients answer a general address sent by the host. The general address is 7'h0.

Broadcast is for host writing only—read accesses are ignored in a broadcast transaction.


1.15.3 Auto Baud Rate Learning

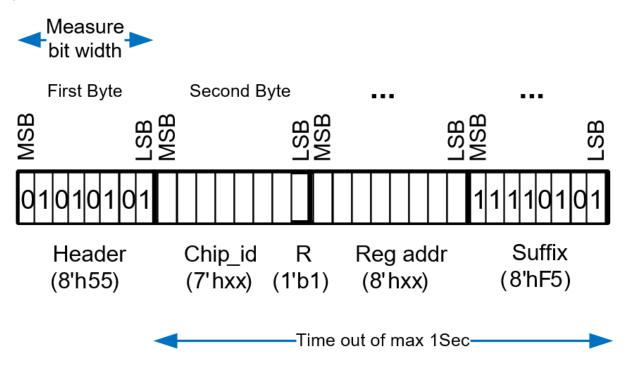
PD69104B1 has a self-learning baud rate mechanism that allows synchronizing all PD69104B1 clients to the host's "real" baud rate and thus working with a higher baud rate.

The first byte received by the client is 8'hAA. At the rising or falling edge of each bit, an 8 MHz counter starts counting the bit width (in a 125 ns resolution). The average width of the 8 header bits is the actual bits rate. By using this mechanism, PD69104B1 clients can be synchronized with the host and set back data at that rate. The header is a preamble bit that facilitates synchronization.

The following figure shows the header bit width.

Figure 1-8. Header Bit Width

Header bit (8'hAA)


1.15.4 Timeout Mechanisms

The UART protocol has a frame time-out mechanism. This mechanism has the following two purposes.

- Distinguishing between the frame's suffix of 8'f5 and a payload byte with the same value. The mechanism identifies a frame suffix only when it arrives as 2 bytes in a read access or as 4-bytes in a write access; otherwise it is treated as a data byte.
- Preventing UART communication from getting stuck. A 1-second time-out counter is activated beginning with a start frame (the end of header byte) till a suffix arrival. If a suffix byte does not arrive within that time the transaction is ignored and the client moves into an Idle state.

The following figure shows the time-out mechanism.

Figure 1-9. Timeout Mechanism

2. Electrical Specifications

The following sections describe the electrical specifications of the PD69104B1 device.

2.1 Electrical Characteristics

The following minimum and maximum ratings apply over the entire specified operating ratings of the device, unless otherwise specified under conditions.

Table 2-1. Power Supply

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Max	Units
V _{MAIN}	Input voltage	Supports full IEEE 802.3 functionality	44	55	57	V _{DC}
I _{MAIN}	Power supply current at operating mode	V _{MAIN} = 55V		10		mA
V _{AUX5}	5V output voltage	-	4.5	5	5.5	V_{DC}
V _{AUX3P3}	3.3V output voltage	-	2.97	3.3	3.63	V _{DC}
-	3 3\/ output current	Without external NPN			5	mA
	3.3V output current	With external NPN transistor on V_{AUX5}			30	mA
_	3.3V input voltage	REG_EN_N pin= 3.3V (internal register is disabled) V _{AUX3P3_INT} pin=5V	3	3.3	3.6	V _{DC}

Table 2-2. PoR

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Max	Units
-	Threshold	-	2.575	2.775	2.975	V _{DC}
-	Hysteresis	-	0.2	0.25	0.3	V _{DC}
-	Delay	-	10	50	100	μS

Table 2-3. Digital I/O

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Max	Units
V _{IH}	Input logic high threshold	-	2			V _{DC}
V _{IL}	Input logic low threshold	-			0.8	V _{DC}
-	Input hysteresis voltage	-	0.4	0.6	0.8	V _{DC}
IIH	Input high current	-	-10		10	μA
IIL	Input low current	-	-10		10	μA
V _{OH}	Output high voltage	For I _{OH} = –1 mA	2.4			V _{DC}
V _{OL}	Output low voltage	I _{OH} = 1 mA			0.4	V_{DC}

Table 2-4. PoE Load Currents

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Мах	Units
AT_LIM_LOW	AT Limit mode	Tested with sense resistance= 0.366 Ω	706	722	767	mA
		$(R_{sense} + traces = 0.36 \Omega + 6 mΩ = 0.366 \Omega)$ connected at port sense pin	847	874	919	mA
			537		1200	mA
AT_LIM_HIGH	AF Limit mode		410	425	448	mA
AT configurable	PoE technology high-power port		808	850	892	mA

Table 2-5. Main Power Switching FET

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Max	Units
R _{dson}	ON resistance	-	-	0.3	-	Ω
-	Internal thermal protection threshold	-	_	200	_	°C

Table 2-6. Line Detection

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Max	Units
-	Range	According to IEEE 802.3 standard	19	-	26.5	kΩ

Table 2-7. Classification

Symb	ol Parameter	Test Conditions/Comment	Min	Тур	Max	Units
-	Class event output voltage	Measured between V_{MAIN} and $V_{\text{PORT}_\text{NEG}}$ pins	16.5	18	19.5	V _{DC}
_	Mark event output voltage	Measured between V_{MAIN} and V_{PORT_NEG} pins	7.5	8.5	9.5	V _{DC}

Table 2-8. LED 0 to 3, MAX_LED Drivers

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Max	Units
I_{sink} (from V_{MAIN} to AGND)	Current sink	Measured between V_{MAIN} and $V_{\text{PORT}_\text{NEG}}$ pins	-	3	5	mA

Table 2-9. Three States Analog Input Pins (Current Set, Comm_Mode)

Symbol	Parameter	Test Conditions/Comment	Min	Тур	Мах	Units
-	High-level input voltage	-	80% V _{AUX3P3}	-	-	V _{DC}
_	Open	Not connected	40% V _{AUX3P3}	-	60% V _{AUX3P3}	V _{DC}
-	Low-level input voltage	-	-	-	20% V _{AUX3P3}	V _{DC}

2.1.1 Typical Power Dissipation Information

- R_{sense} Power Dissipation: 0.36 $\Omega \times I_{port}^{2}$
- $R_{ds_{ON}}$ Power Dissipation: 0.3 $\Omega \times I_{port}^{2}$
- P_{port_AF} = 15.4W ==> Port Power Dissipation at R_{sense}= 37 mW (320 mA)
- Port Power Dissipation at R_{ds_ON} = 31 mW (320 mA)

- P_{port AT} = 30W ==> Port Power Dissipation at R_{sense}= 130 mW (600 mA)
- Port Power Dissipation at R_{ds ON} = 108 mW (600 mA)

Using Internal 3.3V regulator

- Typical PD69104B1 self power dissipation (including internal regulations) = 0.5 W (50V)
- Typical PD69104B1 at 4 × Port AF application power dissipation = 0.5W + 4 x 31 mW + 4 × 37 mW = 0.77W
- Typical PD69104B1 at 4 × Port AT application power dissipation = 0.5W + 4 x 108 mW + 4 × 130 mW = 1.45W

Using External 3.3V regulator

- Typical PD69104B1 self power dissipation (external 3.3V source) = 0.25W (50V)
- Typical PD69104B1 at 4 × Port AF application power dissipation = 0.25W + 4 x 31 mW + 4 × 37 mW = 0.52W
- Typical PD69104B1 at 4 × Port AT application power dissipation = 0.25W + 4 x 108 mW + 4 × 130 mW = 1.2W

2.2 Dynamic Characteristics

PD69104B1 utilizes three current level thresholds (I_{min}, I_{cut}, I_{lim}) and three timers (T_{min}, T_{cut}, T_{lim}).

- Loads that consume I_{lim} current for more than T_{lim} are labeled as "short circuit state" and are shutdown.
- Loads that dissipate more than I_{cut} for longer than T_{cut} are labeled as "overloads" and are shutdown.
- If output power is below I_{min} for more than T_{min}, the PD is labeled as "no-load" and is shutdown.

Automatic recovery from overload and no-load conditions is attempted every T_{OVLREC} period (typically 1 second). Output power is limited to I_{lim}, which is the maximum peak current allowed at the port.

The following table lists the operational mode parameters.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{UDLREC}	Automatic recovery from no-load shutdown	Measured from port shutdown point (can be – modified through control port)		1	-	S
-	Cutoff timers accuracy	Typical accuracy of T _{cut} –		2	-	ms
I _{Inrsh}	I_{Inrsh} Inrush current For t= 50 ms, C_{load} = 180 µF maximum 4		400		450	mA
I _{port}	Output current operating range	Continuous operation after startup period		-	725	mA
P _{port}	Dort Output power available, operating range Continuous operation after startup period at port output		0.57	-	36	W
I _{min1}	Off-mode current	Must disconnect where T is greater than T_{UVL}	0	-	5	mA
		May or may not disconnect where T is greater than T_{UVL}	5	7.5	10	mA
I _{min2} PD power maintenance request drop-out time limit		Buffer period to handle transitions	300	-	400	ms
T _{PMDO}	Overload time limit	-	50	-	75	ms

Table 2-10. Operational Mode Parameters

co	continued							
Symbol Parameter		Conditions I		Тур	Max	Unit		
T _{OVL}	DVLTurn-on rise timeFrom 10% to 90% of Vport(specified for PD load consisting of 100 μF capacitor parallel to 200 Ω resistor)		15	_	_	μs		
T _{rise}	ise Turn-off time From V _{port} to 2.8 V _{DC}		-	_	500	ms		
T _{off}	Time maintain power signature	DC modulation time for DC disconnect	-	49	-	ms		

The following table lists the IEEE 802.3AT mode parameters.

Table 2-11. IEEE 802.3AT Mode Parameters

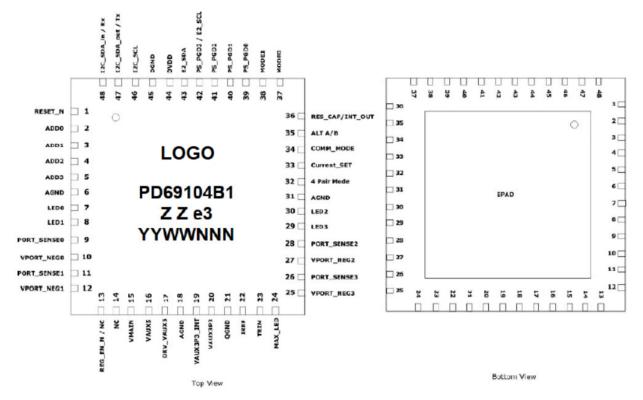
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{UDLREC}	Automatic recovery from no- load shutdown	Measured from port shutdown point (can be modified through control port)	-	1	-	S
-	Cutoff timers accuracy	Typical accuracy of T _{cut}	-	2	-	ms
I _{Inrsh}	Inrush current	For t= 50 ms, C _{load} = 180 µF maximum	400	-	450	mA
I _{port}	Output current operating range	Continuous operation after startup period 10		-	725	mA
P _{port}	P _{port} Output power available, operating range Continuous operation after startup period at port output		0.57	-	36	W
I _{min1}	Off-mode current	Must disconnect where T is greater than $\mathrm{T}_{\mathrm{UVL}}$	0	-	5	mA
		May or may not disconnect where T is greater than T_{UVL}	5	7.5	10	mA
I _{min2} PD power maintenance request drop-out time limit		Buffer period to handle transitions	300	-	400	ms
T _{PMDO}	Overload time limit	-	50	-	75	ms
T _{OVL}	Torn-on rise time From 10% to 90% of V _{port} (Specified for PD load consisting of 100 μF capacitor parallel to 200W resistor)		15	-	-	μs
T _{rise}	Turn-off time	From V_{port} to 2.8 V_{DC}	-	-	500	ms
T _{off}	Time maintain power signature DC modulation time for DC disconnect		-	49	-	ms

2.3 Absolute Maximum Ratings

The following table lists the absolute maximum ratings for the PD69104B1 device.

Parameter	Absolute Maximum Rating
Supply input voltage (V _{MAIN})	–0.3 V_{DC} to 74 V_{DC}
Port_Neg [07] pins	–0.3 V_{DC} to 74 V_{DC}
LED pins	–0.3 V _{DC} to 74 V _{DC}
Port_Sense[07] pins	–0.3 V_{DC} to 3.6 V_{DC}
QGND, GND pins	–0.3 V_{DC} to 0.3 V_{DC}
V _{AUX5} , DRV_VAUX5	–0.3 V_{DC} to 5.5 V_{DC}
All other pins	–0.3 V_{DC} to 3.6 V_{DC}
PD69104B1 operating ambient temperature range	–10 °C to 85 °C
PD69104B1F operating ambient temperature range	–40 °C to 85 °C
Maximum operating junction temperature	160 °C
ESD protection at all I/O pins	JESD22 Class 1C HBM (±2 KV)
Storage temperature range	–65 °C to 150 °C

Table 2-12. Absolute Maximum Ratings


Note: Exceeding these ratings can cause damage to the device. All voltages are with respect to ground. Currents are marked positive when flowing into specified terminals and marked negative when flowing out of specified terminals.

3. Pin Descriptions

The PD69104B1 device has 48-pins, which are described in this section.

The following figure shows the top view of the PD69104B1 pin configuration and pinout.

Figure 3-1. PD69104B1 Pin Configuration and Pinout

Note: RoHS/Pb-free 100 % matte tin finish. PD69104B1 for -10 °C to 85 °C operating ambient temperature range. The following table lists the functional pin descriptions for the PD69104B1 device.

Pin	Pin Name	Pin Type	Description
0	PAD	Analog GND	Exposed PAD: connect to analog ground (AGND). A decent ground plane should be deployed around this pin whenever possible (see PD69104B1 Layout Design Guidelines).
1	RESET_N ¹	Digital input	Reset input: active low (0 = reset) This pin is also used for RPD/MRPD function.
2	ADDR0	Digital input	Address bus for setting the address of the chip. See Table 1-1. I ² C Address Selection.
3	ADDR1	Digital input	Address bus for setting the address of the chip. See Table 1-1. I ² C Address Selection.
4	ADDR2	Digital input	Address bus for setting the address of the chip. See Table 1-1. I ² C Address Selection.
5	ADDR3	Digital input	Address bus for setting the address of the chip. See Table 1-1. I ² C Address Selection.

Table 3-1. Pin Descriptions

PD69104B1 Pin Descriptions

continued							
Pin	Pin Name	Pin Type	Description				
6	AGND	Power	Analog ground				
7	LED 0	Open drain output	Port 0 LED indication: active low (0 = LED ON). See Table 5-1. LED Indications.				
8	LED 1	Open drain output	Port 1 LED indication: active low (0 = LED ON). See Table 5-1. LED Indications.				
9	PORT_SENSE0	Analog input	Sense resistor port input (connected to 0.36 Ω , 1% resistor to QGND with ~6 m Ω trace for measurements accuracy).				
10	VPORT_NEG0	Analog I/O	Negative port output				
11	PORT_SENSE1	Analog input	Sense resistor port input (connected to 0.36 Ω , 1% resistor to QGND with ~6 m Ω trace for measurements accuracy).				
12	VPORT_NEG1	Analog I/O	Negative port output				
13	REG_EN_N/NC	Analog I/O	An input pin that enables control of the 3.3 V _{DC} internal regulator. Disables internal 3.3 V _{DC} regulator in case external 3.3 V _{DC} is used to supply the chip.				
			If connected to GND or unconnected, internal regulator is enabled. If connected to 3.3 $V_{\text{DC}},$ internal regulator is disabled.				
14	NC	Analog I/O	A test pin used only during production. Keep unconnected.				
15	VMAIN	Power	Supplies voltage for the internal analog circuitry. A 1 μ F (or higher) low ESR bypass capacitor, connected to AGND, should be placed as close as possible to this pin through low resistance traces.				
16	VAUX5	Power	Regulated 5 V_{DC} output voltage source, needs to be connected to a filtering capacitor of 4.7 μ F or higher.				
			If an external NPN is used to regulate the voltage, connect this pin to the emitter (the collector should be connected to $V_{\rm MAIN}).$				
17	DRV_VAUX5	Power	Driven outputs for 5 V_{DC} external regulations. In case internal regulation is used, connect to pin 16.				
			In case an external NPN is used to regulate the voltage, connect this pin to the base.				
18	AGND	Power	Analog ground				
19	VAUX3P3_INT	Power	In case internal 3.3 V_{DC} regulator is used, connected to V_{AUX3P3} (pin 20).				
			In case external 3.3 V_{DC} regulator is used, connect to V_{AUX5} (pin 16).				
20	VAUX3P3	Power	Regulated 3.3 V_{DC} output voltage source. A 4.7 μF or higher filtering capacitor must be connected between this pin and AGND.				
			When an external 3.3 V_{DC} regulator is used, connect it to this pin to supply the chip.				

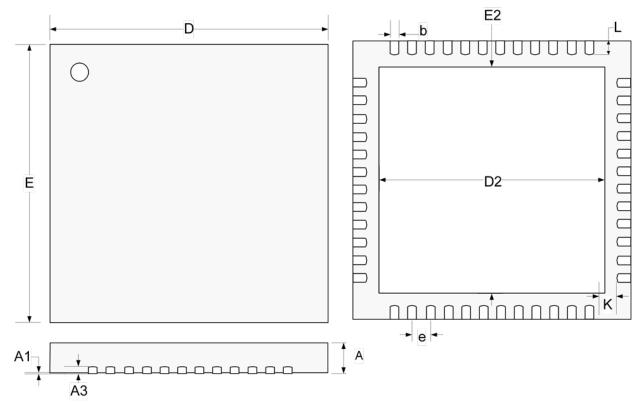
PD69104B1 Pin Descriptions

con	tinued		
Pin	Pin Name	Pin Type	Description
21	QGND	Power	Quiet analog ground
22	IREF	Analog input	A reference resistor pin. A 30.1 k Ω , 1% resistor should be connected between this pin and QGND.
23	TRIM	Test input	Trimming input for IC production. Should be connected to $V_{\text{AUX3P3}}.$
24	MAX_LED	Open drain output	Maximum LED analog output. Indicates the device has exceeded maximum power budget. See Table 5-1. LED Indications.
25	VPORT_NEG3	Analog I/O	Negative port output
26	PORT_SENSE3	Analog input	Sense resistor port input (connected to 0.36 Ω , 1% resistor to QGND with ~6 m Ω trace for measurements accuracy).
27	VPORT_NEG2	Analog I/O	Negative port output
28	PORT_SENSE2	Analog input	Sense resistor port input (connected to 0.36 Ω , 1% resistor to QGND with ~6 m Ω trace for measurements accuracy).
29	LED 3	Open drain output	Port 3 LED indication: active low (0 = LED ON). See Table 5-1. LED Indications.
30	LED 2	Open drain output	Port 2 LED indication: active low (0 = LED ON). See Table 5-1. LED Indications.
31	AGND	Power	Analog ground
32	4 pairs mode	Analog input	 2-state input pin. Select 4-Pairs Mode: 0 (GND): 4 ports of 2 pairs 1 (VCC): 2 ports of 4 pairs
33	Current_SET	Analog input	 3-state input pin, used for selecting output current and AF/AT mode: 0 (AGND): AF mode "open" (N.C): Low AT mode 600 mA 1 (V_{DD}): High AT mode 720 mA
34	COMM_MODE	Analog input	 3-state input pin communication. The following options are available: 0 (AGND): UART active "open" (N.C): E2PROM connected and I²C active if connected. In this case, within 2PROM Register 0x7E (SYS_CFG) bit 5 (i2c_en) should be set to 1. 1 (V_{DD}): I2C active
35	ALT A/B	Digital input	 User input pin, used for setting the chip working mode: GND: ALT B mode = Midspan mode (midsp [1:4] bits = 1) DVDD: ALT A mode = Endspan mode (midsp [1:4] bits = 0)

co	ontinued		
Pin	Pin Name	Pin Type	Description
36	INT_OUT	Digital I/O (open drain)	In MCHP Extended Auto mode: User input pin. Used for setting the chip legacy detection mode:
			 1 (V_{DD}): IEEE 802.3af compliant resistor detection only
			 0 (GND): IEEE 802.3 AF/AT Detection and Legacy (non-standard) line detection
			In Semi-Auto mode: Interrupt out pin. Indicates an interruption event has occurred.
			An external $10k\Omega$ pull-up resistor should be connected between this pin and DVDD.
37	Mode0	Digital input	Used for IC operational mode selection. See Table 1-2. Mode of Operation.
38	Mode1	Digital input	Used for IC operational mode selection. See Table 1-2. Mode of Operation.
39	PS_PGD0	Digital input	Power supply power good 0; power budget set pin for fast power control. See Table 5-2. Power Budget.
40	PS_PGD1	Digital input	Power supply power good 1; power budget set pin for fast power control. See Table 5-2. Power Budget.
41	PS_PGD2	Digital input	Power supply power good 2; power budget set pin for fast power control. See Table 5-2. Power Budget.
42	PS_PGD3 /	Digital I/O (open	Power supply power good 3;
	E2_SCL	drain)	Power budget set pin—for initial configuration (refer to COMM MODE PIN)
			E2_SCL: I ² C Clock Out to EEPROM
			When working with EPROM, an external $10k\Omega$ pull-up resistor should be connected between this pin and DVDD.
43	E2_SDA	Digital I/O (open drain)	EEPROM I ² C data I/O pin. Used for power-up configuration in stand-alone systems.
			An external 10K pull-up resistor should be connected between this pin and DVDD.
44	DVDD	Power	Digital 3.3 V _{DC} power input
45	DGND	Power	Digital GND
46	I2C_SCL	Digital input	I ² C bus, serial clock input
			An external $10k\Omega$ pull-up resistor should be connected between this pin and DVDD.
47	I2C_SDA_out	Digital I/O (open	I ² C bus, data output/UART Tx output
		drain)	An external $10k\Omega$ pull-up resistor should be connected between this pin and DVDD.

continued								
Pin	Pin Name	Pin Type	Description					
48	I2C_SDA_in	Digital I/O (open drain)	I ² C bus, data input/UART Rx input An external 10kΩ pull-up resistor should be connected between this pin and DVDD.					

Note: The PD69104B1 pin should be free of large capacitance in order to prevent RPD and MRPD pulses distortion. 0 = connect to DGND and 1 = connect to DVDD.


4. Package Information

The following sections describe the package information for the PD69104B1 device.

4.1 Package Outline Drawing

The following illustration shows the package outline drawing for the PD69104B1 device.

Figure 4-1. Package Outline Drawing

The following table lists the dimensions and measurements of the PD69104B1 device.

Table 4-1. Dimensions and Measurements

	Millimeters		Inches		
Dim	Min	Max	Min	Мах	
А	0.80	1.00	0.031	0.039	
A1	0.00	0.05	0	0.002	
A3	0.20 ref	1	0.008 ref		
К	0.20 min		0.008 min		
е	0.50 BSC	3SC 0.02 BSC			
L	0.30	0.50	0.012	0.02	
b	0.18	0.30	0.007	0.012	

co	ontinued			
	Millimeters		Inches	
Dim	Min	Max	Min	Мах
D2	6.35	6.60	0.250	0.260
E2	6.35	6.60	0.250	0.260
D	8.00 BSC		0.315 BSC	
E	8.00 BSC		0.315 BSC	

Note: Dimensions do not include protrusions; these should not exceed 0.155 mm (0.006") on any side. The lead dimension shall not include solder coverage.

4.2 Thermal Specifications

Thermal resistance-junction to ambient is 25 °C/W.

Thermal resistance-junction to case is 4 °C/W.

Note: All of the above assume no ambient airflow. Junction temperature calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system.

4.3 RoHS and Solder Reflow Information

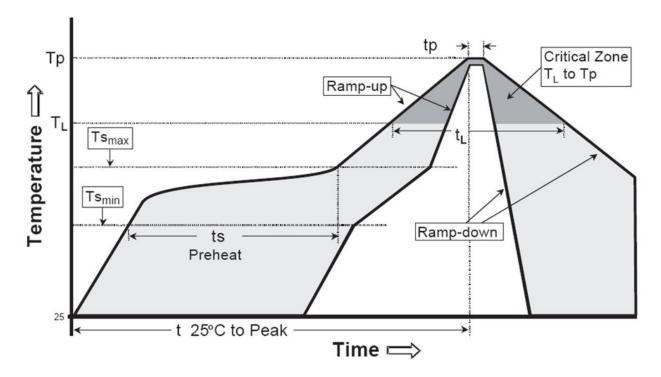
The following lists the recommended RoHS and solder reflow information for the PD69104B1 device.

- RoHS 6/6
- Pb-free 100 % matte tin finish
- Package peak temperature for solder reflow (40 seconds maximum exposure)—260 °C (0 ° C, -5 °C)

Note: Exceeding these ratings can cause damage to the device.

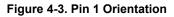
The following table lists the reflow profiles.

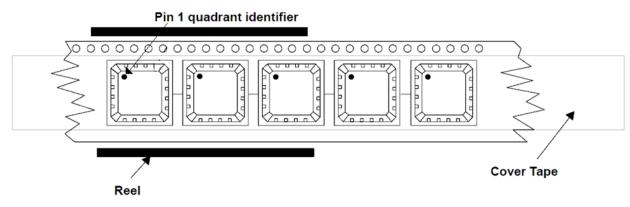
Table 4-2. Classification Reflow Profiles


Profile Feature	Pb-Free Assembly
Average ramp-up rate (TS _{max} to Tp)	3 °C/second max
Preheat Temperature min (TS _{min}) Temperature max (TS _{max}) Time (ts _{min} to ts _{max})	150 °C 200 °C 60 seconds–180 seconds
Time maintained Temperature (T_L) Time (t_L)	217 °C 60 seconds–150 seconds
Peak classification temperature (T_P)	240 °C–255 °C
Time within 5 °C of actual peak temperature (tp)	20 seconds-40 seconds
Ramp-down rate	6 °C/second max

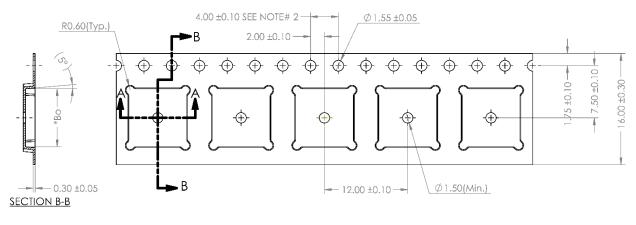
continued	
Profile Feature	Pb-Free Assembly
Time 25 °C to peak temperature	8 minutes maximum

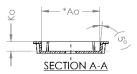
Note: All temperatures refer to topside of the package, measured on the package body surface.


The following figure shows the classification reflow profiles.


Figure 4-2. Classification Reflow Profiles

4.4 Tape and Reel Packaging Information


The following figure shows the Pin 1 Orientation.



The following figure shows the tape and reel shipment specifications.

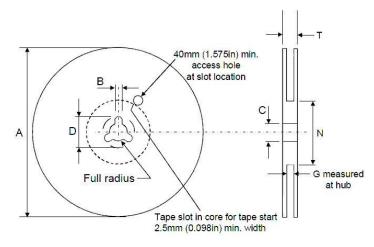

The following table lists the tape mechanical data.

Table 4-3. Tape Mechanical Data

Dimensions	Millimeters
Ao	8.35 ±0.10
Во	8.35 ±0.10
Ко	1.40 ±0.10
К1	N/A
Pitch	12.00 ±0.10
Width	16.00 ±0.30

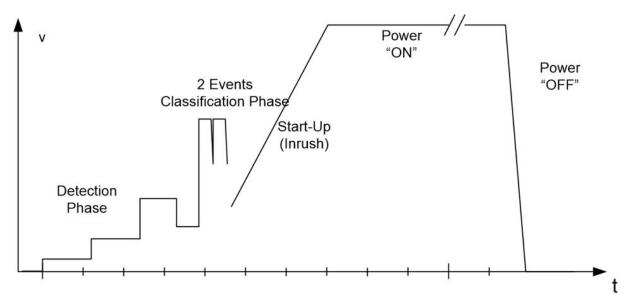
The following figure shows the reel specifications.

Figure 4-5. Reel Specifications

The following table lists the reel mechanical data. The base quantity are 2000 pcs.

Dimension	Millimeters	Inch
Tape size	16.00 ±0.3	0.630 ±0.012
A max	330	13
B max	1.5	0.059
С	13.0 ±0.20	0.512 ±0.008
D min	20.2	0.795
N min	50	1.968
G	16.4 + 2.0/-0.0	0.645 + 0.079/_0.0
T max	29	1.142

Table 4-4. Reel Mechanical Data


5. Application Information

PD69104B1 meets IEEE 802.3af and IEEE 802.3at functionality standards, as well as legacy (capacitor) and Cisco PDs detection standards. It also supports additional protections such as short circuit, and dV/dT protection upon port startup.

5.1 Line Detection

The line detection feature detects a valid AF or AT load, as specified in the IEEE 802.3 standard. The resistance value should range from 19 k Ω to 26.5 k Ω . Line detection is based on four different voltage levels generated over the PD (the load), as shown in the following figure.

Figure 5-1. Typical PoE Voltage vs. Time Diagram

The first two levels (low voltage level < 3 V) are for detecting if load up to 200 k Ω is connected to the PSE; preventing from applying high voltages on the PSE when there is no load, and eliminating potential risk to the DTE. If the first detection passes, next two levels of resistor detection are applied. If the PoE detects a valid resistor signature value, the detection is passed. Otherwise, the detection fails and moves to IDLE.

5.2 Legacy (Cap) Detection

If pin 36 (RES_CAP / INT_OUT) is set to 0, the detection mechanism of PD69104B1 is configured to detect and power legacy PDs, as well as AF/AT compliant PDs. This mechanism also detects and powers Cisco legacy PDs.

5.3 Classification

The classification process takes place immediately after the resistor detection is successfully completed. The main goal of the classification process is to detect the PD class, as specified in the IEEE 802.3af and IEEE 802.3at standards. The process is done by applying a voltage to the PD nodes and measuring the port current. In the AF mode, the classification mechanism is based on a single-voltage level step (single finger). In the AT mode, the classification mechanism is based on two-voltage level steps (dual finger), as defined in the IEEE 802.3at standard.

5.4 Port Startup

Upon a successful detection and classification process, power is applied to the load via a controlled startup mechanism. During this period current is limited to 425 mA for a typical duration of 65 ms. This enables the PD load to charge and to enter a steady state power condition.

5.5 Over-Load Detection and Port Shut Down

After power-up, PD69104B1 automatically initializes its internal protection mechanisms. These mechanisms are utilized to monitor and disconnect the power from the load in case of an extreme conditions scenario. For example, scenarios such as over-current or short ports terminals, as specified in the IEEE 802.3af/at standard.

5.6 Disconnect Detection

PD69104B1 supports the DC disconnect function as per the IEEE 802.3af/at standard. This mechanism continuously monitors the load current and disconnects the power in case it drops below 7.5 mA (typical) for more than 322 ms.

5.7 Over-Temperature Protection

PD69104B1 has internal temperature sensors that continuously monitor the junction temperature and set alarm bit when it exceeds 120 °C, or disconnect load power when it exceeds 200 °C. This mechanism protects the device from extreme events, such as high ambient temperature or other thermo-mechanical failures that may damage the PD69104B1 device. The alarm threshold can be set by register.

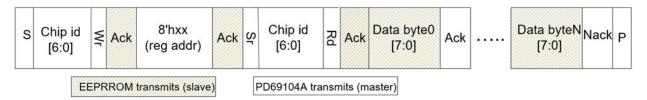
5.8 V_{MAIN} Out of Range Protection

PD69104B1 automatically disconnects the ports power when V_{MAIN} exceeds 58.5V threshold (with 180 mV hysteresis) or drops below 40 V threshold (with 180 mV hysteresis). This extremely valuable feature protects the load in case the main power source is faulty or damaged.

5.9 Serial EEPROM Load Mechanism

The PD69104B1 is capable of loading its registers values from an external serial EEPROM during a boot slot time. To utilize the EEPROM boot, the COMM_MODE pin must be set to E2PROM_MODE (not connected).

The following is a list of features for the PD69104B1 device:


- HOST I²C communication.
- 7-bit addressing
- 250 kHz frequency
- EEPROM constant address: 7'hA0
- · EEPROM must support read byte and read after read
- Two repeated transactions in case the EEPROM does not acknowledge the transaction
- A FIR filter for glitches cancelling

There are five consecutive read transaction (host transactions) made by the PD69104B1 for reading data from the EEPROM and uploading it to the PD69104B1 registers. They are as listed below:

- The first transaction reads all registers from address 8'h70 to address 8'h9F.
- The second transaction reads registers HPEN and HPMD1 (from addresses 8'h44 and 8'h46).
- The third transaction reads register HPMD2 (from address 8'h4b).
- The fourth transaction reads register HPMD3 (from address 8'h50).
- The fifth transaction reads register `mp_hpmd4 (from address 8'h55).

The following figure shows the read transaction format.

Figure 5-2. I2C EEPROM High-Level Packet Structure

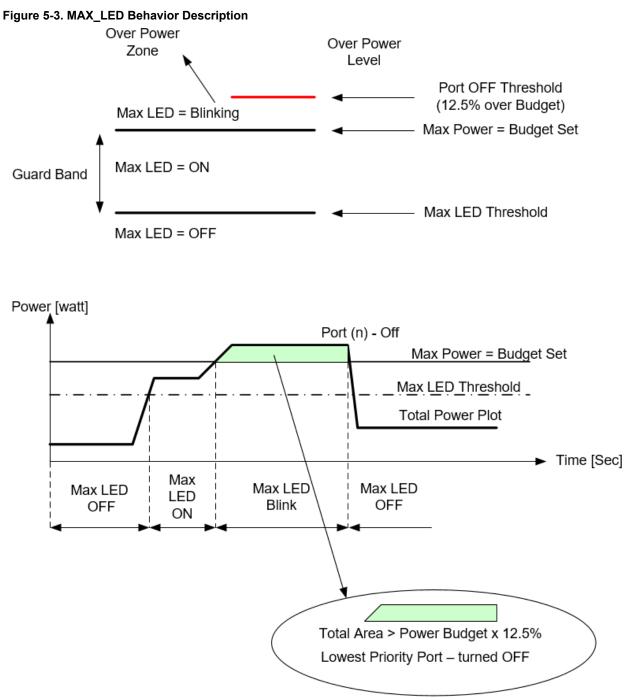
For more information on the IC timing constraint, see the Characteristics of the SDA and SCL Bus Lines for F/ A-Mode I2C-Bus table.

The EEPROM registers mapping should be identical to the PD69104B1 registers mapping.

Note: In EEPROM mode, only IC (not UART) is used by PD69104B1 for communication with the host (after finishing the configuration upload from EEPROM).

The following table lists the LED indications.

Table 5-1. LED Indications


Pin	Status	LED
LED<3:0>	Port power ON	ON
	Power management event	0.4 Hz blink
	Port over load port short circuit port failed at startup	0.8 Hz blink
	Vmain_Out of range or over temperature	All LEDs 3.3 Hz blink
	Port OFF	OFF
MAX_LED	Total power consumption is below power guard band determined by the user.	OFF
	Total power consumption is above power guard band but below total budget.	ON
	Total power consumption is above total budget, or power integral is still positive.	Blink

MAX_LED:

- Max power budget and max LED Guard Band (GB) can be configured through the following internal registers.
 - Max power budget registers: PWR_BNK0 to PWR_BNK7 (address 0x89 to 0x90)
 - Max LED guard band register: PoE_MAX_LED_GB (address 0x9F)
- PoE_MAX_LED_GB Register LSB = 1W
- Max LED reflects total power for all 4 ports
- When total power consumption < (Max Power—Guard Band) > Max LED is OFF (below the bottom line)
- When total power consumption > (Max Power—Guard Band) > Max LED is ON (between the lines)
- When total power consumption > (Max Power) > LED is BLINKING (above top line)
- When total power > budget (above top line):
 - An internal digital power integration calculation machine starts integrating power.
 - When this Integrated total power is larger than Budget + 12.5 % (RED LINE) > lowest priority port is turned OFF.
 - This specific port LED is OFF.
 - Max LED will reflect the new total power status.
 - If ports turn off due to PM, their per port LEDs will blink (in PM frequency) and MAX_LED will turn OFF.
 - Timing to shut down this port is proportional to the over power (above budget) but limited to a maximum of two seconds.

- In 4-Pairs mode, use the host LED per port only (LED 1 and LED 3 are hosts in 4-Pairs mode, LED 0 and 2 should not be used).
- In 4-Pairs mode, the port's LED blinks when the ports enter UDL condition, unlike the 2-pairs condition.

The following figure shows the MAX_LED behavior description.

For example:

- Budget = 100W, GB = 20W
- When total power = 70W, MAX LED is OFF
- When total power = 85W, MAX LED is ON (power Integrator is not activated)
- When total power = 110W, MAX LED BLINKS (power integrator is activated)—Port at lowest priority is shut OFF
- Timing to shut OFF is based on: delta(P) x T_{off} = Power Budget × 1.125
- + In this example, 10W x T_{off} = 100W × 0.125 T_{off} = 1.25 seconds
- If total power = 105W delta (P) = 5, then T_{off} = 2 seconds (the max timer)

The following table lists the power budget for the PD69104B1 device.

PS_PG3/ Bank Range Select	PS_PG2	PS_PG1	PS_PG0	Total Power Budget [W]	Remarks
0	0	0	0	144 (default value in AT Low mode)	Register PWR_BNK0
				176 (default value in AT High mode)	
0	0	0	1	140 (default value)	Register PWR_BNK1
0	0	1	0	136 (default value)	Register PWR_BNK2
0	0	1	1	132 (default value)	Register PWR_BNK3
0	1	0	0	128 (default value)	Register PWR_BNK4
0	1	0	1	124 (default value)	Register PWR_BNK5
0	1	1	0	120 (default value)	Register PWR_BNK6
0	1	1	1	116 (default value)	Register PWR_BNK7
1	0	0	0	112	Constant
1	0	0	1	108	Constant
1	0	1	0	104	Constant
1	0	1	1	100	Constant
1	1	0	0	96	Constant
1	1	0	1	92	Constant
1	1	1	0	88	Constant
1	1	1	1	84	Constant

Note: There are 16 power levels, whereas the first eight levels are registers that can be configured by users. During operation, a change in one of the PG pins changes PD69104B1's total power budget and may result in turning OFF ports. The power level can be set either by PS_PG0 to PS_PG3 pins or by the host through communication.

5.10 Reset Mechanism

To reset PD69104B1, the Reset line should be pulled low for more than 16 $\mu s.$

6. Ordering Information

The following table lists the ordering information for the PD69104B1 device. Both parts have plastic 48-pin QFN 8 mm × 8 mm and RoHS compliant/Pb-free, MSL3 package.

Table 6-1. Ordering Information

Part Number	Package	Packaging Type	Temperature T A (°C)	Part Marking
PD69104B1ILQ-TR	QFN 8 mm × 8 mm, 0.5 mm pitch 48 pins	Tape and Reel	–10 °C to 85 °C	Logo PD69104B1 Z Z e3 YYWWNNN
PD69104B1FILQ-TR	QFN 8 mm × 8 mm, 0.5 mm pitch 48 pins	Tape and Reel	–40 °C to 85 °C	Logo PD69104B1F Z Z e3 YYWWNNN

Notes:

- ZZ e3: ZZ = Random character with no meaning and e3 = second level interconnect.
- YY = Year, WW = Week, NNN = Trace Code.

7. Revision History

Revision Level	Date	Description
A	November, 2021	Converted the legacy document to Microchip format and updated the following sections: The Physical Layer Pin Descriptions

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

[©] 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9049-4

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office 355 West Chandler Blvd.	Australia - Sydney Tel: 61-2-9868-6733	India - Bangalore Tel: 91-80-3090-4444	Austria - Wels Tel: 43-7242-2244-39
	China - Beijing	India - New Delhi	Fax: 43-7242-2244-39
handler, AZ 85224-6199	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
el: 480-792-7200			
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka Tel: 81-6-6152-7160	Finland - Espoo
Veb Address:	Tel: 86-23-8980-9588		Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
tlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
el: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
/estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Idianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
lission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
ax: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
aleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
anada - Toronto			Fax: 44-118-921-5820
			1 an. 44-110-921-9020
el: 905-695-1980 'ax: 905-695-2078			

Datasheet