

6- or 10-Output, 5-Synthesizer Clock Generators

Features

Highlights

- Any-to-any frequency conversion
- Five output frequency synthesizers
- Inputs: crystal or CMOS input clock
- · Outputs: up to 10 differential, up to 20 CMOS
- Output jitter 100 fs_{RMS} typical for 156.25 MHz 12 kHz to 20 MHz
- Core power consumption <0.9W

Input Clocks

- · Crystal: 24-60 MHz
- OSCB: CMOS 10-400 MHz

Output Clocks

- Any frequency 0.5 Hz to 750 MHz
- Each OUTP/N pair can be LVDS, LVPECL, 2xC-MOS, Low-V_{CM}, or programmable differential
- In 2xCMOS mode, the P and N pins can be different frequencies (e.g. 125 MHz and 25 MHz)
- VDD per output pair, CMOS voltages 1.8V to 3.3V
- Per-synth phase adjustment, 1 ps resolution
- · Per-output duty cycle adjustment
- Precise output alignment circuitry and per-output phase adjustment
- Per-output enable/disable and glitchless start/stop (stop high or low)

General Features

- Automatic self-configuration at power-up from internal Flash memory, 7 configurations
- Numerically controlled oscillator behavior in each synthesizer
- Easy-to-configure design requires no external VCXO or loop filter components
- 5 GPIO pins with many possible behaviors, each OUT can be GPO
- SPI or I²C processor Interface
- 1.8V and 3.3V core VDD voltages
- 48-Lead 7 mm x 7 mm VQFN Package (ZL30270)
- 64-Lead 9 mm x 9 mm VQFN Package (ZL30271)
- · Easy-to-use evaluation/programming software

Applications

• Frequency conversion and frequency synthesis in a wide variety of equipment types

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

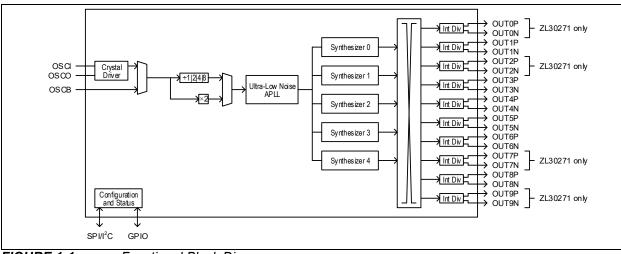
Customer Notification System

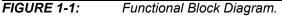
Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE OF CONTENTS

1.0 Block Diagram	5
2.0 Detailed Features	5
2.1 General	5
2.2 Synthesizer Features	5
2.3 Output Clock Features	5
2.4 General Features	6
2.5 Evaluation Software	6
3.0 Pin Diagrams	7
4.0 Pin Descriptions	
5.0 Functional Description	
•	
5.1 Output Frequency Synthesizers 5.1.1 Synthesizer Enable	
5.1.2 Synthesizer Nominal Frequency	
5.1.3 Synthesizer Frequency Offset and NCO Behavior	
5.1.4 Spread-Spectrum Modulation	
5.1.5 Synthesizer Phase Adjustment	
5.2 Output Clocks	
5.2.1 Output Enable, Signal Format, Voltage and Interfacing	
5.2.2 Output Frequency Configuration	
5.2.3 Output Phase Alignment and Phase Adjustment	
5.2.4 Output Duty Cycle/Pulse Width Adjustment	
5.2.5 Output Clock Start/Stop and Squelch 5.2.6 Output Clock Pins as General-Purpose Outputs	
5.3 Crystal or Input Clock 5.3.1 External Oscillator	
5.3.2 External Crystal	
5.3.3 Input Clock Frequency Selection	
5.4 Power Supplies	
5.4.1 Power Up/Down Sequence	
5.4.2 Power Supply Filtering	
5.4.3 Power Calculator	
5.5 Reset and Configuration Pins	
6.0 Configuration and Control	
6.1 Pre-Configured Default Values on Power-Up	
6.2 Configuration Sequence	
6.3 GPIO Configuration	
7.0 Host Interface	
7.0 Host interface	
7.1 Serial Peripheral Interface 7.1.1 Least Significant Bit (LSb) First Transmission Mode	
7.1.2 Most Significant Bit (MSb) First Transmission Mode	
7.1.3 SPI Burst Mode Operation	
7.1.4 Interfacing to a 1.8V, 2.5V, or 3.3V SPI Bus	21
7.2 I2C Interface	
8.0 Register Map	
8.1 Multi-Byte Register Values	
8.1.1 Time Between Two Write Accesses to the Same Register	
8.1.2 Time After Change to APLL Related Configuration	
8.2 Register Map List Summary	
8.2 Register Map List Summary	
9.0 Electrical Characteristics	
10.0 Performance Characteristics	
11.0 Package and Thermal Information	
12.0 Package Outline	73

12.1 Package Marking Information	73
13.0 Acronyms and Abbreviations	80


List of Figures


FIGURE 1-1: Functional Block Diagram.	5
FIGURE 3-1: 64-Lead 9 mm x 9 mm VQFN (0.5 mm pitch) for ZL30271	7
FIGURE 3-2: 48-Lead 7 mm x 7 mm VQFN (0.5 mm pitch) for ZL30270	8
FIGURE 5-1: Output Signal External Component Examples.	14
FIGURE 5-2: Crystal Equivalent Circuit/Recommended Crystal Circuit.	
FIGURE 7-1: Host Interface Pins for SPI and I2C.	
FIGURE 7-2: Serial Peripheral Interface Functional Waveform - LSB First Mode	
FIGURE 7-3: Serial Peripheral Interface Functional Waveform - MSB First Mode	
FIGURE 7-4: Example of the Burst Mode Operation.	21
FIGURE 7-5: I2C Data Write Protocol.	21
FIGURE 7-6: I2C Data Read Protocol.	
FIGURE 7-7: I2C 7-Bit Device Address.	21
FIGURE 7-8: I2C Data Write Burst Mode.	
FIGURE 8-1: Accessing Multi-Byte Register Value.	
FIGURE 9-1: Electrical Characteristics: Differential Clock Outputs.	64
FIGURE 9-2: SPI Interface Timing, LSB First Mode	
FIGURE 9-3: SPI Interface Timing, MSB First Mode.	
FIGURE 9-4: I2C Interface Timing.	
FIGURE 10-1: Typical Phase Noise, 156.25 MHz.	71
FIGURE 10-2: Typical Phase Noise, 625 MHz.	71

List of Tables

TABLE 4-1: Pin Descriptions	
TABLE 5-1: Crystal Selection Parameters	17
TABLE 7-1: Serial Interface Selection	19
TABLE 8-1: Top-Level Register Map	24
TABLE 9-1: Absolute Maximum Ratings	62
TABLE 9-2: Recommended DC Operating Conditions	62
TABLE 9-3: Electrical Characteristics: Supply Currents	61
TABLE 9-4: Electrical Characteristics: OSCB Clock Input	63
TABLE 9-5: Electrical Characteristics: Other Inputs and I/O (Bidirectional)	64
TABLE 9-6: Electrical Characteristics: OUTP/N LVDS Clock Outputs	65
TABLE 9-7: Electrical Characteristics: OUTP/N LVPECL Clock Outputs	65
TABLE 9-8: Electrical Characteristics: OUTP/N Low-Vcm clock outputs	
TABLE 9-9: Electrical Characteristics: OUTP/N CMOS Clock Outputs	66
TABLE 9-10: Electrical Characteristics: Other Outputs and I/O (Bidirectional)	67
TABLE 9-11: Electrical Characteristics: Output-to-Output Timing	67
TABLE 9-12: Electrical Characteristics: SPI Interface Timing	68
TABLE 9-13: Electrical Characteristics: I2C Interface Timing	66
TABLE 10-1: Output Clock Jitter Generation – OUTxP/N Differential	
TABLE 11-1: 9x9 QFN Package Thermal Properties	
TABLE 11-2: 7x7 QFN Package Thermal Properties	72

1.0 BLOCK DIAGRAM

2.0 DETAILED FEATURES

2.1 General

- · Operates from a single crystal resonator or clock oscillator
 - ≥48 MHz for lowest jitter
 - 9.72 MHz to 400 MHz total frequency range
- Configurable via SPI or I²C interface
- · Internal nonvolatile memory
 - Factory-configurable power-on configuration
 - Multiple time writeable/re-writeable
- Default settings can be overridden using SPI/I²C

2.2 Synthesizer Features

- · Five next-generation low-jitter, low-power, any-frequency synthesizers
- · A total of five output frequency families
- Any-to-any frequency conversion with 0 ppm error
- Easy-to-configure, completely encapsulated design requires no external VCXO or loop filter components
- Jitter suitable for OC-192, STM-64, and 1G, 10G, 40G, 100G, and 400G Ethernet jitter requirements

2.3 Output Clock Features

- ZL30270: Up to 12 single-ended outputs, up to 6 differential outputs, from any synthesizer
- ZL30271: Up to 20 single-ended outputs, up to 10 differential outputs, from any synthesizer
- · Each output can be one differential output or two CMOS outputs
- Output clocks can be any frequency from 0.5 Hz to 750 MHz (250 MHz max for CMOS)
- Output jitter 100 fs_{RMS} typical for 156.25 MHz and many other frequencies (12 kHz to 20 MHz)
- In CMOS mode, the OUTxN frequency can be an integer divisor of the OUTxP frequency (Example 1: OUT3P 125 MHz, OUT3N 25 MHz. Example 2: OUT2P 25 MHz, OUT2N 1 Hz)
- · Outputs directly interface (DC-coupled) with LVDS, LVPECL, HCSL, and CMOS components
- · Supported telecom frequencies include PDH, SDH, Synchronous Ethernet, OTN
- · Can produce clock frequencies for microprocessors, ASICs, FPGAs, and other components
- Can produce PCIe Gen 1 to 5 clocks

- · Sophisticated output-to-output phase alignment
- Per-synthesizer phase adjustment, 1 ps resolution
- · Per-output phase adjustment to accommodate trace delays or compensate for system routing paths
- Per-output duty cycle/pulse width configuration
- · Per-output enable/disable
- Per-output glitchless start/stop (stop high or low)
- · Each OUT pin can be a GPO (general-purpose output)

2.4 General Features

- · Automatic self-configuration at power-up from internal Flash memory
- · Generates output SYNC signals: 1PPS (IEEE 1588), 2 kHz or 8 kHz (SONET/SDH), or other frequency
- · JESD204B clocking: clock and SYSREF signal generation with skew adjustment
- Numerically controlled oscillator (NCO) behavior allows system software to steer synthesizer frequency with resolution better than 0.005 ppt
- · Spread-spectrum modulation available in each synthesizer (PCIe compliant)
- · Five general-purpose I/O pins each with many possible status and control options
- SPI or I²C serial microprocessor interface

2.5 Evaluation Software

- Simple, intuitive Windows-based graphical user interface
- · Supports all device features and register fields
- · Makes lab evaluation of the device quick and easy
- · Generates configuration scripts
- · Works with or without an evaluation board

3.0 PIN DIAGRAMS

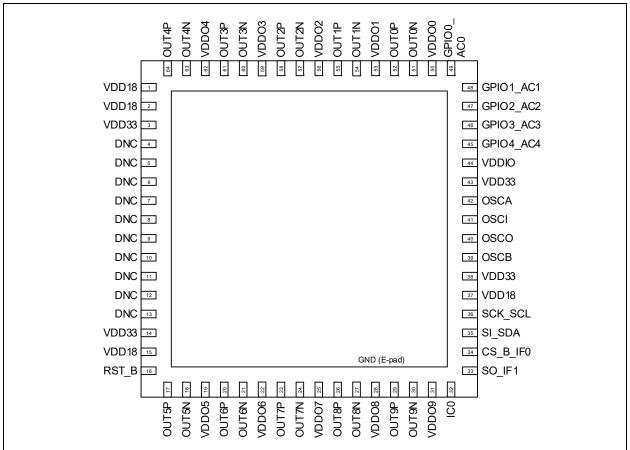


FIGURE 3-1: 64-Lead 9 mm x 9 mm VQFN (0.5 mm pitch) for ZL30271.

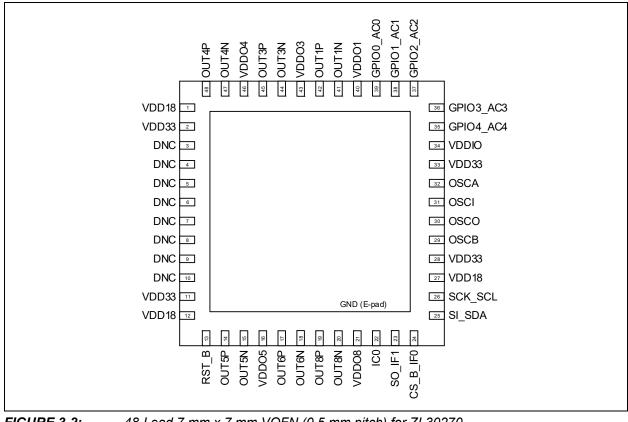


FIGURE 3-2:

48-Lead 7 mm x 7 mm VQFN (0.5 mm pitch) for ZL30270.

4.0 PIN DESCRIPTIONS

All device inputs and outputs are LVCMOS unless described otherwise. The Type column uses the following symbols: I – input, I_{PU} – input with internal pull-up resistor, I_{OPD} – input/output with internal pull-down resistor, O – output, A – analog, P – power supply pin. All GPIO and SPI/I²C interface pins have Schmitt-trigger inputs and have output drivers that can be disabled (high impedance).

7x7 Pin Number	9x9 Pin Number	Pin Name	Туре	Description				
Output C	locks							
_	52	OUTOP						
—	51	OUTON						
42	55	OUT1P						
41	54	OUT1N						
—	58	OUT2P						
_	57	OUT2N		Outputs Claska				
45	61	OUT3P		Outputs Clocks LVDS, LVPECL, programmable differential, Low-V _{CM} differential (HCSL-				
44	60	OUT3N		like) or 1 or 2 CMOS. Programmable frequency and drive strength. Pro-				
48	64	OUT4P		grammable common-mode voltage and signal amplitude in programmable				
47	63	OUT4N	0	differential mode. See Figure 5-1 for example external interface circuitry.				
14	17	OUT5P		See Table 9-6, Table 9-7, and Table 9-8 for electrical specifications for				
15	18	OUT5N	-	-	LVDS, LVPECL, and Low-V _{CM} signal format, respectively.			
17	20	OUT6P			I			
18	21	OUT6N		See Table 9-9 for electrical specifications for interfacing to CMOS inputs on neighboring devices.				
_	23	OUT7P						
	24	OUT7N	-			1	OUT7N	
19	26	OUT8P						
20	27	OUT8N						
_	29	OUT9P						
_	30	OUT9N						
Control a	nd Status							
13	16	RST_B	I _{PU}	Power-on Reset. A logic low at this input resets the device. To ensure proper operation, the device must be reset <u>after</u> power-up by <u>driving</u> the RST_B pin low. The RST_B pin should be held low for at least 2 ms. This pin has an internal 85 k Ω pull-up to VDD33 (not VDDIO). Device registers can be accessed either 500 ms after RST_B goes high or after bit 7 in register at address 0x00 goes high. Note that the supply rail for RST_B is VDD33 not VDDIO. When the host interface is I ² C, Microchip recommends RST_B be wired to a general-purpose output pin on an FPGA, microcontroller or other software-controlled component.				

TABLE 4-1: PIN DESCRIPTIONS

7x7 Pin Number	9x9 Pin Number	Pin Name	Туре	Description
39	49	GPIO0_AC 0		General Purpose I/O / Auto-Configuration
38	48	GPIO1_AC 1		General-Purpose I/O: These are general-purpose pins with many possible uses, including:
37	47	GPIO2_AC 2		 Status indicators Interrupt Output: indicates changes of device status prompting system
36	46	GPIO3_AC 3		software to read the interrupt service registers (ISR). These pins have internal pull-down resistors (80 k Ω typical). Each pull- down can be disabled by a register field. If not used, GPIO can be left
35	45	GPIO4_AC 4	IO _{PD}	unconnected. Auto-Configuration: On the rising edge of RST_B GPIO3_AC3 and GPIO4_AC4 must be 0 for normal operation, and GPIO0_AC0 to GPIO2_AC2 behave as auto-configuration pins to specify a custom config- uration stored in internal Flash. 000 = configuration 0 001 = configuration 1 010 = configuration 2 011 = configuration 3 100 = configuration 4 101 = configuration 5 110 = configuration 6 111 = factory default state (no configuration) If the specified configuration is empty in internal flash then the device pow- ers up in factory default state. When the host interface is I ² C, Microchip recommends GPIO3 be wired to a 1 k Ω resistor to ground and to a general-purpose output pin on an FPGA, microcontroller or other software-controlled component.
Host Inte	rface (SPI	or I ² C)		
26	36	SCK_SCL	I/O	SPI Clock/I²C Clock <i>SPI Clock:</i> An external SPI controller must provide the SPI clock signal on SCK. I^2C <i>Clock:</i> An external I ² C controller must provide the I ² C clock signal on the SCL pin. This pin should be externally pulled high by 1 k Ω to 5 k Ω resistor. See the I ² C bus specification for sizing guidance for this resistor, referred to as RP in that specification. This pin has an internal pull-up (typical 85 k Ω) to VDDIO.
25	35	SI_SDA	I/O	SPI Data In/I²C Data <i>SPI Data In:</i> An external SPI controller sends commands, addresses and data to the device on SI. <i>I²C Data:</i> SDA is the bidirectional data line between the device and an external I ² C controller. This pin should be externally pulled high by 1 kΩ to 5 kΩ resistor. See the I ² C bus specification for sizing guidance for this resistor, referred to as RP in that specification. This pin has an internal pull-up (typical 85 kΩ) to VDDIO.
23	33	SO_IF1	I/O	SPI Data Out/Interface Mode 1 <i>SPI Data Out:</i> After reset this pin is SO. The device outputs data to an external SPI controller on SO during SPI read transactions. <i>Interface Mode:</i> On the rising edge of RST_B this pin behaves as IF1. In I ² C interface mode IF1 specifies bit 0 of the I ² C device address. In SPI interface mode IF1 is ignored. The interface mode is set by the CS_B_IF0 pin state on the rising edge of RST_B. See Section 7.0, "Host Interface".

TABLE 4-1:PIN DESCRIPTIONS (CONTINUED)

7x7 Pin Number	9x9 Pin Number	Pin Name	Туре	Description
24	34	CS_B_IF0	I _{PU}	SPI Chip Select (Active Low)/Interface Mode 0 SPI Chip Select: After reset this pin is CS_B. An external SPI controller must assert (low) CS_B to access device registers. CS_B should not be allowed to float. Interface Mode: On the rising edge of RST_B this pin behaves as IF0: 0=I ² C, 1=SPI. This pin has an internal pull-up (typical 85 kΩ) to VDDIO.
Crystal o	r Input Cl	ock	r	
31	41	OSCI	A-I	Crystal Pins (Jitter Reference)
30	40	osco	A-O	<i>Crystal:</i> An on-chip crystal driver circuit is designed to work with an external crystal connected to the OSCI and OSCO pins. See Section 5.3.2 for crystal characteristics and recommended external components. <i>Input Clock:</i> Wire OSCI to a 1 k Ω resistor to ground. Leave OSCO unconnected.
32	42	OSCA	Ρ	Crystal Oscillator Guard Pin This pin is internally connected to crystal driver circuit ground. <i>Crystal:</i> Wire OSCA to a top-layer ring around the external crystal and a layer-2 island under the ring, the crystal and the OSCA, OSCI, OSCO, and OSCB pins. Void all other PCB layers under the layer-2 island. See Section 5.3.2 for details. <i>Input Clock:</i> Leave OSCA unconnected.
29	39	OSCB	A-I	System Clock Input (Jitter Reference) <i>Crystal:</i> When a crystal is connected to the OSCI and OSCO pins, wire OSCB to the ring and layer-2 island that are connected to OSCA. <i>Input Clock:</i> An external single-ended local oscillator or clock signal can be connected to the OSCB pin. This is a design alternative instead of a crystal connected to OSCI and OSCO. Only one crystal or clock signal should be wired to the OSC* pins at a time.
Miscellar	neous		-	
22	32	IC0	A-I/O	Internal Connection. Leave unconnected. Do not attach to any routing.
Power ar	nd Ground			
1	1			
—	2	VDD18	Р	Core Power Supply. 1.8V ±5%.
12	15	VDD10	Г	
27	37			
2	3			
11	14	VDD33	Р	Core Power Supply. 3.3V ±5%.
28	38	VDD00	1	
33	43			
34	44	VDDIO	Ρ	Digital I/O Supply. 1.8V±5% to VDD33. Supply pin for SPI/I ² C and GPIO[4:0] pins.
	50	VDDO0	Р	OUT0P/N Power Supply. 1.8V±5% to VDD33.
40	53	VDDO1	Р	OUT1P/N Power Supply. 1.8V±5% to VDD33.
-	56	VDDO2	Р	OUT2P/N Power Supply. 1.8V±5% to VDD33.
43	59	VDDO3	Р	OUT3P/N Power Supply. 1.8V±5% to VDD33.
46	62	VDDO4	Р	OUT4P/N Power Supply. 1.8V±5% to VDD33.
16	19	VDDO5	Р	OUT5P/N Power Supply. 1.8V±5% to VDD33.
_	22	VDDO6	Р	OUT6P/N Power Supply. 1.8V±5% to VDD33.

TABLE 4-1: PIN DESCRIPTIONS (CONTINUED)

7x7 Pin Number	9x9 Pin Number	Pin Name	Туре	Description	
—	25	VDD07	Р	OUT7P/N Power Supply. 1.8V±5% to VDD33.	
21	28	VDDO8	Р	OUT8P/N Power Supply. 1.8V±5% to VDD33.	
—	31	VDDO9	Р	OUT9P/N Power Supply. 1.8V±5% to VDD33.	
—	—	NC	_	Not connected Not internally connected.	
3,4,5,6, 7,8,9.10	4,5,6,7,8 ,9,10,11, 12,13	DNC	_	Do Not Connect. Do not wire anything to these pins. Leave unconnected.	
E-pad	E-pad	VSS	Р	Ground. 0 volts.	

TABLE 4-1: PIN DESCRIPTIONS (CONTINUED)

5.0 FUNCTIONAL DESCRIPTION

5.1 Output Frequency Synthesizers

5.1.1 SYNTHESIZER ENABLE

A synthesizer is enabled by setting synth_ctrl_x::en=1.

5.1.2 SYNTHESIZER NOMINAL FREQUENCY

The synthesizers can each generate any clock frequency from just above the APLL frequency divided by 64 up to APLL frequency divided by 16. For a typical case of APLL frequency being 12.0 GHz, this range is from just above 187.5 MHz up to and including 750 MHz.

The frequency for a synthesizer is programmed as B * K * M / N Hz where B, M, and N are 16-bit registers and K is a 32-bit register. The synth_freq_base, synth_freq_mult, synth_freq_m and synth_freq_n mailbox registers specify B, K, M, and N respectively.

5.1.3 SYNTHESIZER FREQUENCY OFFSET AND NCO BEHAVIOR

The frequency offset of a synthesizer can be adjusted with resolution of 2^{-48} (~0.0000035 ppb or 3.5E–15) in the synth_df_offset_manual_x register. The adjustment affects all outputs configured to follow the synthesizer. This register can be written as fast as once every 600 µs.

5.1.4 SPREAD-SPECTRUM MODULATION

For applications that require 100 MHz PCI Express clocks, the device can perform spread spectrum modulation (SSM) in any synthesizer. In SSM the frequency of the output clock is continually varied over a narrow frequency range to spread the energy of the signal and thereby reduce EMI. Spread-spectrum is enabled by setting synth_c-trl_x::spread_spectrum_en=1.

For center-spread applications, the frequency modulation is triangle-wave center-spread up to ±5% deviation from the center frequency with modulation rate configurable from 10 kHz to 100 kHz. (Values outside of these ranges are often achievable as well.)

For down-spread applications, such as PCI Express Refclk, the frequency modulation is triangle-wave down-spread of up to -10% deviation from the nominal frequency with modulation rate configurable from 10 kHz to 100 kHz. (Values outside of these ranges are often achievable as well.)

5.1.5 SYNTHESIZER PHASE ADJUSTMENT

The phase of a synthesizer when enabled is set by the synth_phase_compensation mailbox register with 1 ps step size.

5.2 Output Clocks

The device has ten OUTxP/N output clock signal pairs that each can be internally connected to any synthesizer. Each output pair has individual enable, signal format, divider, pulse width, and start/stop controls. In CMOS mode, each signal pair can become two CMOS outputs, allowing the device to have up to 20 output clock signals. Also in CMOS mode, the OUTxN pin can have an additional divider that allows the OUTxN frequency to be an integer divisor of the OUTxP frequency (example: OUT3P 125 MHz and OUT3N 25 MHz). The outputs can be aligned relative to each other and the phases of output signals can be adjusted dynamically with fine resolution.

5.2.1 OUTPUT ENABLE, SIGNAL FORMAT, VOLTAGE AND INTERFACING

To use an output, the output driver must be enabled in output_mode::signal_format and the per-output divider must be enabled by setting output_ctrl_x::en. The per-output dividers include the per-output phase adjustment/alignment circuitry and start/stop logic.

Each output pair can be disabled or configured as LVDS, LVPECL, programmable differential, Low-V_{CM} (HCSL-like), or one or two CMOS outputs. When an output is disabled, it is high impedance, and the output driver is in a low-power state. In CMOS mode, the OUTxN pin can be disabled, in-phase, or inverted vs. the OUTxP pin. Also the OUTxP pin can be disabled while the OUTxN pin is enabled. The clock to the output driver can inverted by setting output_mode::polarity. The CMOS output driver can be set to any of four drive strengths in the output_driver_level::drive mailbox register field.

When the output driver is in LVDS mode. V_{OD} is forced to 400 mV. V_{CM} can be configured in output_driver_config::vcm mailbox register field, but the default value is typically used to get V_{CM} =1.2V for LVDS.

When the output driver is in programmable differential mode the output swing (V_{OD}) can be configured in the output_driver_level::vod mailbox register field to any value from 300 mV to 900 mV in 100 mV steps, and the common-mode voltage can be configured to any voltage from 1.0V to 2.1V in 0.1V steps in the output_driver_level::vcm mailbox register field. Together these fields allow the output signal to be customized to meet the requirements of the clock receiver and minimize the need for external components. By default, programmable differential mode provides 800 mV LVPECL signal swing with a 1.2V common mode voltage. This gives a signal that can be AC-coupled to receivers that are LVPECL or that require a larger signal swing than LVDS. The output driver can also be configured for LVPECL output with standard 2.0V common-mode voltage.

In both LVDS mode and programmable differential mode, the output driver requires a DC path between OUTxP and OUTxN for proper operation. This DC path is often a 100 Ω termination resistor placed as close as possible to the receiver inputs to terminate the differential signal as shown in Figure 5-1 parts a) and b). If the receiver requires a common-mode voltage that cannot be matched by the output driver then the POS and NEG signals can be AC-coupled to the receiver after the 100 Ω resistor as shown in Figure 5-1 part b). For the case where the receiver already has a 100 Ω termination resistor and AC-coupling is required, a resistor can be placed between OUTxP and OUTxN as close as possible to the device to provide the required DC path as shown in Figure 5-1 part c). This resistor can be 100 Ω for double-termination of the signal or it can be up to 200 Ω , in which case the signal is single-terminated by the 100 Ω resistor at the receiver is larger than the double-termination case. The device provides an optional internal 200 Ω that can be enabled by setting output_driver_config::rbias=1.

When the output driver is in Low-V_{CM} mode the output format is HCSL-like with electrical specs as shown in Table 9-8.

Each output has its own power supply pin, VDDO0 through VDDO9, to allow CMOS signal swing from 1.8V to 3.3V for glueless interfacing to neighboring components.

Note that LVDS and LVPECL signal formats must have a VDDOx power supply of 2.5V or 3.3V.

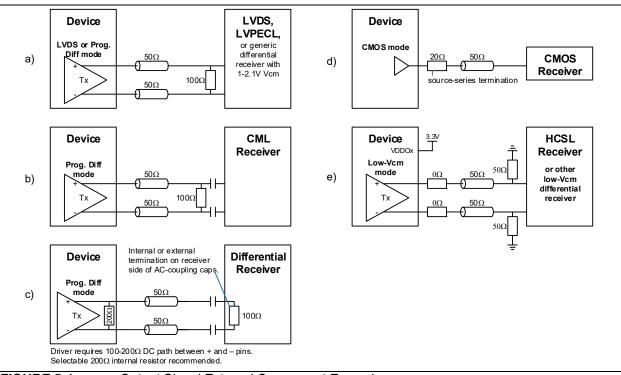


FIGURE 5-1: Output Signal External Component Examples.

5.2.2 OUTPUT FREQUENCY CONFIGURATION

The frequency of each output is determined by the configuration of the source synthesizer and the output divider. Each OUTxP/N pair can be connected to any synthesizer using output_ctrl_x::synth_sel. The output divider (output_div mailbox register) can produce signals with 50% duty cycle for all divider values including odd numbers. The maximum input frequency for the output divider is 750 MHz.

Because each output pair has its own independent divider, the device can output families of related frequencies that have a synthesizer divider frequency as a common multiple. For example, for Ethernet clocks, a 625 MHz clock from a synthesizer can be divided by four for one output to get 156.25 MHz, divided by five for another output to get 125 MHz, and divided by 25 for another output to get 25 MHz. Similarly, for SDH/SONET clocks, a 622.08 MHz clock can be divided by 4 to get 155.52 MHz, by 8 to get 77.76 MHz, by 16 to get 38.88 MHz or by 32 to get 19.44 MHz.

Two Different Frequencies in 2xCMOS Mode

When an output is in 2xCMOS mode it can be configured, using the 1100 and 1111 decodes of output_mode::signal_format, for N-pin divide mode. In this mode, an additional divider allows the OUTxN frequency to be an integer divide of the OUTxP frequency. Examples of where this can be useful:

- 125 MHz on OUTxP and 25 MHz on OUTxN for Ethernet applications
- 77.76 MHz on OUTxP and 19.44 MHz on OUTxN for SONET/SDH applications
- 25 MHz on OUTxP and 1 Hz (i.e. 1PPS) on OUTxN for telecom applications with IEEE1588 timing
- In N-pin divide mode, the output_esync_period register specifies the additional divide value.

Note that the per-output divider must be configured to divide by 2 or more in N-pin divide mode.

5.2.3 OUTPUT PHASE ALIGNMENT AND PHASE ADJUSTMENT

The device automatically maintains alignment of enabled outputs. The default behavior is rising-edge alignment of all outputs. The phase of an output signal can be shifted by 180° by inverting the polarity (output_mode::polarity). In addition, the phase of an output signal can be shifted using the output_phase_compensation register with a step size equal to ½ of the source synthesizer clock period. For example, if the synthesizer is 625 MHz then one synthesizer period is 1.6 ns and the smallest phase adjustment is 0.8 ns.

In addition to the per-output controls mentioned above, the phase of all outputs derived from the same synthesizer can be controlled with 1 ps resolution. See Section 5.1.5 for details.

5.2.4 OUTPUT DUTY CYCLE/PULSE WIDTH ADJUSTMENT

The duty cycle of the output clock can be modified using the output_width mailbox register. For normal polarity outputs, the pulse is high and the signal is low the remainder of the cycle. For inverse polarity outputs, the pulse is low and the signal is high the remainder of the cycle.

When an OUTxP/N pair is configured for two different frequencies using N-pin divide mode, the OUTxN duty cycle can be modified using the output_esync_width mailbox register.

5.2.5 OUTPUT CLOCK START/STOP AND SQUELCH

5.2.5.1 Output Start/Stop

Output clocks can be stopped high or low or high-impedance. One use for this behavior is to ensure "glitchless" output clock operation while the output is reconfigured or phase aligned with some other signal.

Each output has an output_ctrl_x register with bits to control this behavior. When bit stop_high=1 and the stop bit is asserted, the output clock is stopped after the next rising edge of the output clock. When stop_high=0 and the stop bit is asserted, the output clock is stopped after the next falling edge of the output clock. When the output is stopped, the output driver goes high-impedance if bit stop_hz=1. Internally the clock signal continues to toggle while the output is stopped. When the stop signal is deasserted, the output clock resumes on the opposite edge that it stopped on. Low-speed output clocks can take long intervals before being stopped after the stop signal goes active. For example, a 1 Hz output could take up to 1 second to stop.

When the output polarity is inverted the output stops on the opposite polarity that is specified by the stop mode field.

The output divider must be dividing by 2 or more (output_div mailbox register \geq 2) to use start/stop behavior because divider set to 1 bypasses the start-stop circuits.

Note that when the OUTxP/N pair is configured for two frequencies using N-pin divide mode the start-stop logic controls both OUTxP and OUTxN simultaneously. This is glitchless (no short high or low times) for the OUTxP signal, but the lower-frequency OUTxN signal can have high time or low time as short as one OUTxP cycle.

5.2.6 OUTPUT CLOCK PINS AS GENERAL-PURPOSE OUTPUTS

When an output pair is configured for a CMOS signal format, the OUTxP pin and the OUTxN pin each can be individually configured as a general-purpose output with similar behaviors to the GPIO pins (see Section 6.3). Setting output_g-po_en::out_p=1 configures the OUTxP pin as a GPO. Setting output_gpo_en::out_n=1 configures the OUTxN pin as a

GPO. Note that the pin must be enabled in the output_mode::signal_format register field to be a GPO. For example if signal_format="0101 – One CMOS, OCxP Enabled, OCxN High impedance" then OCxN is disabled even when output_gpo_en::out_n=1. When an output is configured as a GPO, its behavior can be output-high, output-low, or status as specified by the output_gpo_config_out_p or output_gpo_config_out_n register. When an output is a *status* GPO it can be configured to follow an internal status bit specified by output_gpo_select_out_p or output_gpo_select_out_n.

5.3 Crystal or Input Clock

All output clocks are generated from a crystal wired to the OSCI and OSCO pins or from an oscillator wired to the OSCB pin. For a list of reference oscillators, refer to ZLAN-442.

5.3.1 EXTERNAL OSCILLATOR

When using a clock oscillator as the device's clock source, connect the oscillator's output clock to the OSCB pin and set xo_config::xtal_en=0.

The jitter on output clock signals depends on the phase noise and frequency of the oscillator. For the device to operate with the lowest possible output jitter, the external oscillator should have the following characteristics:

- Phase Jitter: less than 0.1 ps_{RMS} over the 12 kHz to 5 MHz integration band
- · Frequency: The higher the better, all else being equal

Several vendors offer XO products with the required jitter. Three good choices from Vectron are the 114.285 MHz VCC1-9004-114M285, the 49.152 MHz VCC1-1545-49M152, and the 48 MHz Vectron VCC1-9003-48M0000. Each of these is a standard VCC1 XO but with a max jitter specification of 0.1 ps_{RMS} over the 12 kHz to 5 MHz integration band.

5.3.2 EXTERNAL CRYSTAL

The on-chip crystal driver circuit is designed to work with a <u>fundamental mode, AT-cut</u> crystal resonator. See Table 5-1 for recommended crystal specifications. To enable the crystal driver, set xo_config::xtal_en=1.

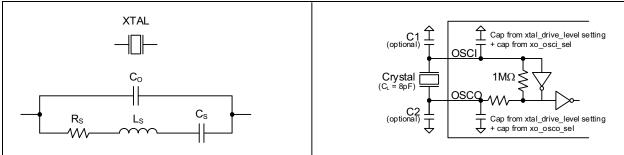


FIGURE 5-2: Crystal Equivalent Circuit/Recommended Crystal Circuit.

See Figure 5-2 for the crystal equivalent circuit and the recommended external component connections. The driver circuit design includes configurable internal load capacitors. For an 8 pF crystal the total capacitance on each of OSCI and OSCO should be 2 x 8 pF = 16 pF. To achieve these loads without external capacitors, first an appropriate crystal drive level should be set in xo_amp_sel::xtal_drive_level. This sets baseline internal capacitance numbers for OSCI and OSCO as described in the xtal_drive_level description. Then register field xo_osci_sel should be set to 16 pF minus the baseline internal OSCI capacitance minus the actual external OSCI board trace capacitance. Register field xo_osco_sel should be set in a similar manner for OSCO load capacitance. Crystals with nominal load capacitance other than 8 pF usually can be supported with only internal load capacitance. If the xo_osci_sel and xo_osco_sel fields do not have sufficient range for the application, capacitance can be increased by using external capa C1 and C2.

Users should also note that on-chip capacitors are not nearly as accurate as discrete capacitors (which can have 1% accuracy). If tight frequency accuracy is required for the crystal driver circuit, then set xo_osci_sel and xo_osco_sel both to 0 and choose appropriate C1 and C2 external capacitors with 1% tolerance.

The crystal and traces (and two external capacitors sites C1 and C2, if included) should be placed on the board as close as possible to the OSCI and OSCO pins to reduce crosstalk of active signals into the oscillator. No active signals should be routed under the crystal circuitry. A ground ring should surround the crystal (and optional C1 and C2) from the OSCA pin to the OSCB pin. Layer 2 below the crystal (and optional C1 and C2) should have a ground island that is connected to the layer 1 ground ring with multiple vias along the layer-1 ground ring. All other board layers should be void in the area inside the ground ring.

Note: Crystals have temperature sensitivities that can cause frequency changes in response to ambient temperature changes. In applications where significant temperature changes are expected near the crystal, it is recommended that the crystal be covered with a thermal cap, or an external XO or TCXO should be used instead.

Parameter			Min.	Тур.	Max.	Units
Crystal Oscillation Frequency, (Note 1)		f _{OSC}	25	—	60	MHz
Shunt Capacitance		Co	_	2	5	pF
Load Capacitance		CL	_	8	—	pF
Equivalent Series Resistance (ESR), (Note 2)	f _{OSC} < 40 MHz	R _S	_	—	60	Ω
Equivalent Series Resistance (ESR), (Note 2)	f _{OSC} > 40 MHz	R _S	_	—	50	Ω
Maximum Crystal Drive Level			100	100, 200, 300	_	μW
Crystal Frequency Stability vs. Power Supply				0.2	0.5	ppm per 10% ∆ in VDD

TABLE 5-1:CRYSTAL SELECTION PARAMETERS

Note 1: Higher frequencies give lower output jitter, all else being equal.

2: These ESR limits are chosen to constrain crystal drive level to less than 100 μW. If the crystal can tolerate a drive level greater than 100 μW then proportionally higher ESR is acceptable.

5.3.3 INPUT CLOCK FREQUENCY SELECTION

The frequency of the device's input clock on the OSCI/OSCO pins or the OSCB pin is set with the following procedure:

- 1. Reset the device by asserting then deasserting the RST_B pin as described in Section 5.5.
- 2. Set xo config::xtal en to 0 for clock signal on OSCB, or to 1 for crystal on OSCI/OSCO
- 3. Set xo_config::simple_doubler_en=1 if enabling the internal crystal doubler
- 4. Set sys_apll_primary_div_int, sys_apll_primary_div_frac, and sys_apll_secondary_div so that: VCO_freq = [OSC_freq * 2^{double} * (sys_apll_primary_div_int + sys_apll_primary_div_frac / 2³⁶) * sys_apll_secondary_div] is within 1% of 12 GHz. The variable double is 1 when simple_doubler_en=1 and 0 otherwise. The GUI has prelabled options for each of these register fields to support commonly used XO frequencies such as 48 MHz, 49.152 MHz, and 114.285 MHz.
- 5. Set the central_freq_offset register appropriately whenever the APLL VCO frequency is not exactly 12.0 GHz. See the register description for calculations and examples. The GUI automatically calculates this value.
- 6. Set master_clk_cfg_ready=1.
- 7. Verify the setup is good by reading the master_clk_status register. Bit 3 (sys_apll_lock) should be 0 to indicate the APLL is locked. Bits 1:0 (state) should be 11 to indicate 'ready'. Also read the info register and verify bit 7 (ready) is 1.

5.3.3.1 Crystal Doubler

When operating with a crystal as the input clock source, it is usually beneficial to enable the crystal doubler (xo_config::simple_doubler_en=1). This doubles the input clock frequency to the APLL, which reduces random jitter with little or no adverse effect for most frequency plans. Note that the doubler causes a spur at the OSCI frequency. If this spur falls within the output jitter band of interest then the doubler can be disabled if needed.

5.4 **Power Supplies**

Most of the device is powered from VDD33 (3.3V) and VDD18 (1.8V). Each OUTxP/N output pair can be independently powered with 1.5V, 1.8V, 2.5V, or 3.3V on a VDDOx supply. (The 1.5V option only applies for CMOS output signal formats. The 1.8V option only applies for CMOS and LVDS.) Digital I/O (SPI/I²C interface pins, GPIOs) are powered from VDDIO.

5.4.1 POWER UP/DOWN SEQUENCE

There are no sequence requirements for power-up or power-down on these devices.

5.4.2 POWER SUPPLY FILTERING

Jitter levels on the output clocks may increase if the device is exposed to excessive noise on its power pins. For optimal jitter performance, the device should be isolated from noise on power planes connected to its 3.3V and 1.8V supply pins. Microchip application note ZLAN-810 provides power supply filtering recommendations.

5.4.3 POWER CALCULATOR

The GUI software for the device includes a useful power calculator that estimates power utilization for a specific configuration or application.

5.5 Reset and Configuration Pins

To ensure proper operation, the device must be reset <u>after</u> power-up by driving the RST_B pin low. The RST_B pin should be held low for at least 2 ms after all power supplies are within 5% of nominal voltage. Following reset, the device operates under specified default settings.

The RST_B input has Schmidt trigger properties to prevent level bouncing.

Pin SO_IF1 and CS_B_IF0 are used to configure the device on power up. These pins must be held at the desired level for at least 550 ms after RST_B goes high. Then they can used for normal functions as described in Section 7.0.

By default all outputs are disabled to allow programing of required frequencies before enabling the outputs.

6.0 CONFIGURATION AND CONTROL

The SPI/I²C host interface allows field programmability of the device's configuration registers. As an example, the user might start the device at nominal synchronous Ethernet rate and then switch to an OTN FEC rate after the link's FEC rate is negotiated.

6.1 Pre-Configured Default Values on Power-Up

Upon power up, device registers have values as described in the Register Map section. If the device should start up with settings different from default, it can be pre-configured (pre-programmed) by Microchip. The device can be pre-configured with up to seven different custom configurations. Any of the custom configurations can be selected just after reset using the GPIO0_AC0, GPIO1_AC1, and GPIO2_AC2 pins. The values of these pins are ignored at reset if the device is not pre-configured.

6.2 Configuration Sequence

After power-up or reset the device has sequence requirements for configuration. The required sequence is as follows:

- Poll for device ID in the id register. During initial boot the device does not respond to SPI or I²C accesses until it is ready. System software can poll the id register to wait for the end of this interval. While not ready, the device returns 0 for SPI read accesses and NACK over the I²C interface. When ready the device returns the device ID value.
- 2. Configure the APLL. See Section 5.3 and its subsections, especially the procedure in Section 5.3.3.
- 3. Configure the rest of the device in all other registers.

Note that the device does not accept writes to mailbox registers before master_clk_status::sys_apll_lock=1 and info::ready=1.

Configurations saved by the evaluation board GUI follow this sequence. Microchip recommends creating configuration files using the GUI. System software can follow the write sequence in the configuration files after system power-up or reset.

6.3 **GPIO Configuration**

The device GPIO are configured using the SPI/I²C. Each GPIO pin can be programmed independently in the gpio_con-fig_x register to be:

General Input: In this mode, system software can read the logic level of the corresponding pin (either high or low). For example, the logic level of GPIO0 is reflected in the register gpio_in_status, bit 0.

General Output: In this mode, system software can configure a GPIO pin to drive either high or low. For example, GPIO0 would drive the value specified in register gpio_out_4_0, bit 0.

Control Inputs: In this mode, the user can control the device function via GPIOs. For example, the function controlled by GPIO0 is selected by configuring gpio_select_0. Nearly any device function that is controllable through the device registers can be controlled via GPIO. A small subset of control functions is shown below:


- Enable/disable differential and single ended outputs
- · Stop/start output clocks

Status Outputs: In this mode the device can connect a status value from any of the device status registers to the corresponding GPIO pin. For example GPIO0 mirrors a bit from the status register specified in register gpio_select_0.

The GPIO outputs are updated and the GPIO inputs are read by the device approximately every 10 ms to 25 ms.

7.0 HOST INTERFACE

A host processor controls and receives status from the device using either a SPI or I²C interface.

The selection between I²C and SPI interfaces is performed at start-up using the CS_B_IF0 pin. This pin must be held at the required level for 550 ms after the de-assertion of the RST_B pin, after which time it can be released and used as a the SPI chip-select signal if SPI mode is selected at reset.

TABLE 7-1: SERIAL	INTERFACE SELECTION
-------------------	---------------------

CS_B_IF0	Serial Interface
0	l ² C
1	SPI

Both interfaces use a seven-bit address field. The device register space is divided into multiple pages of 127 registers each. Page 0 has addresses 0x000 to 0x07E, Page 1 has addresses 0x080 to 0x0FE and so on. The host selects between the pages by writing to the Page Select register (address 0x7F on each page). For example, writing a 0x03 to the page select register makes registers 0x180 to 0x1FE available through the host interface.

The device registers are divided into direct-access and indirect-access (mailbox) registers. The direct-access registers (Pages 0 to 9) are accessed simply by reading or writing specific memory locations. The mailbox access registers (Pages 10+) have shared address space. For example, Page 14 is shared among all outputs. To initialize one of the outputs, the user needs to specify which output needs to be updated (output_mb_mask register) and then read the mailbox by setting the rd bit high in output_mb_sem (output mailbox semaphore). The user then changes register values in the mailbox as needed and then issues the write command by setting the wr bit high in output_mb_sem. The device then transfers values from the mailbox to internal registers for that output. The behavior of other mailbox register pages is similar.

7.1 Serial Peripheral Interface

The serial peripheral interface (SPI) allows read/write access to the device's registers.

The SPI interface operates in half-duplex processor mode. During the data-out portion of a read cycle, the SI_SDA pin is ignored by the device. During a write cycle, the driver on the SO_IF1 pin remains disabled. The SPI interface is compatible with both 4-pin and 3-pin SPI controllers. In 3-pin configuration, when externally connecting SI_SDA and SO_IF1, a 1 k Ω series resistor is recommended on the SO_IF1 pin to limit current during bus turnaround and possible contention due to programming errors. The SO_IF1 driver is enabled on the rising edge of SCK_SCL that latches the final read address bit and disabled on the rising edge of CS_B_IF0.

The SPI interface supports two modes of access: Most Significant bit (MSb) first transmission and Least Significant bit (LSb) first transmission. The mode is automatically selected based on the state of **SCK_**SCL pin when the **CS_B_**IF0 pin is active. If the **SCK_**SCL pin is low during **CS_B_**IF0 activation, then MSb-first timing is selected. If the **SCK_**SCL pin is high during **CS_B_**IF0 activation, then LSb-first timing is assumed.

The SPI port expects 1 bit to differentiate between read and write operation followed by 7-bit addressing and 8-bit data transmission. During SPI access, the **CS_B_IFO** pin must be held low until the operation is complete. Burst read/write mode is also supported by leaving the chip select signal **CS_B_IFO** low after a read or a write. The register address is automatically incremented after each data byte is read or written.

Functional waveforms for the LSb-first and MSb-first modes, and burst mode are shown in Figure 7-2, Figure 7-3, and Figure 7-4. Timing characteristics are shown in Table 9-12, Figure 9-2, and Figure 9-3.

CS_B
scк —
Read from the device
SIRd A0 A1 A2 A3 A4 A5 A6X X X X X X X X X
SO D0 D1 D2 D3 D4 D5 D6 D7
Write to the device
SI Wr A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7
SO
Command/Address Data

7.1.1 LEAST SIGNIFICANT BIT (LSb) FIRST TRANSMISSION MODE

7.1.2 MOST SIGNIFICANT BIT (MSb) FIRST TRANSMISSION MODE

CS_B	
sck	
Read from	n the device
SI	Rd A6 A5 A4 A3 A2 A1 A0 X
SO	D7 D6 D5 D4 D3 D2 D1 D0
Write to th	ne device
SI	Wr A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
SO	High Impedance
	Command/Address Data

Serial Peripheral Interface Functional Waveform - MSB First Mode.

7.1.3 SPI BURST MODE OPERATION

7.1.4 INTERFACING TO A 1.8V, 2.5V, OR 3.3V SPI BUS

The supply voltage for the SPI interface pins is the VDDIO pin. This pin should be wired to the desired supply voltage for the SPI interface. Note that VDDIO is also the supply pin for the GPIO0 through GPIO4 pins.

7.2 I²C Interface

The I²C interface supports version 2.1 (January 2000) of the Philips I²C bus specification. The device cannot control the bus, it can only respond to an external controller. The device uses 7-bit addressing, and can operate in Standard (100 kbits/s) and Fast (400 kbits/s) modes. Burst mode is supported in both standard and fast modes.

Data is transferred MSb first and occurs in 1 byte blocks. As shown in Figure 7-5, a write command consists of a 7-bit device address, a R/W indicator bit, a 7-bit register address (0x00 - 0x7F), and 8-bits of data.

	Byte	Byte	Byte
Data Write	S Dev Addr[6:0]	W ACK x Reg Addr	r[6:0] ACK Data[7:0] ACK P
S Start (co	ontroller)	W Write	Controller Initiated
P Stop (co	ntroller)	R Read	Device Initiated
ACK Acknow	wledge		

FIGURE 7-5:

I²C Data Write Protocol.

A read is performed in two stages. A data write is used to set the register address, then a data read is performed to retrieve the data from the set address. This is shown in following figure.

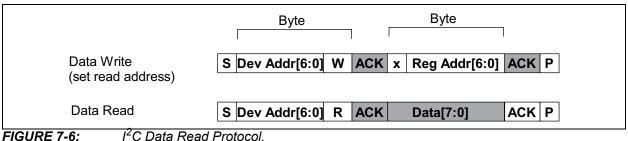


FIGURE 7-6: I⁻C Data Read Protocol.

The 7-bit device address has 6 fixed address bits plus the least-significant address set by the SO_IF1 pin at reset. This allows multiple devices to share the same I^2C bus. The address configuration is shown in following figure.

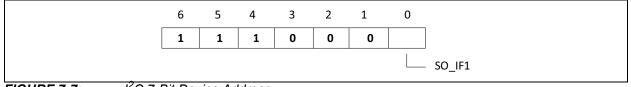


FIGURE 7-7:

I²C 7-Bit Device Address.

The device also supports burst mode which allows multiple data write or read operations with a single specified address. This is shown in Figure 7-8 (write) and Figure 7-6 (read). The first data byte is written/read to/from the specified address, and subsequent data bytes are written/read using an automatically incremented address. The maximum auto increment address of a burst operation is 0x7F and operations beyond this limit are ignored. In other words, the auto increment address does not wrap around to 0x00 after reaching 0x7F.

Data Write (Bu	st Mo	de)									
S Dev Addr[6:0) W	ACK	x	Reg Addr[6:0) ACK	Data[7:0]	ACK	Data[7:0] ACK	Data[7:0]	ACK P
						L		J		I	
						Write to)	Write to)	Write to)
	_					Reg Addr[6:0]	Reg Addr[6:0] +1	Reg Addr[6:0] +2
GURE 7-8:	1 ² 0	C Data	ı W	rite Burst M	lode.						

8.0 REGISTER MAP

The device is controlled by accessing registers through the serial interface (SPI or I^2C). The device can be configured to operate in unmanaged (automatic) mode, which minimizes its interaction with system software, or it can operate in a managed (manual) mode where the system software controls operation of the device.

The register map is big-endian format.

A simple way to generate configuration for the device is to use the evaluation software (GUI), which can operate connected to an evaluation board or standalone (without an evaluation board). Through the GUI, the user can quickly set all required parameters and save the configuration to a text file which can then be used by the system processor to load and configure the device.

8.1 Multi-Byte Register Values

The device register map is based on 8-bit register access. Therefore, register values that require more than 8 bits are spread out over multiple registers and accessed in 8-bit segments. When accessing multi-byte register values, it is important that the registers are accessed in the proper order. The 8-bit register containing the most significant byte (MSB) must be accessed first, and the register containing the least significant byte (LSB) must be accessed last. An example of a multi-byte register is shown in Figure 8-1. When writing a multi-byte value, the value is latched when the LSB is written.

In this example the central_freq_offset register has the value 0x046AAAAB, a 32-bit value spread over four 8-bit registers. The MSB is contained in address 0x000B and the LSB in 0x000E. When reading or writing this multi-byte value, the MSB must be accessed first, then the middle bytes, and the LSB last.

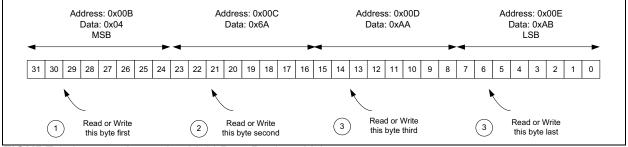


FIGURE 8-1: Accessing Multi-Byte Register Value.

8.1.1 TIME BETWEEN TWO WRITE ACCESSES TO THE SAME REGISTER

The user should not write to the same register faster than 25 ms. Some registers that control APLL operation require larger delays after writing in order for the state and configurations to be updated. One example is the register central_freq_offset requires much longer time, but this register should not be changed dynamically.

For the page selection register (at addresses 0x07F, 0x0FF, 0x17F, etc.), there is no waiting time required between write accesses.

8.1.2 TIME AFTER CHANGE TO APLL RELATED CONFIGURATION

The user should wait for appropriate time after configuration of APLL related configuration prior to updating other registers. One example is the register central_freq_offset.

8.2 Register Map List Summary

The following tables provides a summary of the registers available for status and configuration of the device.

Note that devices do not respond to mailbox register accesses after power-up or reset until system software configures the APLL registers and sets master_clk_cfg_ready to 1 and the device responds by setting the **ready** bit in the info register.

Address	Register Map Page
0x000	Register Map Page 0, General
0x080	Register Map Page 1, GPIOs
0x100	Register Map Page 2, Status
0x480	Register Map Page 9, Synth and Output
0x680	Register Map Page 13, Synth Mailbox
0x700	Register Map Page 14, Output Mailbox

TABLE 8-1: TOP-LEVEL REGISTER MAP

Register Map Page 0, General

Address	Name	Default	Туре
0x0000	info	0x21	R
0x0001:0x0002	id	see description	R
0x0003	revision	0x03	R
0x0005:0x0006	fw_ver	contact Microchip	R
0x0007:0x000A	custom_config_ver	0xFFFFFFF	R/W
0x000B:0x000E	central_freq_offset	0x02769140	R/W
0x0018	reset_status	0x00	R/W
0x0019:0x001A	gpio_at_startup	0x0000	R
0x0021	xo_amp_sel	0x00	R/W
0x0022	xo_osci_sel	0x00	R/W
0x0023	xo_osco_sel	0x00	R/W
0x0025	xo_tst_ctrl	0x00	R/W
0x0026	xo_config	0x00	R/W
0x0029	sys_apll_source_config	0x00	R/W
0x002A	sys_apll_primary_div_int	0x34	R/W
0x002B:0x002F	sys_apll_primary_div_frac	0x000000000	R/W
0x0030	sys_apll_secondary_div	0x02	R/W
0x0032	master_clk_status	0x00	R
0x0033	master_clk_cfg_ready	0x00	R/W
0x003E	i2c_device_addr	0x38	R
0x0050:0x006F	available for customer use	0x00	R/W
0x007E	uport	0x00	R/W
0x007F	page_sel	0x00	R/W

Register Map Page 1, GPIOs

Address	Name	Default	Туре
0x00E0:0x00E1	gpio_select_0	0x0000	R/W
0x00E2	gpio_config_0	0x00	R/W
0x00E3:0x00E4	gpio_select_1	0x0000	R/W

Address	Name	Default	Туре
0x00E5	gpio_config_1	0x00	R/W
0x00E6:0x00E7	gpio_select_2	0x0000	R/W
0x00E8	gpio_config_2	0x00	R/W
0x00E9:0x00EA	gpio_select_3	0x0000	R/W
0x00EB	gpio_config_3	0x00	R/W
0x00EC:0x00ED	gpio_select_4	0x0000	R/W
0x00EE	gpio_config_4	0x00	R/W
0x00EF	gpio_out_4_0	0x00	R/W
0x00F0	gpo_out_7_0	0x00	R/W
0x00F1	gpo_out_15_8	0x00	R/W
0x00F2	gpo_out_19_16	0x00	R/W
0x00F3	gpio_freeze_4_0	0x00	R/W
0x00FE	uport	0x00	R/W
0x00FF	page_sel	0x00	R/W

Register Map Page 1, GPIOs (Continued)

Register Map Page 2, Status

Address	Name	Default	Туре
0x0140	gpio_in_status	0x00	R
0x017E	uport	0x00	R/W
0x017F	page_sel	0x00	R/W

Register Map Page 9, Synth and Output

Address	Name	Default	Туре
0x0480	synth_ctrl_0	0x00	R/W
0x0481	synth_ctrl_1	0x00	R/W
0x0482	synth_ctrl_2	0x00	R/W
0x0483	synth_ctrl_3	0x00	R/W
0x0484	synth_ctrl_4	0x00	R/W
0x0485:0x0489	synth_df_offset_manual_0	0x000000000	R/W
0x048A:0x048E	synth_df_offset_manual_1	0x000000000	R/W
0x048F:0x0493	synth_df_offset_manual_2	0x000000000	R/W
0x0494:0x0498	synth_df_offset_manual_3	0x000000000	R/W
0x0499:0x049D	synth_df_offset_manual_4	0x000000000	R/W
0x04A8	output_ctrl_0	0x01	R/W
0x04A9	output_ctrl_1	0x01	R/W
0x04AA	output_ctrl_2	0x01	R/W
0x04AB	output_ctrl_3	0x01	R/W
0x04AC	output_ctrl_4	0x01	R/W
0x04AD	output_ctrl_5	0x01	R/W
0x04AE	output_ctrl_6	0x01	R/W
0x04AF	output_ctrl_7	0x01	R/W
0x04B0	output_ctrl_8	0x01	R/W

Register Map Page 9, Synth and Output (Continued)

Address	Name	Default	Туре
0x04B1	output_ctrl_9	0x01	R/W
0x04FE	uport	0x00	R/W
0x04FF	page_sel	0x00	R/W

Register Map Page 13, Synth Mailbox

Address	Name	Default	Туре
0x0682:0x0683	synth_mb_mask	0x0001	R/W
0x0684	synth_mb_sem	0x00	R/W
0x0686:0x0687	synth_freq_base	0x0001	R/W
0x0688:0x068B	synth_freq_mult	0x12A05F20	R/W
0x068C:0x068D	synth_freq_m	0x0001	R/W
0x068E:0x068F	synth_freq_n	0x0001	R/W
0x0690:0x0691	synth_phase_compensation	0x0000	R/W
0x06FE	uport	0x00	R/W
0x06FF	page_sel	0x00	R/W

Register Map Page 14, Output Mailbox

Address	Name	Default	Туре
0x0702:0x0703	output_mb_mask	0x0001	R/W
0x0704	output_mb_sem	0x00	R/W
0x0705	output_mode	0x00	R/W
0x0706	output_driver_level	0x52	R/W
0x0707:0x0708	output_driver_config	0x0000	R/W
0x070C:0x070F	output_div	0x0000002	R/W
0x0710:0x0713	output_width	0x0000002	R/W
0x0714:0x0717	output_esync_period	0x0000002	R/W
0x0718:0x071B	output_esync_width	0x0000002	R/W
0x0720:0x0723	output_phase_compensation	0x0000000	R/W
0x0724	output_gpo_en	0x00	R/W
0x0725:0x0726	output_gpo_select_out_p	0x0000	R/W
0x0727	output_gpo_config_out_p	0x01	R/W
0x0728:0x0729	output_gpo_select_out_n	0x0000	R/W
0x072A	output_gpo_config_out_n	0x01	R/W
0x077E	uport	0x00	R/W
0x077F	page_sel	0x00	R/W

REGISTER LIST PAGE 0, GENERAL

Address:	0x0000	
Name:	info	
Default:	0x21	
Туре:	R	
Bit Field	Function Name	Description
7	ready	The device sets this status bit after the APLL (and crystal driver if in use) have been successfully configured and the APLL is locked. This bit indicates that the device is fully ready and mailbox registers can be read and written.
6:0	reserved	—

Address:	0x0001:0x0002	
Name:	id	
Default:	see below	
Туре:	R	
Bit Field	Function Name	Description

Address:	0x0003		
Name:	revision		
Default:	0x03		
Туре:	R		
Bit Field	Function Name	Description	
15:0	-	Chip revision number. 0x02 = Revision B 0x03 = Revision C	

Address:	0x0005:0x0006	
Name:	fw_ver	
Default:	contact Microchip	
Туре:	R	
Bit Field	Function Name	Description
15	fw_dirty	Firmware dirty indicator. This bit is set when the firmware is built from source code that has not been checked-in to the firmware repository. This bit should never be set in released firmware.
15:0	—	Firmware revision number. This field indicates the firmware revision of the source code used to build this image.

Address:	0x0007:0x000A	
Name:	custom_config_ver	
Default:	0xFFFFFFF	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	—	This register is intended (but not limited) to be used as con- figuration version number. Up to 7 custom register configu-

Address:	0x000B:0x000E	
Name:	central_freq_offset	
Default:	0x02769140	
Туре:	R/W	
Bit Field	Function Name	Description
31:0		2's complement binary value of these bits represent central frequency offset for the device. This value indicates the fractional frequency offset of the actual VCO frequency vs. 12.0 GHz. Expressed in steps of $\pm 2^{-32}$ of nominal setting.The actual VCO frequency (f_vco) is the product of the XO frequency, the primary divider specified in sys_apll_prima- ry_div_int (0x002A) and sys_apll_primary_div_frac (0x002B to 0x002F), and the secondary divider specified in sys_apll_secondary_div (0x0030). The nominal VCO fre- quency (f_nom) is always 12.0 GHz.The value to be programmed in this register should satisfy the following relationships: $1 + X * 2^{-32} = f_{nom} / f_{vco}$, if f_vco < f_nom $X * 2^{-32} = f_{nom} / f_{vco}$, if f_vco < f_nom.

Address:	0x0018	
Name:	reset_status	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:1	reserved	—
0	reset	This field can be used to detect when a reset has occurred. During reset, this bit is cleared. The host controller can write a one to this bit, and then periodically read the register

Address:	0x0019:0x001A	
Name:	gpio_at_startup	
Default:	0x0000	
Туре:	R	
Bit Field	Function Name	Description
15:5	reserved	—
4	gpio4	The value of GPIO4 latched at device reset.
3	gpio3	The value of GPIO3 latched at device reset.
2	gpio2	The value of GPIO2 latched at device reset.
1	gpio1	The value of GPIO1 latched at device reset.
0	gpio0	The value of GPIO0 latched at device reset.

Address:	0x0021	
Name:	xo_amp_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:5	reserved	—
4	dis_hyst	Disables the normal hysteresis circuits of the OSCB pin receiver
3	en_fdbk	Disables hysteresis and connects a 250 kΩ resistor to 1.25V to the OSCB pin for DC-bias. This allows AC-cou- pling a clock signal. Enabling this bit is not recommended for rail-to-rail CMOS signals ≥1.8V. This feature and exter- nal AC-coupling are only for signal amplitudes <1.8V.
2:0	xtal_drive_level	Affects the capacitive loading of the OSCI pin. Used to select the total XTAL loading (which affects the oscillation frequency). Resolution is 0.25 pF and range is 0 pF to 11.75 pF.

Address:	0x0022	
Name:	xo_osci_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0		Affects the capacitive loading of the OSCI pin. Used to

Address:	0x0023	
Name:	xo_osco_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0	_	Affects the capacitive loading of the OSCO pin. Used to select the total XTAL loading (which affects the oscillation frequency), Resolution is 0.25 pF and range is 0 pF to 11.75 pF.

Address:	0x0025	
Name:	xo_tst_ctrl	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	_	The bits in this register control the crystal driver circuit series resistance for OSCO. Each bit controls a resistor, and the resistors are arranged in parallel. All-ones enables 72 k Ω . 0 = Enable 562.6 Ω resistor
6	—	0 = Enable 1.125 kΩ resistor
5	—	0 = Enable 2.25 kΩ resistor
4	—	0 = Enable 4.5 kΩ resistor
3	—	0 = Enable 9 kΩ resistor
2	—	0 = Enable 18 kΩ resistor
1	—	0 = Enable 36 kΩ resistor
0	—	0 = Enable 72 kΩ resistor

Address:	0x0026	
Name:	xo_config	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:6	reserved	—
5	xtal_en	 0 = Disable crystal oscillator. The XO clock comes from an external XO connected to the OSCB pin. 1 = Enable crystal oscillator. (Must also set xtal_drive_level > 1 at in xo_amp_sel register (0x0021).
4:2	reserved	—
1	simple_doubler_en	Enable the simple crystal doubler. Only appropriate when using a crystal as input clock source. Not for use with an XO. 0 = Disable 1 = Enable
0	passclk	When this bit is set, the XO clock is passed directly to the APLL, bypassing inversion, division selection and the simple doubler. The simple doubler should be disabled in this case.

Address:	0x0029	
Name:	sys_apll_source_config	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6	pfd_gain_boost	When the doubler is disabled, setting this bit minimizes out- put jitter in most cases. 0 = Disable 1 = Enable
5:4	div	Divide the source clock for the APLL 00 = Divide by 1 01 = Divide by 2 10 = Divide by 4 11 = Divide by 8
3	invert	APLL source invert 0 = Not inverted 1 = Inverted
2:0	reserved	—

Address:	0x002A	
Name:	sys_apll_primary_div_int	
Default:	0x34	
Туре:	R/W	
Bit Field	Function Name	Description
7:0	-	System APLL primary divider (integer part). Range is 16 to 67. If any other value is written to this register, the default value 0x34 (52) is used.

Address:	0x002B:0x002F	
Name:	sys_apll_primary_div_frac	
Default:	0x000000000	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	_	System APLL primary divider (fractional part). Only 36 bits are used. The 4 most significant bits are ignored.

Address:	0x0030	
Name:	sys_apll_secondary_div	
Default:	0x02	
Туре:	R/W	
Bit Field	Function Name	Description
7:6	reserved	—
5:0	div	System APLL secondary divider. Range is 1 to 63. If any other value is written to this register, the divider value is set to 1.

Address:	0x0032	
Name:	master_clk_status	
Default:	0x00	
Туре:	R	
Bit Field	Function Name	Description
7:4	reserved	—
3	sys_apll_lock	0 = APLL is locked. 1 = APLL lost lock.
2	cfg_invalid	Invalid host system clock info 0 = Valid 1 = Invalid
1:0	state	System clock state: 00 = Not started 01 = Waiting for host config information 10 = In progress 11 = Ready

Address:	0x0033	
Name:	master_clk_cfg_ready	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:1	reserved	—
0	ready	 0 = System clock configuration is not ready 1 = System clock configuration is ready Whenever changing system clock configuration, set this bit to 0 first, then apply the changes and finally set the bit to 1. The device only latches system clock configuration into hardware on the first 0-to-1 transition of this bit after reset.

Address:	0x003E	
Name:	i2c_device_addr	
Default:	0x38	
Туре:	R	
Bit Field	Function Name	Description
7:0	_	Indicate I ² C device address upper six bits (bit[6:1]) if uPort is configured to I ² C.

Address:	0x007E	
Name:	uport	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	lockout	When set, this field causes all other uport registers to be read-only. When zero, all registers are open for writing.
6:1	reserved	—
0	status	This field indicates if microport attempted access was been successful. The register content is 0x00 if the access was successful.

Address:	0x007F	
Name:	page_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0		Unsigned binary value of these bits represents selected page for SPI/I ² C access: 0x00 = page 0 (first 128 bytes) 0x01 = page 1 (second 128 bytes) 0x02 = page 2 (third 128 bytes) 0x03 = page 3 (fourth 128 bytes) 0x04 = page 4 (fifth 128 bytes) 0x05 = page 5 (sixth 128 bytes) 0x06 = page 6 (seventh 128 bytes) 0x07 = page 7 (eighth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x09 = page 9 (tenth 128 bytes) 0x0A = page 10 (eleventh 128 bytes) 0x0A = page 10 (eleventh 128 bytes) 0x0B = page 11 (twelfth 128 bytes) 0x0C = page 12 (thirteenth 128 bytes) 0x0D = page 13 (fourteenth 128 bytes) 0x0E = page 14 (fifteenth 128 bytes) 0x0F = page 15 (sixteenth 128 bytes) 0x10-0xFF = reserved

REGISTER LIST PAGE 1, GPIOs

Address:	0x00E0:0x00E1	
Name:	gpio_select_0	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	bit	Note: The fields in this register are only useful when GPIO0is configured as a Status or Control.This field works with the page and offset field to select asingle bit in the host register map. This field selects the bitposition of the selected register byte.
11:8	page	This field works with the bit and offset fields to select a sin- gle bit in the host register map. This field selects the page.
7	reserved	—
6:0	offset	When GPIO0 is configured as a Status or Control, then this field works with the bit and page fields to select a single bit in the host register map. Specifically, this field selects the offset within the page.

Address:	0x00E2	
Name:	gpio_config_0	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:3	reserved	—
2:0	ctrl	This field determines the mode of operation for GPIO0. Register 0x0E0-0x0E1 (gpio_select_0) should be set before writing this reg- ister, if the mode being set requires additional configuration. How- ever, the new gpio_select value must refer to an register that is also valid for the old mode because GPIO0 would still be in the old mode before this register is written. Therefore, it is much safer to first set GPIO0 to input or output mode, then change gpio_se- lect_0, and then set GPIO0 to the new mode.
		000 = Input The logic value sensed on GPIO0 is reflected in register 0x140, bit 0 (gpio_in_status::gpio0).
		001 = Output GPIO0 actively drives the value specified in register 0x0EF, bit 0 (gpio_out::gpio0).
		 010 = Control Certain device functions can be actively controlled via GPIO0. The device function to be controlled is selected by configuring register gpio_select_0. Whenever a change is detected on GPIO0 or the selected host register bit, then the device ORs together the GPIO and register bit values before applying the corresponding configuration. In this mode, the selected host register bit must satisfy the following requirements: It must be R/W type; It cannot be one of the GPIO control registers (including gpio_select_x, gpio_config_x, and gpio_freeze_4_0); It cannot be one of the mailbox registers.
		011 = Status The device status can be actively supervised via GPIO0. The device mirrors the host register bit specified in register gpio_se- lect_0, onto GPIO0. Typically, the selected host register bit is a sta tus bit (either R or S type) in this mode.

Address:	0x00E3:0x00E4	
Name:	gpio_select_1	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	bit	See description for register at address 0x0E0, bits 14:12 (gpio_select_0::bit).
11:8	page	See description for register at address 0x0E0, bits 11:8 (gpio_select_0::page).
7	reserved	—
6:0	offset	See description for register at address 0x0E1, bits 6:0 (gpi- o_select_0::offset).

Address:	0x00E5	
Name:	gpio_config_1	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:3	reserved	—
2:0	ctrl	See description for register at address 0x0E2, bits 2:0 (gpi- o_config_0::ctrl).

Address:	0x00E6:0x00E7	
Name:	gpio_select_2	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	bit	See description for register at address 0x0E0, bits 14:12 (gpio_select_0::bit).
11:8	page	See description for register at address 0x0E0, bits 11:8 (gpio_select_0::page).
7	reserved	—
6:0	offset	See description for register at address 0x0E1, bits 6:0 (gpi- o_select_0::offset).

Address:	0x00E8	
Name:	gpio_config_2	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:3	reserved	
2:0	ctrl	See description for register at address 0x0E2, bits 2:0 (gpi- o_config_0::ctrl).

Address:	0x00E9:0x00EA	
Name:	gpio_select_3	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	bit	See description for register at address 0x0E0, bits 14:12 (gpio_select_0::bit).
11:8	page	See description for register at address 0x0E0, bits 11:8 (gpio_select_0::page).
7	reserved	—
6:0	offset	See description for register at address 0x0E1, bits 6:0 (gpi- o_select_0::offset).

Address:	0x00EB	
Name:	gpio_config_3	
Default:	0x00	
Туре:	R/W	
Bit Field	Eurotian Nome	Description
Bit Tield	Function Name	Description
7:3	reserved	

Address:	0x00EC:0x00ED	
Name:	gpio_select_4	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	bit	See description for register at address 0x0E0, bits 14:12 (gpio_select_0::bit).
11:8	page	See description for register at address 0x0E0, bits 11:8 (gpio_select_0::page).
7	reserved	—
6:0	offset	See description for register at address 0x0E1, bits 6:0 (gpi- o_select_0::offset).

Address:	0x00EE	
Name:	gpio_config_4	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:3	reserved	—

Address:	0x00EF		
Name:	gpio_out_4_0	gpio_out_4_0	
Default:	0x00		
Туре:	R/W		
Bit Field	Function Name	Description	
7:5	reserved	—	
4	gpio4	Sets the output value on pin GPIO4. See gpio0 description.	
3	gpio3	Sets the output value on pin GPIO3. See gpio0 description.	
2	gpio2	Sets the output value on pin GPIO2. See gpio0 description.	
1	gpio1	Sets the output value on pin GPIO1. See gpio0 description.	
0	gpio0	Sets the output value on pin GPIO0. When the ctrl field of gpio_config_0 is set to 001 = Output then this gpio0 bit specifies the GPIO0 output logic value.	

Address:	0x00F0	
Name:	gpo_out_7_0	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	gpo7	Sets the output value on pin OUT3N. See gpo0 description.
6	gpo6	Sets the output value on pin OUT3P. See gpo0 description.
5	gpo5	Sets the output value on pin OUT2N. See gpo0 description.
4	gpo4	Sets the output value on pin OUT2P. See gpo0 description.
3	gpo3	Sets the output value on pin OUT1N. See gpo0 description.
2	gpo2	Sets the output value on pin OUT1P. See gpo0 description.
1	gpo1	Sets the output value on pin OUT0N. See gpo0 description.
0	gpo0	Sets the output value on pin OUT0P. When the OUT0P pin is configured as a general-purpose output (GPO) and the ctrl field in the corresponding output_gpo_config_out_p or output_gpo_config_out_n mailbox register is set to 001 = Output then this bit specifies the OUT0P output logic value.

Address:	0x00F1		
Name:	gpo_out_15_8	gpo_out_15_8	
Default:	0x00		
Туре:	R/W		
Bit Field	Function Name	Description	
7	gpo15	Sets the output value on pin OUT7N. See gpo0 description.	
6	gpo14	Sets the output value on pin OUT7P. See gpo0 description.	
5	gpo13	Sets the output value on pin OUT6N. See gpo0 description.	
4	gpo12	Sets the output value on pin OUT6P. See gpo0 description.	
3	gpo11	Sets the output value on pin OUT5N. See gpo0 description.	
2	gpo10	Sets the output value on pin OUT5P. See gpo0 description.	
1	gpo9	Sets the output value on pin OUT4N. See gpo0 description.	
0	gpo8	Sets the output value on pin OUT4P. See gpo0 description.	

Address:	0x00F2	
Name:	gpo_out_19_16	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:4	reserved	—
3	gpo19	Sets the output value on pin OUT9N. See gpo0 description.
2	gpo18	Sets the output value on pin OUT9P. See gpo0 description.
1	gpo17	Sets the output value on pin OUT8N. See gpo0 description.
0	gpo16	Sets the output value on pin OUT8P. See gpo0 description.

Address:	0x00F3	
Name:	gpio_freeze_4_0	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:5	reserved	—
4	gpio4	See description for gpio0.
3	gpio3	See description for gpio0.
2	gpio2	See description for gpio0.
1	gpio1	See description for gpio0.
0	gpio0	Freeze the value in register 0x140 bit 0 (gpio_in_sta- tus_4_0::gpio0) if GPIO0 is configured as input or control mode.

Address:	0x00FE	
Name:	uport	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	lockout	When set, this field causes all other uport registers to be read-only. When zero, all registers are open for writing.
6:1	reserved	—
0	status	This field indicates if microport attempted access was been successful. The register content is 0x00 if the access was successful.

Address:
Name:
Default:
Туре:
Bit Field
7:0

REGISTER LIST PAGE 2, STATUS

Address:	0x0140		
Name:	gpio_in_status	gpio_in_status	
Default:	0x00		
Туре:	R		
Bit Field	Function Name	Description	
7:5	reserved	—	
4	gpio4	See description for gpio0.	
3	gpio3	See description for gpio0.	
2	gpio2	See description for gpio0.	
1	gpio1	See description for gpio0.	
0	gpio0	Logic value seen on pin GPIO0 if it is configured as input or control mode in the ctrl field of register gpio_config_0.	

Address:	0x017E	
Name:	uport	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	lockout	When set, this field causes all other uport registers to be host read-only. When zero, all registers are open for writing.
6:1	reserved	—

0	status	This field indicates if microport attempted access was been successful. The register content is 0x00 if the access was
		successful.

Address:	0x017F	
Name:	page_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0		Unsigned binary value of these bits represents selected page for SPI/I ² C access: 0x00 = page 0 (first 128 bytes) 0x01 = page 1 (second 128 bytes) 0x02 = page 2 (third 128 bytes) 0x03 = page 3 (fourth 128 bytes) 0x04 = page 4 (fifth 128 bytes) 0x05 = page 5 (sixth 128 bytes) 0x06 = page 6 (seventh 128 bytes) 0x07 = page 7 (eighth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x09 = page 9 (tenth 128 bytes) 0x0A = page 10 (eleventh 128 bytes) 0x0B = page 11 (twelfth 128 bytes) 0x0C = page 12 (thirteenth 128 bytes) 0x0D = page 13 (fourteenth 128 bytes) 0x0E = page 14 (fifteenth 128 bytes) 0x0F = page 15 (sixteenth 128 bytes) 0x10-0xFF = reserved

REGISTER LIST PAGE 9, SYNTH AND OUTPUT

synth_ctrl_x			
Address:	0x0480		
Name:	synth_ctrl_0	synth_ctrl_0	
Default:	0x00	0x00	
Туре:	R/W		
Bit Field	Function Name	Description	
7:2	reserved	—	
1	spread_spectrum_en	Enable or disable spread spectrum for this synthesizer 0 = Disable	
0	en	Enable or disable the synthesizer: 0 = Disable 1 = Enable	

Address:	0x0481	
Name:	synth_ctrl_1	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	—
1	spread_spectrum_en	See description for register at address 0x480, bit 1 (syn- th_ctrl_0::spread_spectrum_en).
0	en	See description for register at address 0x480, bit 0 (syn-th_ctrl_0::en).

Address:	0x0482	
Name:	synth_ctrl_2	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	—
1	spread_spectrum_en	See description for register at address 0x480, bit 1 (syn-th_ctrl_0::spread_spectrum_en).
0	en	See description for register at address 0x480, bit 0 (syn-th_ctrl_0::en).

Address:	0x0483	
Name:	synth_ctrl_3	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	—
1	spread_spectrum_en	See description for register at address 0x480, bit 1 (syn- th_ctrl_0::spread_spectrum_en).
0	en	See description for register at address 0x480, bit 0 (syn-th_ctrl_0::en).

Address:	0x0484	
Name:	synth_ctrl_4	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	
1	spread_spectrum_en	See description for register at address 0x480, bit 1 (syn- th_ctrl_0::spread_spectrum_en).
0	en	See description for register at address 0x480, bit 0 (syn-th_ctrl_0::en).

synth_df_offset_manual_x		
Address:	0x0485:0x0489	
Name:	synth_df_offset_manual_0	
Default:	0x000000000	
Туре:	R/W	
Bit Field	Function Name	Description
39:0		 Manual delta frequency offset adjustment for Synth0. This register contains a 2's complement binary value in steps of 2^–48. The frequency offset should be calculated as per formula: f_offset = -(X/2^48)*f_nom where, X is 2's complement number specified in this register, f_nom is the nominal frequency set by Bs, Ks, Ms, Ns for the synthesizer and f_offset is the desired frequency for the output. Note 1: This register can be written as fast as once per 600 µs, but no faster. Note 2: The offset frequency is based on the system clock from the APLL. If the system clock experiences frequency drift, the offset frequency is affected.

Address:	0x048A:0x048E	
Name:	synth_df_offset_manual_1	
Default:	0x000000000	
Туре:	R/W	
Bit Field	Function Name	Description
39:0	-	See description for register at address 0x485-0x489 (syn- th_df_offset_manual_0).

Address:	0x048F:0x0493	
Name:	synth_df_offset_manual_2	
Default:	0x000000000	
Туре:	R/W	
Bit Field	Function Name	Description
39:0	—	See description for register at address 0x485-0x489 (syn- th_df_offset_manual_0).

Address:	0x0494:0x0498	
Name:	synth_df_offset_manual_3	
Default:	0x000000000	
Туре:	R/W	
Bit Field	Function Name	Description
39:0	_	See description for register at address 0x485-0x489 (syn- th_df_offset_manual_0).

Address:	0x0499:0x049D	
Name:	synth_df_offset_manual_4	
Default:	0x000000000	
Туре:	R/W	
Bit Field	Function Name	Description
39:0	_	See description for register at address 0x485-0x489 (syn- th_df_offset_manual_0).

Address:	0x04A8	
Name:	output_ctrl_0	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	_
6:4	synth_sel	This field selects the synthesizer that drives this output. 0=Synth0, 1=Synth2, etc.
3	stop_hz	 This is a configuration bit that does not trigger action. 0 = After the output stops, it stays low or high as set by the stop_high field (bit 2). 1 = After the output stops, the output driver is disabled and the output goes high-impedance This bit does not affect the N-divided clock under the N-divider mode. The N-divided clock could stop at either high or low.
2	stop_high	 This is a configuration bit that does not trigger action. 0 = When the output clock is stopped by the stop field (bit 1), the output stops after a rising edge. 1 = When the output clock is stopped by the stop field (bit 1), the output stops after a rising edge. This bit does not affect the N-divided clock under the N-divider mode. The N-divided clock could stop at either high or low.
1	stop	 0 = Restart the output clock cleanly. Wait until the proper edge and start the output clock signal. 1 = Stop the output clock cleanly. Wait until the proper edge and stop the output clock signal at 1 or 0 based on the stop_high bit.
0	en	Enable or disable the output module. 0 = Disable. 1 = Enable.

Address:	0x04A9	
Name:	output_ctrl_1	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04AA	
Name:	output_ctrl_2	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	_
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04AB	
Name:	output_ctrl_3	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).

1		See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04AC	
Name:	output_ctrl_4	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out-put_ctrl_0::en).

Address:	0x04AD	
Name:	output_ctrl_5	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04AE	
Name:	output_ctrl_6	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).

3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out-put_ctrl_0::en).

Address:	0x04AF	
Name:	output_ctrl_7	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04B0	
Name:	output_ctrl_8	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04B1	
Name:	output_ctrl_9	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7	reserved	—
6:4	synth_sel	See description for register at address 0x4A8, bits 6:4 (out- put_ctrl_0::synth_sel).
3	stop_hz	See description for register at address 0x4A8, bit 3 (out- put_ctrl_0::stop_hz).
2	stop_high	See description for register at address 0x4A8, bit 2 (out- put_ctrl_0::stop_high).
1	stop	See description for register at address 0x4A8, bit 1 (out- put_ctrl_0::stop).
0	en	See description for register at address 0x4A8, bit 0 (out- put_ctrl_0::en).

Address:	0x04FE	
Name:	uport	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	lockout	When set, this field causes all other uport registers to be read-only. When zero, all registers are open for writing.
6:1	reserved	—
0	status	This field indicates if microport attempted access was been successful. The register content is 0x00 if the access was successful.

Address:	0x04FF	
Name:	page_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0		Unsigned binary value of these bits represents selected page for SPI/I ² C access: 0x00 = page 0 (first 128 bytes) 0x01 = page 1 (second 128 bytes) 0x02 = page 2 (third 128 bytes) 0x03 = page 3 (fourth 128 bytes) 0x04 = page 4 (fifth 128 bytes) 0x05 = page 5 (sixth 128 bytes) 0x06 = page 6 (seventh 128 bytes) 0x07 = page 7 (eighth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x08 = page 9 (tenth 128 bytes) 0x09 = page 9 (tenth 128 bytes) 0x0A = page 10 (eleventh 128 bytes) 0x0C = page 11 (twelfth 128 bytes) 0x0C = page 12 (thirteenth 128 bytes) 0x0D = page 13 (fourteenth 128 bytes) 0x0E = page 14 (fifteenth 128 bytes) 0x0F = page 15 (sixteenth 128 bytes) 0x10-0xFF = reserved

REGISTER LIST PAGE 13, SYNTH MAILBOX

Address:	0x0682:0x0683	
Name:	synth_mb_mask	
Default:	0x0001	
Туре:	R/W	
Bit Field	Function Name	Description
15:5	reserved	—
4:0	mask	 For a write operation (see synth_mb_sem::wr bit), this field determines which synth's configuration is modified. Multiple bits can be set to affect multiple synths in a single operation. For a read operation (see synth_mb_sem::rd bit), this field determines which synth configuration to read back from the device. One (and only one) bit should be set for a read operation. Bit 0 for Synth0, bit 1 for Synth1, etc.

Address:	0x0684	
Name:	synth_mb_sem	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	—

1	rd	When this bit is written to a one by the host controller, the device performs a read of the masked synth mailbox (see synth_mb_mask register). Only one mask bit should be set in this case. When this register reads back 0x00, then the read has completed, and the host can read back any or all of the registers on this page to determine the corresponding synth configuration.
0	wr	When this bit is written to a one by the host controller (and the read bit is zero), the device performs a write of the masked synth mailbox(es) (see synth_mb_mask register). All of the configuration options on this page are applied to each of the synth indicated by synth_mb_mask. The write is complete when this register reads back a zero.

Address:	0x0686:0x0687	
Name:	synth_freq_base	
Default:	0x0001	
Туре:	R/W	
Bit Field	Function Name	Description
15:0		Sets the synthesizer base frequency (Bs), in Hz. The final frequency is given by: fsynth = Bs x Ks x Ms / Ns Valid values for this registers must satisfy the rule 500 MHz divided by value is an integer. The synthesizer clock frequency has to satisfy the following range: 187.5 MHz ≤ fsynth ≤ 750 MHz. If the central frequency offset (central_freq_offset register) is non-zero, the range is affected accordingly. In addition, some margin is needed to accommodate any frequency variations, such as crystal or input clock frequency variantion. Typically this register can be left at its default value of 1 Hz and the synthesizer frequency can be fully specified by the synth_freq_mult, synth_freq_m and synth_freq_n registers.

Address:	0x0688:0x068B	
Name:	synth_freq_mult	
Default:	0x12A05F20	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	—	Sets the synthesizer frequency multiplier (Ks). See synth freq_base description for more information.

Address:	0x068C:0x068D	
Name:	synth_freq_m	
Default:	0x0001	
Туре:	R/W	
Bit Field	Function Name	Description
15:0	—	Sets the synthesizer frequency numerator (Ms). See syn- th freq base description for more information.

Address:	0x068E:0x068F	
Name:	synth_freq_n	
Default:	0x0001	
Туре:	R/W	
Bit Field	Function Name	Description
15:0	_	Sets the synthesizer frequency numerator (Ns). See syn- th_freq_base description for more information.

Address:	0x0690:0x0691	
Name:	synth_phase_compensation	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15:0	_	Specifies the amount of initial phase shift that is applied to this synthesizer when the synthesizer is turned on. This number is a 16-bit signed integer with LSB of 1 ps.

Address:	0x06FE	
Name:	uport	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	lockout	When set, this field causes all other uport registers to be read-only. When zero, all registers are open for writing.
6:1	reserved	—
0	status	This field indicates if microport attempted access was been successful. The register content is 0x00 if the access was successful.

Address:	0x06FF	
Name:	page_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0		Unsigned binary value of these bits represents selected page for SPI/I ² C access: 0x00 = page 0 (first 128 bytes) 0x01 = page 1 (second 128 bytes) 0x02 = page 2 (third 128 bytes) 0x03 = page 3 (fourth 128 bytes) 0x04 = page 4 (fifth 128 bytes) 0x05 = page 5 (sixth 128 bytes) 0x06 = page 6 (seventh 128 bytes) 0x07 = page 7 (eighth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x08 = page 9 (tenth 128 bytes) 0x09 = page 9 (tenth 128 bytes) 0x0A = page 10 (eleventh 128 bytes) 0x0B = page 11 (twelfth 128 bytes) 0x0C = page 12 (thirteenth 128 bytes) 0x0D = page 13 (fourteenth 128 bytes) 0x0E = page 14 (fifteenth 128 bytes) 0x0F = page 15 (sixteenth 128 bytes) 0x10-0xFF = reserved

REGISTER LIST PAGE 14, OUTPUT MAILBOX

Address:	0x0702:0x0703	
Name:	output_mb_mask	
Default:	0x0001	
Туре:	R/W	
Bit Field	Function Name	Description
15:10	reserved	—
9:0	mask	 For a write operation (see output_mb_sem::wr bit), this field determines which output's configuration is modified. Multiple bits can be set to affect multiple outputs in a single operation. For a read operation (see output_mb_sem::rd bit), this field determines which output configuration to read back from the device. One (and only one) bit should be set for a read operation. Bit 0 for OUT0, bit 1 for OUT1, etc.

Address:	0x0704	
Name:	output_mb_sem	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	_

1	rd	When this bit is written to a one by the host controller, the device performs a read of the masked output mailbox (see output_mb_mask register). Only one mask bit should be set in this case. When this register reads back 0x00, then the read has completed, and the host can read back any or all of the registers on this page to determine the corresponding output configuration.
0	wr	When this bit is written to a one by the host controller (and the read bit is zero), the device performs a write of the masked output mailbox(es) (see output_mb_mask regis- ter). All of the configuration options on this page are applied to each of the outputs indicated by the mask. The write is complete when this register reads back a zero.

Address:	0x0705	
Name:	output_mode	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:4	signal_format	0000 = Disabled (High Impedance, Low Power Mode) 0001 = LVDS mode (V _{OD} internally set to 400 mV, output_driver_level::vod ignored, V _{CM} set by output_driverconfig::vcm which defaults to 1.2V) 0010 = Differential mode (V _{OD} set by output_driv-er_level::vod, V _{CM} set by output_driver_config::vcm) 0011 = Low-V _{CM} mode (approx. 0.375V V _{CM} , approx. 0.75V V _{OD}) Must set output_driver_level::vod to 0x9, 0xA, 0xB, or 0xC (0xC recommended), output_driver_config::vcm to 0xF, and 0100 = Two CMOS, OCxN in phase with OCxP 0101 = One CMOS, OCxP Enabled, OCxN High impedance 0110 = One CMOS, OCxP High impedance, OCxN Enabled 0111 = Two CMOS, N-pin divide mode, OCxN in phase with OCxP 1000 = Two CMOS, N-pin divide mode, OCxN in phase with OCxP 1010 = Two CMOS, N-pin divide mode, OCxN in phase with OCxP 100 = Two CMOS, N-pin divide mode, OCxN in phase with OCxP 1101 = Reserved 1111 = Two CMOS, N-pin divide mode, OCxN in phase with OCxP 1005 signal amplitude for OUTx is set by VDDx supply voltage (1.5V, 1.8V, 2.5V, or 3.3V).
3	polarity	1 = Inverted 0 = Normal Not applicable to N-pin divide modes.
2:0	clock_type	000 = Normal clock Other values reserved

Address:	0x0706	
Name:	output_driver_level	
Default:	0x52	
Туре:	R/W	
Bit Field	Function Name	Description
7:4	vod	This field specifies the differential output voltage (V_{OD}) for the differential output driver. In the device this field actually controls driver output current: 0000 = 3 mA, 0001 = 4 mA, etc. When the specified current is driven into the required external 100Ω termination resistor, the voltage across the termination resistor is the desired V_{OD} . V_{OD} is equivalent to the single-ended voltage swing of the OUT0P pin or the OUT0N pin. This field is ignored for CMOS signal formats.Programmable differential signal format, DC-coupled, inter- nal 200Ω bias resistor disabled, 100Ω termination at receiver: 0000 = 330 mV 0001 = 440 mV 0010 = 550 mV 0011 = 660 mV 0110 = 550 mV 0011 = 660 mV 0110 = 770 mV (recommended for LVPECL) 0101 = 880 mV (default) 0110 = 990 mV 0111-1111 = Do not useProgrammable differential signal format, AC-coupled, inter- nal 200Ω bias resistor enabled, 100Ω termination at receiver: 000x = Do not use 0011 = 440 mV 0100 = 513 mV 0111 = 587 mV (default) 0110 = 567 mV 0111 = 733 mV 1000 = 807 mV 1010 = 880 mV 1010-1111 = Do not useWhen output_mode::signal_format=0001 (LVDS), V _{OD} is internally set to 440 mV and this field is ignored.When output_mode::signal_format=0011 (Low-V _{CM}), set this vod field to 0x9, 0xA, 0xB, or 0xC (0xC recommended).The bias resistor is enabled/disabled by output_driver_con- fig::rbias (0x0707:0x0708).

3:2	vddo	This field specifies the power supply voltage externally applied to the VDDOx pin (where x is the OUTx number, 0 to 9). The device does not do anything with this value, but the GUI and system software can use this field to indicate the VDDOx voltage and then compare it to the internal reg- ulator voltage (output_driver config::regv). In general, GUI and system software must ensure regulator voltage \leq VDDOx voltage – 0.5V. For the special case of LVDS signal format with VDDOx = 1.8V, the 0.5V term can be reduced to 0.3V. VDDOx of 1.5V is only valid for CMOS signal for- mats. VDDOx of 1.8V is only valid for LVDS and CMOS sig- nal formats 00 = 3.3V 01 = 2.5V 10 = 1.8V 11 = 1.5V
1:0	drive	Output driver CMOS level.00 = 1x01 = 2x10 = 3x11 = 4xThe 3x and 4x settings are recommended for lowest-jitterapplications. This field is ignored for non-CMOS signal formats. Typical output impedances of the CMOS driver arelisted below. The trace impedance and parasitics must betaken into account when choose an external source seriesresistor valueVDDO = 3.3V, Drive = 4x: 18ΩVDDO = 3.3V, Drive = 3x: 23ΩVDDO = 3.3V, Drive = 2x: 33ΩVDDO = 3.3V, Drive = 1x: 65ΩVDDO = 2.5V, Drive = 4x: 20ΩVDDO = 2.5V, Drive = 3x: 27ΩVDDO = 2.5V, Drive = 1x: 80ΩVDDO = 1.8V, Drive = 4x: 28ΩVDDO = 1.8V, Drive = 3x: 37ΩVDDO = 1.8V, Drive = 1x: not recommendedVDDO = 1.5V, Drive = 4x: 29ΩVDDO = 1.5V, Drive = 4x: 29ΩVDDO = 1.5V, Drive = 3x 2x 1x: not recommended

Address:	0x0707:0x0708	
Name:	output_driver_config	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	vreg1p1_vsel	Output pad 1.1V regulator voltage select. Leave this field at its default value unless recommended by Microchip. 000 = 1.10V (default) 001 = 0.95V 010 = 1.00V 011 = 1.05V 100 = 0.90V 101 = 1.15V 110 = 1.20V 111 = 1.25V
11:8	rbias	This field enables/disables an internal bias resistor between OUTxP and OUTxN. When the output driver is in LVDS or programmable differential mode and the device is AC-coupled to the receiver, the output driver requires a DC path between OUTxP and OUTxN. This resistor can pro- vide that DC path. This field should be set to 0 for CMOS and Low-V _{CM} signal formats. 0000 = None 0001 = approx. 200Ω 0002 to 1111 = None
7:4	regv	Output driver regulator voltage. This value must be > V_{CM} + 0.5 V_{OD} + 0.5V except for the case of LVDS with VDDOx = 1.8V for which this field should be set to 0. This field should be set to 0 for CMOS signal formats.0000 = Center voltage close to 2.2V (default) 1000 = 2.28V 1001 = 2.37V 1010 = 2.45V 1011 = 2.56V 1100 = 2.67V 1101 = 2.79V (Use this value when signal format = Low- V_{CM})
3:0	vcm	Output driver common mode voltage0000 = 1.2V (default) - recommended for LVDS and AC- coupled0100 = 1.0V0101 = 1.1V0110 = 1.3V0111 = 1.4V1000 = 1.5V1001 = 1.6V1010 = 1.8V1011 = 1.9V1100 = 2.0V - typical for DC-coupled LVPECL1101 = 2.1V1110 = 2.2V1111 = Use this decode only if signal format = Low-V _{CM} This field is ignored for CMOS signal formats.

Address:	0x070C:0x070F	
Name:	output_div	
Default:	0x0000002	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	—	The divider of the output clock. Expressed as the number of synthesizer clock cycles. The value 0 is undefined. The value 1 bypasses the output divider and pulse width logic and passes the synthesizer frequency directly to the output driver.

Address:	0x0710:0x0713	
Name:	output_width	
Default:	0x0000002	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	—	The pulse width of the output clock. Expressed as the number of $1/2$ synthesizer clock cycles. Valid range has a minimum of 2 (half cycles, i.e. 1 cycle) and a maximum of output_div * 2 - 1 (half cycles). This field is ignored when output_div (0x70C-0x70F) is less than 2.

Address:	0x0714:0x0717	
Name:	output_esync_period	
Default:	0x0000002	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	—	For N-pin divide modes, the period of the N-pin clock. Expressed as the number of output divider clock cycles. The values 0 and 1 are undefined. This field is ignored when output_div (0x70C-0x70F) is less than 2.

Address:	0x0718:0x071B	
Name:	output_esync_width	
Default:	0x0000002	
Туре:	R/W	
Bit Field	Function Name	Description
31:0		For N-pin divide modes, the pulse width of the N-pin divided clock. Expressed as the number of 1/2 output clock cycles (instead of synthesizer clock cycles). This field is ignored when output_div (0x70C-0x70F) is less than 2.

Address:	0x0720:0x0723	
Name:	output_phase_compensation	
Default:	0x0000000	
Туре:	R/W	
Bit Field	Function Name	Description
31:0	—	Output phase shift, expressed in ½ synth clock cycles. Two- complement signed integer. A positive value moves the phase of the output later in time (more to the right on a scope). A negative value moves the phase earlier in time (more to the left on a scope).

Address:	0x0724	
Name:	output_gpo_en	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:2	reserved	—
1	out_n	0 = The output is driven by the divided clock. 1 = The output is driven according to Register 0x72A (out- put_gpo_config_out_n).
0	out_p	0 = The output is driven by the divided clock. 1 = The output is driven by according to Register 0x727 (output_gpo_config_out_p).

Address:	0x0725:0x0726	
Name:	output_gpo_select_out_p	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	
14:12	bit	This field works with the page and offset fields to select a single bit in the host register map. Specifically, this field selects the bit position in the selected register byte.
11:8	page	This field works with the bit and offset fields to select a sin- gle bit in the host register map. Specifically, this field selects the page.
7	reserved	—
6:0	offset	When this GPO is configured to the status mode, this field works with the bit and page fields to select a single bit in the host register map. Specifically, this field selects the offset within the page.

Address:	0x0727	
Name:	output_gpo_config_out_p	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7:3	reserved	—
2:0	ctrl	 This field determines the mode of operation for this GPO. If the GPO is to be set to status mode, Register 0x725-0x726 (gpo_select) should be set in the previous or in the same mailbox write. 001 = Output GPOx actively drives the value specified in register gpo_out (0xF0-0xF2), where x = output index * 2. 011 = Status The device status can be actively supervised via GPOx. The device mirrors the host register bit, specified in register output_gpo_select_out_p, onto GPOx. Typically, the selected host register bit is a status bit (either R or S type) in this mode. Other values = Reserved Note: To use the above modes, the output must be set to CMOS (Register 0x705, bit 7:4, output_mode: signal_format) with GPO enabled (Register 0x724, bit 0, output_gpo_en:out_p).

Address:	0x0728:0x0729	
Name:	output_gpo_select_out_n	
Default:	0x0000	
Туре:	R/W	
Bit Field	Function Name	Description
15	reserved	—
14:12	bit	This field works with the page and offset fields to select a single bit in the host register map. Specifically, this field selects the bit position in the selected register byte.
11:8	page	This field works with the bit and offset fields to select a sin- gle bit in the host register map. Specifically, this field selects the page.
7	reserved	—
6:0	offset	When this GPO is configured to the status mode, this field works with the bit and page fields to select a single bit in the host register map. Specifically, this field selects the offset within the page.

Address:	0x072A	
Name:	output_gpo_config_out_n	
Default:	0x01	
Туре:	R/W	
Bit Field	Function Name	Description
7:3	reserved	—
2:0	ctrl	 This field determines the mode of operation for this GPO. If the GPO is to be set to status mode, Register 0x728-0x729 (output_gpo_select_out_n) should be set in the previous or in the same mailbox write. 001 = Output GPOx actively drives the value specified in register gpo_out (0xF0-0xF2), where x = output index * 2 + 1. 011 = Status The device status can be actively supervised via GPOx. The device mirrors the host register bit, specified in register output_gpo_select_out_n, onto GPOx. Typically, the selected host register bit is a status bit (either R or S type) in this mode. Other values = Reserved Note: To use the above modes, the output must be set to CMOS (Register 0x705, bit 7:4, output_mode: signal_format) with GPO enabled (Register 0x724, bit 1, output_gpo_en:out_n).

Address:	0x077E	
Name:	uport	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7	lockout	When set, this field causes all other uport registers to be read-only. When zero, all registers are open for writing.
6:1	reserved	—
0	status	This field indicates if microport attempted access was been successful. The register content is 0x00 if the access was successful.

Address:	0x077F	
Name:	page_sel	
Default:	0x00	
Туре:	R/W	
Bit Field	Function Name	Description
7:0		Unsigned binary value of these bits represents selected page for SPI/I ² C access: 0x00 = page 0 (first 128 bytes) 0x01 = page 1 (second 128 bytes) 0x02 = page 2 (third 128 bytes) 0x03 = page 3 (fourth 128 bytes) 0x04 = page 4 (fifth 128 bytes) 0x05 = page 5 (sixth 128 bytes) 0x06 = page 6 (seventh 128 bytes) 0x07 = page 7 (eighth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x08 = page 8 (ninth 128 bytes) 0x09 = page 9 (tenth 128 bytes) 0x0A = page 10 (eleventh 128 bytes) 0x0A = page 11 (twelfth 128 bytes) 0x0C = page 12 (thirteenth 128 bytes) 0x0D = page 13 (fourteenth 128 bytes) 0x0E = page 14 (fifteenth 128 bytes) 0x0F = page 15 (sixteenth 128 bytes) 0x0F = page 15 (sixteenth 128 bytes)

9.0 ELECTRICAL CHARACTERISTICS

TABLE 9-1: ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min.	Max.	Units
Supply Voltage, nominal 1.8V	VDD18	-0.3	+1.98	V
Supply Voltage, nominal 3.3V	VDD33	-0.3	+3.6	V
Supply voltage, nominal 1.8V, 2.5V, or 3.3V	VDDIO	-0.3	+3.6	V
Supply voltage, nominal 1.5V, 1.8V, 2.5V, or 3.3V	VDDOx	-0.3	+3.6	V
Voltage on any pin	VPIN	-0.3	+3.6	V
Storage Temperature Range	T _{ST}	-55	+125	°C

*Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. *Voltages are with respect to ground (VSS) unless otherwise stated.

- **Note 1:** The typical values listed in the tables of Section 9 are at nominal voltage and room temperature and are not production tested.
 - **2:** Specifications to –40°C and +85°C are guaranteed by design or characterization and not production tested.

TABLE 9-2:RECOMMENDED DC OPERATING CONDITIONS

Min. and max. values in all electrical tables below are over these operating conditions.						
Parameter	Symbol	Min.	Тур.	Max.	Units	
Supply Voltage 3.3V	VDD33	3.135	3.3	3.465	V	
Supply Voltage 1.8V	VDD18	1.71	1.8	1.89	V	
		1.425	1.5	1.575	V	
Output Supply Voltage	VDDOx	1.71	1.8	1.89		
Output Supply Voltage	VDDOX	2.375	2.5	2.625		
		3.135	3.3	3.465		
		1.71	1.8	1.89		
Digital I/O Supply Voltage	VDDIO	2.375	2.5	2.625	V	
		3.135	3.3	3.465		
Operating Temperature	Τ _Α	-40	_	+85	°C	

TABLE 9-3: ELECTRICAL CHARACTERISTICS: SUPPLY CURRENTS

Characteristics		Symbol	Min.	Typ. (Note 1)	Max.	Units	Notes
Total power, Synth1 and six LVD puts enabled	Total power, Synth1 and six LVDS out- puts enabled			0.8		W	—
Total current, 3.3V supply (VDD33+VDDOx pins)		I _{DD33}	_	160	322	mA	Note 2
Total current, 1.8V supply (VDD1	Total current, 1.8V supply (VDD18 pins)		_	207	519	mA	Note 2
Supply current change from en	r disabling:						
the crystal driver circuit	VDD33	ΔI _{DD33_XO}		3		mA	—
	VDD18	ΔI _{DD18_XO}		7		mA	—
the envetal doubler	VDD33	∆I _{DD33_DBL}		0		mA	—
the crystal doubler VDD18		∆I _{DD18_DBL}	—	2	—	mA	—
a synthesizer	VDD33	ΔI _{DD33_SYN}		0.5		mA	_
a synuncsizer	VDD18	$\Delta I_{DD18}SYN}$		27		mA	Note 7

Characteristics	Symbol	Min.	Typ. (Note 1)	Max.	Units	Notes	
an OUTxP/N output pair, LVDS	VDDOx	ΔI _{DDOL}	_	12	_	mA	156.25 MHz, Note 5
			—	18	_	mA	700 MHz, Note 6
an OUTxP/N output pair,	VDDOx	ΔI _{DDOL}	—	14	_	mA	156.25 MHz, Note 5
LVPECL			—	21	_	mA	700 MHz, Note 6
an OUTxP/N output pair, Low- Vcm	VDDOx	ΔI_{DDOL}	—	25	—	mA	156.25 MHz, Note 8
an OUTxP/N output pair, CMOS	VDDOx	ΔI _{DDOC}	_	3	_	mA	25 MHz, Note 3
an OUTxP/N output pair, CMOS	VDDOx	ΔI _{DDOC}	_	29	_	mA	250 MHz, Note 4

TABLE 9-3: ELECTRICAL CHARACTERISTICS: SUPPLY CURRENTS (CONTINUED)

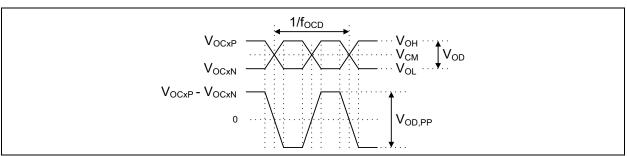
Note 1: Typical values measured at nominal supply voltages and 25°C ambient temperature.

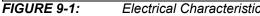
- 2: Max I_{DD} measurements made with all blocks enabled, 49.152 MHz crystal doubled as input clock, all synthesizers enabled, all output dividers dividing by 4, all outputs enabled as LVPECL outputs (with output_driver_level::vod=0x5) driving 156.25 MHz signals, all VDDO at 3.3V, and 200Ω differential bias resistors enabled for all output pairs. Typical I_{DD} measurements made with same setup as max. I_{DD} but two synthesizers enabled, six outputs enabled with LVDS signal format, and 200Ω differential bias resistors disabled.
- **3:** VDDOx=3.3V, 1x drive strength, f_O=25 MHz, 18 pF load per pin. Specifies the current for the OUTxP/N pair. Divide by 2 for per-pin current.
- **4:** VDDOx=3.3V, 1x drive strength, f_O=250 MHz, 18 pF load per pin. Specifies the current for the OUTxP/N pair. Divide by 2 for per-pin current.
- 5: Tested at 156.25 MHz. With internal 200Ω bias resistor disabled or enabled (driver is constant current).
- **6:** Tested at 700 MHz. With internal 200Ω bias resistor disabled or enabled (driver is constant current).
- 7: Tested with all synthesizers at 312.5 MHz.
- 8: Tested with 50 Ω to ground load on each of OUTxP and OUTxN. Internal 200 Ω bias resistor must be disabled for Low-V_{CM} mode.

TABLE 9-4: ELECTRICAL CHARACTERISTICS: OSCB CLOCK INPUT

This table covers the case when there is no external crystal connected and an external oscillator or clock signal is connected to OSCB.

Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
Single-ended input high voltage, OSCB	V _{IH}	1.3	—		V	—
Single-ended input low voltage, OSCB	V _{IL}	_	_	0.75	V	—
Input frequency, OSCB	f _{IN}	9.72	—	200	MHz	Note 2
Input frequency, OSCB	f _{IN}	200+	—	400	MHz	Note 3
Input leakage current	Ι _{IL}	-10	—	10	μA	—
Input duty cycle	—	40	—	60	%	Note 1


Note 1: 1.1V threshold.


- 2: OSCB frequencies below 48 MHz cause higher output jitter all else being equal.
- 3: Must have sys_apll_source_config::div set to divide by 2 or more for OSCB frequencies > 200 MHz.

Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
Input high voltage, SCK_SCL and SI_SDA in I ² C Mode	V _{IH}	0.7 x V _{DDIO}	_	_	V	_
Input low voltage, SCK_SCL and SI_SDA in I ² C Mode	V _{IL}		_	0.3 x V _{DDIO}	V	_
Input high voltage, RST_B	V _{IH}	2.0	_	3.6	V	—
Input low voltage, RST_B	V _{IL}	-0.3	_	0.8	V	—
Input high voltage, all other digital inputs,		2.0		3.6	V	V _{DDIO} = 3.3V±5%
SCK_SCL and SI_SDA (in SPI mode),	V _{IH}	1.7	_	3.6	V	V _{DDIO} = 2.5V±5%
SO_IF1, CS_B_IF0, all GPIOx_ACx		1.3	—	3.6	V	V _{DDIO} = 1.8V±5%
Input low voltage, all other digital inputs,		-0.3		0.8	V	V _{DDIO} = 3.3V±5%
SCK_SCL and SI_SDA (in SPI mode),	V _{IL}	-0.3	_	0.7	V	V _{DDIO} = 2.5V±5%
SO_IF1, CS_B_IF0, all GPIOx_ACx		-0.3	_	0.55	V	V _{DDIO} = 1.8V±5%
Input leakage current, RST_B	IIL	-100	_	10	μA	V _I = 0 – V _{DD33} , Note 1
Input leakage current, CS_B_IF0	۱ _{IL}	-100	_	10	μA	V _I = 0 – V _{DDIO} , Note 1
Input leakage current, SCK_SCL, SI_SDA, SO_IF1	Ι _{ΙL}	-10	_	10	μA	V _I = 0 – V _{DDIO} , Note 1
Input leakage current, all GPIOx_ACx	Ι _{ΙL}	-10	_	100	μA	V _I = 0 – V _{DDIO} , Note 1
Input capacitance	C _{IN}	_	3	10	pF	—
Input hysteresis, SCK_SCL and SI_SDA in I ² C Mode	—	0.05 x V _{DDIO}	_	_	mV	_
Input hysteresis, all other digital inputs: RST_B, SCK_SCL and SI_SDA (in SPI mode), SO_IF1, CS_B_IF0, all GPIOx- _ACx	_	_	50	_	mV	_
Output leakage (when high impedance)	I _{LO}	-10		10	μA	V _I = 0 – V _{DDIO} , Note 1
GPIOx_ACx, CSB_IF0 and SO_IF1 to RST_B setup time	t _{SU}	50		_	ns	_
GPIOx_ACx, CSB_IF0 and SO_IF1 to RST_B hold time	t _{HD}	_		0	ns	—

TABLE 9-5: ELECTRICAL CHARACTERISTICS: OTHER INPUTS AND I/O (BIDIRECTIONAL)

Note 1: Positive leakage is current flowing into the device.

Electrical Characteristics: Differential Clock Outputs.

VDDOx = 1.8V±5% or 2.5V±5%	6 or 3.3V±5	% for LVDS	6 operation				
Characteristics		Symbol	Min.	Тур.	Max.	Units	Notes
Output frequency		f _{OCD}		—	750	MHz	—
Output common-mode voltage	VDDO=2.5V or 3.3V			1.2	1.3	V	Note 1, Note 2, Note 3
ouput common mode voltage	VDDO=1.8V	• CM	0.7	0.9	1.1	V	See Figure 9-1
Output differential voltage		V _{OD}	320	430	537	mV	Note 1, Note 2, Note 3, See Figure 9-1
Output differential swing, peak-to-peak		V _{OD,PP}	640	860	1074	mV _{PP}	Note 1, Note 2 See Figure 9-1
Output rise/fall time		t _R , t _F	_	175	—	ps	20% to 80%
Output duty cycle		—	45	50	55	%	—

TABLE 9-6: ELECTRICAL CHARACTERISTICS: OUTP/N LVDS CLOCK OUTPUTS

Note 1: Measured with 100Ω between OUTxP and OUTxN. Application notes: Output must have 100Ω to 200Ω DC path between OUTxP and OUTxN for proper operation. See Figure 5-1 for recommended external components. When the output signal is AC-coupled an internal 200Ω bias resistor can be switched into the circuit using output_driver_config::rbias to meet this requirement. When this 200Ω resistor is in parallel with 100Ω differential termination at the receiver, the actual V_{OD} amplitude is 2/3 of the number shown above. If larger amplitude is needed, the output should be configured for programmable differential mode where V_{OD} is configurable and V_{CM}=1.2V.

- 2: With output_mode::signal_format=1 (LVDS) and output_driver_config::vcm=0x0. Differential output common-mode voltageis programmable. See Section 5.2.1.
- **3:** Must have output_driver_config::regv=0 for LVDS with VDDOx=1.8V. Power supply noise rejection may not be as good for LVDS with VDDOx=1.8V compared with VDDOx=2.5V or 3.3V

TABLE 9-7: ELECTRICAL CHARACTERISTICS: OUTP/N LVPECL CLOCK OUTPUTS

VDDOx = 2.5V±5% or 3.3V±5% for LVPE	CL operatio	n.				
Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
Output frequency	f _{OCD}		—	750	MHz	—
Output common-mode voltage, VDDOx=3.3V	V _{CM}	1.80	1.90	2.05	V	Note 1, Note 2, Figure 9-1
Output common-Mode voltage, VDDOx=2.5V	V _{CM}	1.1	1.2	1.3	V	Note 1, Note 2, Figure 9-1
Output differential voltage	V _{OD}	600	780	1000	mV	Note 1, Note 2, Figure 9-1
Output differential swing, peak-to-peak	V _{OD}	1200	1560	2000	mV _{PP}	Note 1, Note 2, Figure 9-1
Output rise/fall time	t _R , t _F	_	185	_	ps	20% - 80%
Output duty cycle	—	45	50	55	%	—

Note 1: Measured with 100 Ω between OUTxP and OUTxN. Application notes: Output must have 100 Ω to 200 Ω DC path between OUTxP and OUTxN for proper operation. See Figure 5-1 for recommended external components. When the output signal is AC-coupled an internal 200 Ω bias resistor can be switched into the circuit using output_driver_config::rbias to meet this requirement. When this 200 Ω resistor is in parallel with 100 Ω differential termination at the receiver, the actual V_{OD} amplitude is 2/3 of the number shown above. If larger amplitude is needed, the output should be configured for programmable differential mode where V_{OD} is configurable.

2: With output_mode::signal_format=2 (programmable differential) and output_driver_level::vod=0x4. With output_driver_config::vcm=0x0 for 2.5V and 0xC for 3.3V. Differential output common-mode voltage and differential voltage (i.e. signal amplitude) are programmable. See Section 5.2.1

TABLE 9-8: ELECTRICAL CHARACTERISTICS: OUTP/N LOW-VCM CLOCK OUTPUTS

VDDOx = 3.3V±5% for Low-V_{CM} operation.

Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
Output frequency	f _{OCD}	—	—	160	MHz	—
Output common-mode voltage	V _{CM}		V _{OD} / 2		V	Note 1, Figure 9-1
Output differential voltage	V _{OD}	600	810	1000	mV	Note 1, Figure 9-1
Output rise/fall time	t _R , t _F	—	310	—	ps	20% to 80%
Output duty cycle	_	45	50	55	%	Note 2

Note 1: Each of OUTxP and OUTxN with 50Ω termination resistor to ground. With output_mode::signal_format=0x3, output_driver_level::vod=0xC, output_driver_config::vcm=0xF and output_driver_config::regv=0xD.

2: Duty cycle measured differentially.

TABLE 9-9: ELECTRICAL CHARACTERISTICS: OUTP/N CMOS CLOCK OUTPUTS

Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
Output frequency	f _{OCMOS}	—	—	250	MHz	Note 1
Output high voltage	V _{OH}	VDDOx - 0.4	_	_	V	Note 2
Output low voltage	V _{OL}		_	0.4	V	Note 2
Output rise/fall time, VDDOx=1.8V, 4x drive strength		_	0.4	_	ns	2 pF load, Note 3
Output rise/fall time, VDDOx=1.8V, 4x drive strength]	_	1.2	_	ns	15 pF load, Note 3
Output rise/fall time, VDDOx=3.3V, 1x drive strength	- t _R , t _F	_	0.7	_	ns	2 pF load, Note 3
Output rise/fall time, VDDOx=3.3V, 1x drive strength		_	2.2	_	ns	15 pF load, Note 3
Output duty cycle	_	45	50	55	%	—
Output current when output disabled	I _{OH}	_	660	_	μA	—

Note 1: For VDDOx=1.5V, maximum CMOS output frequency is 160 MHz for a 10 pF load and 125 MHz for a 15 pF load.

2: For VDDOx=3.3V and 1x drive strength, I_O=3.5 mA. For VDDOx=1.8V and 4x drive strength, I_O=7 mA.

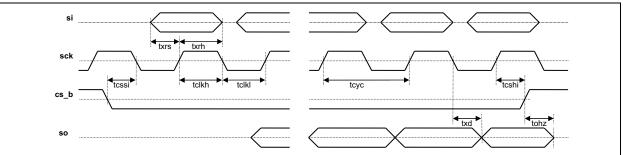
3: Measured 20% to 80%.

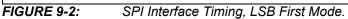
Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
		2.4	_	_	V	V _{DDIO} = 3.3V±5% I _{OH} = 18 mA
Bidirectional output high voltage for SO_IF1 and GPIO[4:0]_AC[4:0] pins	V _{OH-BIDI}	1.7	_	_	V	V _{DDIO} = 2.5V±5% I _{OH} = 13 mA
		1.35	—	—	V	V _{DDIO} = 1.8V±5% I _{OH} = 4 mA
			_	0.4	V	V _{DDIO} = 3.3V±5% I _{OL} = 12 mA
Bidirectional output low voltage for SO_IF1 and GPIO[4:0]_AC[4:0] pins	V _{OL-BIDI}		_	0.7	V	V _{DDIO} = 2.5V±5% I _{OL} = 14 mA
		_	—	0.45	V	V _{DDIO} = 1.8V±5% I _{OL} = 6 mA
Bidirectional output low voltage for SI_SDA (I^2C mode) V_{DDIO} = 3.3V or V_{DDIO} = 2.5V	V _{OL1}	_	_	0.4	V	I _{OL} = 3 mA
Bidirectional output low voltage for SI_SDA (I ² C mode) V _{DDIO} = 1.8V	V _{OL2}	_	—	0.2 x V _{DDIO}	V	I _{OL} = 2 mA
Bidirectional output low current for		3	_	_	mA	V _{OL} = 0.4V
SI_SDA (I ² C mode)	I _{OL}	5.1	_	_	mA	V _{OL} = 0.6V

TABLE 9-10: ELECTRICAL CHARACTERISTICS: OTHER OUTPUTS AND I/O (BIDIRECTIONAL)

TABLE 9-11: ELECTRICAL CHARACTERISTICS: OUTPUT-TO-OUTPUT TIMING

Characteristic	cs	Symbol	Min.	Тур.	Max.	Units	Notes
Initial Skew							Note 1, 4
Synthx OUTa to Synthx	Differential	+	_	40	100	ps	Note 1, 3, 4, 7
OUTb skew	CMOS	t _{OO-S}	_	50	170	ps	Note 1, 3, 4, 6
Synthx OUTa to Synthy	Differential	+	_	50	105	ps	Note 1, 3, 4, 7
OUTb skew	CMOS	t _{OO-S-S}	_	50	180	ps	Note 1, 3, 4, 6
Skew Variation							Note 1, 5
	Differential		_	8	30	ps	Note 1, 3, 5, 7
SynthX OUTa to SynthX OUTb skew variation	CMOS	t _{OOV-S}	_	13	60	ps	Note 1, 3, 5, 6
	Diff-CMOS		_	30	110	ps	Note 1, 5, 6, 7
SynthX OUTa to SynthY	Differential	+	_	8	35	ps	Note 1, 3, 5, 7
OUTb skew variation	CMOS	t _{OOV-S-S}		13	60	ps	Note 1, 3, 5, 6

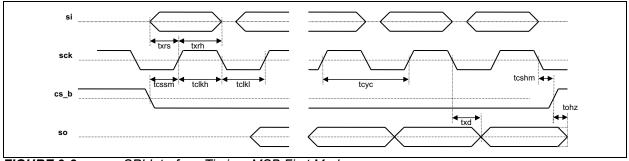

Note 1: All specs in this table tested with 25 MHz output frequencies.

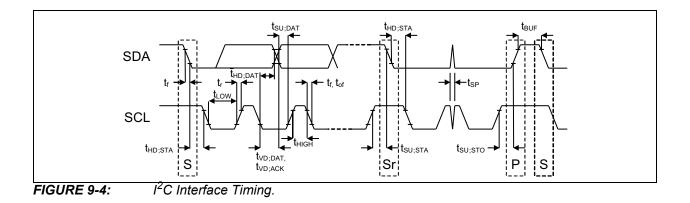

- 2: Only applies for outputs that have the same load/termination.
- **3:** Only applies for outputs that have the same signal format, VDDO voltage, drive strength, and loading/termination. For 2xCMOS outputs, only measured for OUTxP.
- **4:** Initial delay and skew numbers indicate the timing relationships among the signals just after the device has been configured. Measurement is done at the same temperature and voltage used for configuration.
- 5: Delay and skew variation numbers indicate how the timing relationships among the signals change as the already-configured device is exposed to all combinations of min., typ., and max. V_{DD} (all supplies varied at the same time) and min., room, and max. temperature without resetting or reconfiguring the device. The values shown are zero-to-peak numbers, i.e. half the peak-to-peak value of max. measurement minus min. measurement. Max. is largest zero-to-peak number over devices. Typ. is average zero-to-peak number over devices.
- **6:** Tested with output configured as 2xCMOS with 3x drive strength and VDDOx = 3.3V.
- 7: Tested with output configured as programmable differential format with 1.2V V_{CM} and 800 mV V_{OD}.

Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes	
SCLK frequency	f _{SCLK}		_	12.5	MHz		
SCLK period	t _{cyc}	80		_	ns		
SCLK high time	t _{clkh}	40			ns		
SCLK low time	t _{clkl}	40			ns	See Figure 9-2 &	
SI setup time to SCLK rising edge	t _{rxs}	8			ns	Figure 9-3	
SI hold time from SCLK rising edge	t _{rxh}	8	—	_	ns	าร	
SO data valid time from SCLK falling edge	t _{xd}	_	—	25	ns		
CS_B rise to output high impedance	t _{ohz}	_	—	60	ns		
CS_B setup to SCLK falling edge (LSB first)	t _{cssi}	16	—	_	ns	See Figure 0.2	
CS_B hold from SCLK rising edge (LSB first)	t _{cshi}	8	—		ns	See Figure 9-2	
CS_B setup to SCLK rising edge (MSB first)	t _{cssm}	16			ns	See Figure 0.2	
CS_B hold from SCLK falling edge (MSB first)	t _{cshm}	8			ns	See Figure 9-3	

TABLE 9-12: ELECTRICAL CHARACTERISTICS: SPI INTERFACE TIMING

Note 1: Values are over Recommended Operating Conditions.




FIGURE 9-3: SPI Interface Timing, MSB First Mode.

VDDIO = 3.3V±5% or 2.5V±5% or 1.8V±5	%					
Characteristics	Symbol	Min.	Тур.	Max.	Units	Notes
SCL clock frequency	f _{SCL}	—		400	kHz	Note 1
Hold time, START condition	t _{HD;STA}	0.6	_	—	μs	—
Low time, SCL	t _{LOW}	1.3		_	μs	—
High time, SCL	t _{HIGH}	0.6		_	μs	—
Setup time, START condition	t _{SU;STA}	0.6	_	—	μs	—
Data hold time	t _{HD;DAT}	0		_	μs	Note 2
Data valid time	t _{VD;DAT}	_		0.9	μs	—
Data valid acknowledge time	t _{VD;ACK}	—	_	0.9	μs	—
Data setup time	t _{SU;DAT}	100		_	ns	—
Rise time, SCL and SDA	t _r	—		300	ns	—
Fall time, SCL and SDA input	t _f	20 x (V _{DDIO} /5.5)		300	ns	_
Fall time, SDA output	t _{of}	20 x (V _{DDIO} /5.5)	_	250	ns	—
Setup time, STOP condition	t _{SU;STO}	0.6		_	μs	—
Bus free time between STOP/START	t _{BUF}	1.3	—	—	μs	—
Spike suppression, SCL and SDA inputs	t _{SP}	0	_	50	ns	—
Pin capacitance, SCL and SDA	Cp	_	_	10	pF	—
Bus capacitance, SCL and SDA	Cb	—	_	400	pF	_

 TABLE 9-13:
 ELECTRICAL CHARACTERISTICS: I²C INTERFACE TIMING

Note 1: Characteristics in this table apply to Fast-mode with $f_{SCL} \le 400$ kHz. The device may be used in a Standard-mode system with $f_{SCL} \le 100$ kHz and $t_r \le 1000$ ns. The device does not stretch SCL. All values referred to V_{IHmin} and V_{ILmax} levels (see Table 9-5).

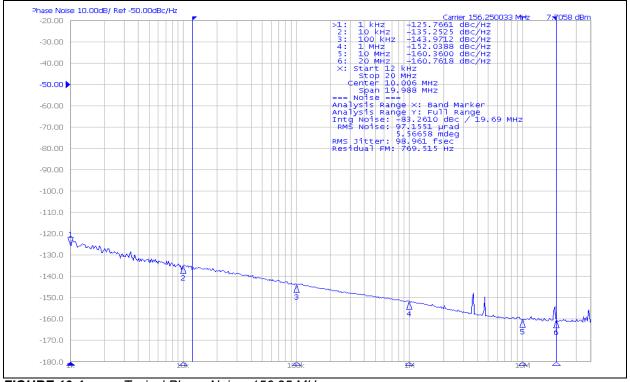
2: The device internally provides an output hold time of at least 300 ns for SDA (with respect to the V_{IHmin} of the SCL) to bridge the undefined region (V_{IHmin} to V_{ILmax}) of the falling edge of SCL. Other devices must provide this hold time as well per the I²C specification.

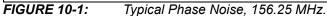
10.0 PERFORMANCE CHARACTERISTICS

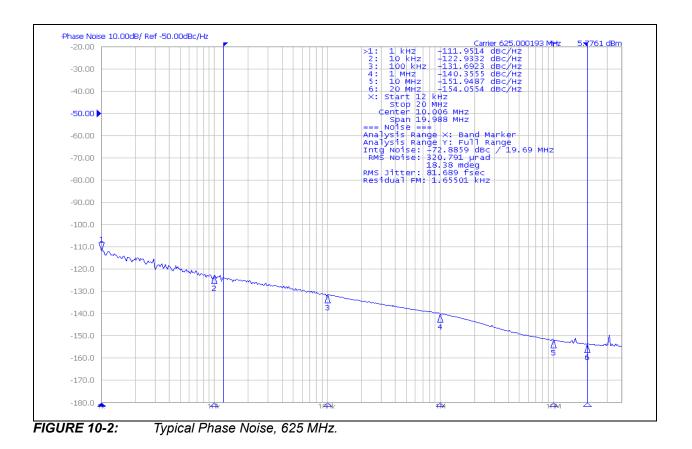
TABLE 10-1: OUTPUT CLOCK JITTER GENERATION – OUTXP/N DIFFERENTIAL

Characteristics	Test Conditions	Min.	Тур.	Max.	Units
Phase Jitter, 156.25 MHz	10 kHz to 1 MHz, Note 1, Note 2	_	75	120	fs _{RMS}
(114.285 MHz XO)	12 kHz to 20 MHz, Note 1, Note 2	_	102	145	fs _{RMS}
Phase Jitter, 156.25 MHz	10 kHz to 1 MHz, Note 1, Note 4		68		fs _{RMS}
(49.152 MHz crystal doubled)	12 kHz to 20 MHz, Note 1, Note 4	_	101	_	fs _{RMS}
Phase Jitter, 156.25 MHz	10 kHz to 1 MHz, Note 1, Note 4	_	89	_	fs _{RMS}
(49.152 MHz crystal not doubled)	12 kHz to 20 MHz, Note 1, Note 4	_	119	_	fs _{RMS}
Phase Jitter, 156.25 MHz	10 kHz to 1 MHz, Note 1, Note 3	_	99	_	fs _{RMS}
(49.152 MHz XO)	12 kHz to 20 MHz, Note 1, Note 3	_	128	_	fs _{RMS}
Period Jitter, 100 MHz	Note 1, Note 2, Note 5	_	10	_	ps _{PP}
Phase Jitter, 312.5 MHz (114.285 MHz XO)	12 kHz to 20 MHz, Note 1, Note 2	_	87	_	fs _{RMS}
Phase Jitter, 625 MHz (114.285 MHz XO)	12 kHz to 20 MHz, Note 1, Note 6	_	82		fs _{RMS}
Cycle-to-Cycle Jitter, 100 MHz	Note 1, Note 2, Note 5	—	10	_	ps

Note 1: Tested with VDDOx = 3.3V and programmable differential mode with V_{OD} = 800 mV and V_{CM} = 1.2V.


2: With Vectron VCC1-9004-114M285 XO connected to OSCB pin and +2 ppm frequency offset for the output signal w.r.t. the XO. APLL dividers set for 53x2=106 and xo_config::passclk=1, synth frequency 312.5 MHz.


3: With Vectron VCC1-1545-49M152 XO connected to OSCB pin and +2 ppm frequency offset for the output signal w.r.t. the XO. APLL dividers set for 27x9=243 and xo_config::passclk=1, synth frequency 312.5 MHz.


4: With Vectron VXM7-1361-49M1520000 crystal connected to OSCI/OSCO pins and +2 ppm frequency offset for the output signal w.r.t. the crystal. For crystal doubled case, APLL dividers set for 41x3=123. For the not-doubled case, xo_config::passclk=1, synth frequency 312.5 MHz.

5: N=10000. Measured using Tektronix MSO71604C, Mixed Signal Oscilloscope with DPOJET software.

6: With Vectron VCC1-9004-114M285 XO connected to OSCB pin and +2 ppm frequency offset for the output signal w.r.t. the XO. APLL dividers set for 53x2=106 and xo_config::passclk=1, synth frequency 625 MHz.

11.0 PACKAGE AND THERMAL INFORMATION

The device is fully functional at junction temperatures from T_{JMIN} to T_{JMAX} , but long-term exposure to junction temperatures above 110°C may eventually affect device performance.

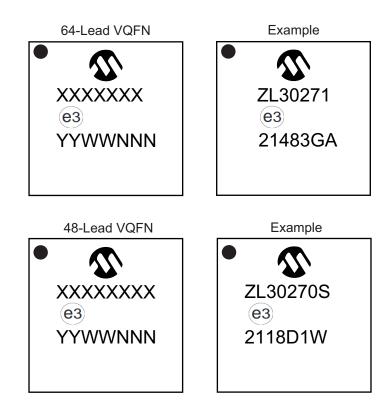
TABLE 11-1:	9X9 VQFN PACKAGE THERMAL PROPERTIES

Parameter	Symbol	Conditions	Value	Units
Maximum Ambient Temperature	T _A	—	+85	°C
Minimum Junction Temperature	T _{JMIN}	—	-40	°C
Maximum Junction Temperature	T _{JMAX}	—	+125	°C
Junction to Ambient Thermal Resistance (Note 1)		still air	16.8	°C/W
	θ_{JA}	1 m/s airflow	13.6	
		2.5 m/s airflow	11.8	
Junction to Board Thermal Resistance	θ _{JB}	—	4.5	°C/W
Junction to Case Thermal Resistance	θ _{JC}	—	8.3	°C/W
Junction to Pad Thermal Resistance (Note 2)	θ _{JP}	—	1.1	°C/W
Junction to Top-Center Thermal Characterization Parameter	Ψ_{JT}	_	0.1	°C/W

Note 1: Theta-JA (θ_{JA}) is the thermal resistance from junction to ambient when the package is mounted on an 8-layer JEDEC standard test board and dissipating maximum power.

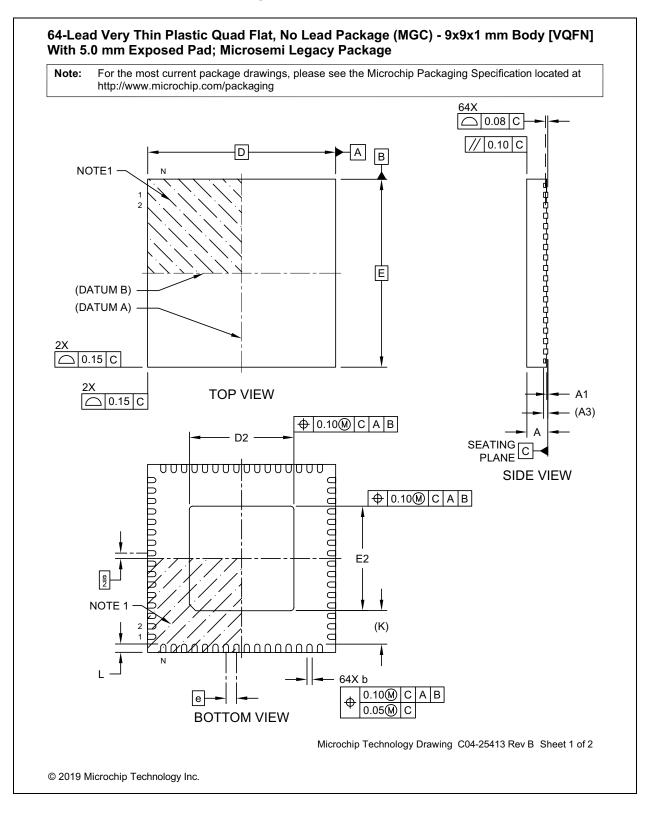
2: Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package.

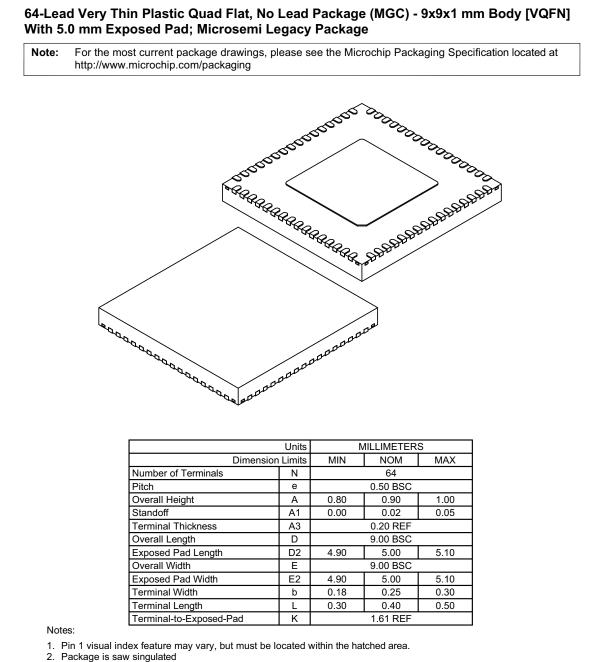
TABLE 11-2: 7X7 VQFN PACKAGE THERMAL PROPERTIES


Parameter	Symbol	Conditions	Value	Units
Maximum Ambient Temperature	T _A	—	+85	°C
Minimum Junction Temperature	T _{JMIN}	—	-40	°C
Maximum Junction Temperature	T _{JMAX}	—	+125	°C
Junction to Ambient Thermal Resistance (Note 1)	θ _{JA}	still air	16.8	°C/W
		1 m/s airflow	13.5	
		2.5 m/s airflow	11.7	
Junction to Board Thermal Resistance	θ _{JB}	—	5.5	°C/W
Junction to Case Thermal Resistance	θ _{JC}	—	9.3	°C/W
Junction to Pad Thermal Resistance (Note 2)	θ _{JP}	—	1.1	°C/W
Junction to Top-Center Thermal Characterization Parameter	Ψ_{JT}	—	0.1	°C/W

Note 1: Theta-JA (θ_{JA}) is the thermal resistance from junction to ambient when the package is mounted on an 8-layer JEDEC standard test board and dissipating maximum power.

2: Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package.

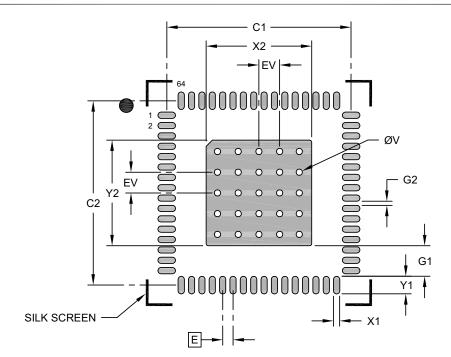

12.0 PACKAGE OUTLINE


12.1 Package Marking Information

Legend:	Y YY WW NNN @3 *	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package. ' Pin one index is identified by a dot, delta up, or delta down (triangle
	be carried characters the corpor	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available of or customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.

64-Lead 9 mm x 9 mm VQFN Package Outline and Recommended Land Pattern

Fackage is saw singulated
 Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-25413 Rev B Sheet 2 of 2

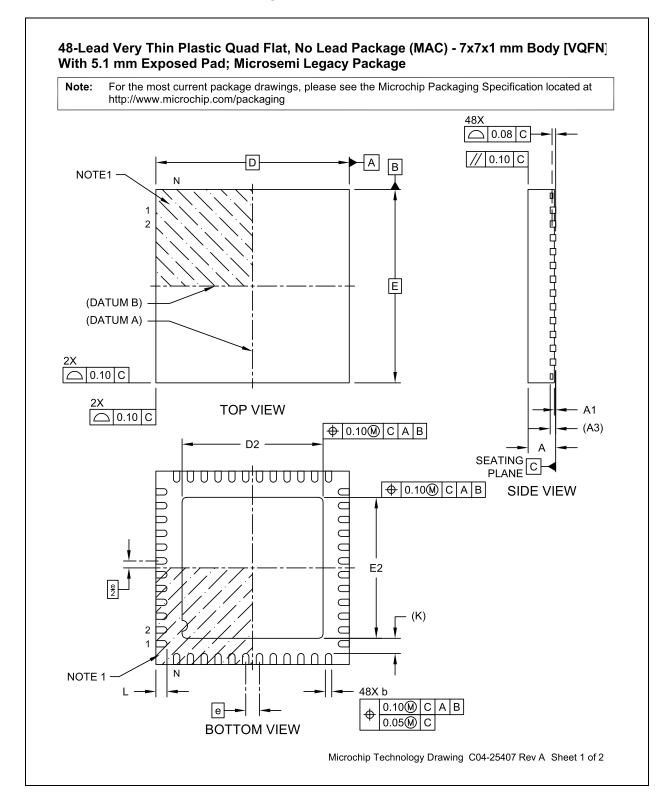
© 2019 Microchip Technology Inc.

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MGC) - 9x9x1 mm Body [VQFN] With 5.0 mm Exposed Pad; Microsemi Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

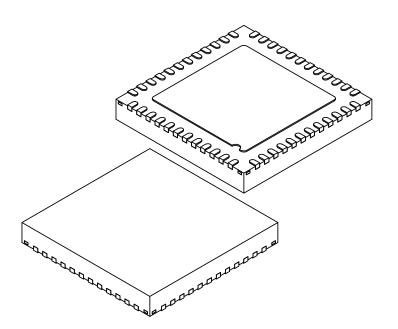
RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch			0.50 BSC	
Optional Center Pad Width	X2			5.10
Optional Center Pad Length	Y2			5.10
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Contact Pad to Center Pad (X64)	G1	1.48		
Contact Pad to Contact Pad (X60)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	


Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-27413 Rev B


© 2019 Microchip Technology Inc.

48-Lead 7 mm x 7 mm VQFN Package Outline and Recommended Land Pattern

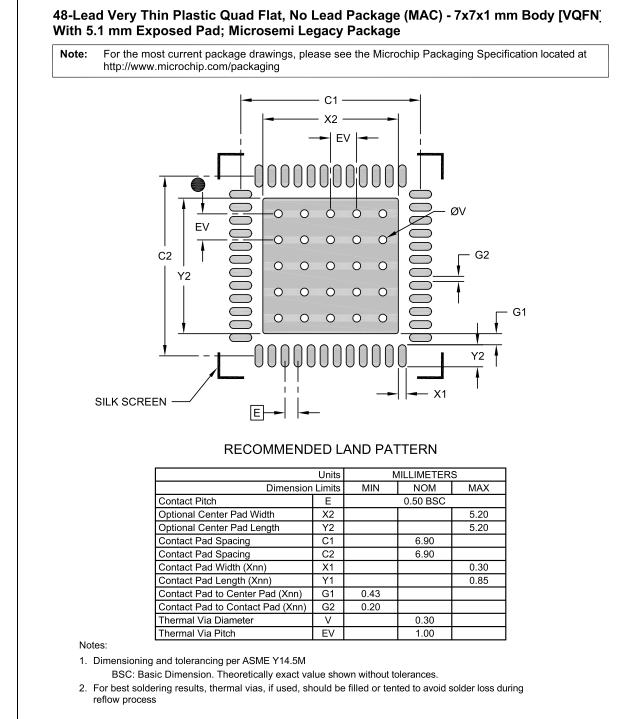
48-Lead Very Thin Plastic Quad Flat, No Lead Package (MAC) - 7x7x1 mm Body [VQFN] With 5.1 mm Exposed Pad; Microsemi Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Number of Terminals	Ν	48			
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Length	D	7.00 BSC			
Exposed Pad Length	D2	5.00	5.10	5.20	
Overall Width	E	7.00 BSC			
Exposed Pad Width	E2	5.00	5.10	5.20	
Terminal Width	b	0.16	0.23	0.30	
Terminal Length	L	0.35	0.40	0.45	
Terminal-to-Exposed-Pad	K		0.55 REF		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-25407 Rev A Sheet 2 of 2

Microchip Technology Drawing C04-27407 Rev A

ZL30270 - ZL30271

13.0 ACRONYMS AND ABBREVIATIONS

APLL	analog phase locked loop
CML	current mode logic
GbE	gigabit Ethernet
HCSL	high-speed current steering logic
I/O	input/output
LOS	loss of signal
LVDS	low-voltage differential signal
LVPECL	low-voltage positive emitter-coupled logic
PFD	phase/frequency detector
pk-pk	peak-to-peak
PLL	phase locked loop
ppb	parts per billion
ppm	parts per million
RMS	root-mean-square
RO	read-only
R/W	read/write
SS or SSM	spread spectrum modulation
тсхо	temperature-compensated crystal oscillator
UI	unit interval
UI_{PP} or UI_{P-P}	unit interval, peak-to-peak
ХО	crystal oscillator

APPENDIX A: DATA SHEET REVISION HISTORY

Revision	Section/Figure/Entry	Correction		
DS20006639A (12-07-21)	—	Converted Microsemi data sheet ZL30271 to Micro- chip DS20006639A. Minor text changes throughout.		
	—	Documented ZL30270		
	Figure 3-2	Added pin diagram for 48-lead 7 mm x 7 mm pack-		
	5	age.		
DS20006620B (02 28 22)	Table 4-1	Add pin numbers for 7 mm x 7 mm package.		
DS20006639B (02-28-22)	Table 11-2	Added 7 mm x 7 mm package thermal specs.		
	Section 12.0	Added package outline and recommended land pat- tern for 48-lead 7 mm x 7 mm VQFN package.		
	Product Identification System	Added S=48-Lead 7 mm x 7 mm package.		

TABLE A-1: REVISION HISTORY

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

						Examp	les:
<u>Device</u>	<u>x</u>	<u>x</u>	<u>X</u>	<u>X</u>	<u>X</u>	a) ZL302	271LDG1:
Part Ch Number	ip Carrier Type	Package	Media Type	Finish	Size	-	10-Output 5-Synthesizer Clock Genera- tor, Leadless Chip Carrier, QFN, 260/ Tray, Pb-Free Matte Tin (Sn) Finish,
Device:			t 5-Synthesizer (ut 5-Synthesizer				64-Lead 9 mm x 9 mm
Chip Carrier Typ	e: L=L	L = Leadless Chip Carrier D = QFN					Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Package:	D = 0						
Media Type:	G = 2	260/Tray					
Finish:	1 = P	Pb-Free, Matte	e Tin (Sn) Finish				
Size:		nk> = 64-Lead 8-Lead 7 mm	1 9 mm x 9 mm x 7 mm				

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR- RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMA-TION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON- INFRINGEMENT, MERCHANTABILITY, AND FIT-NESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI- RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021 - 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9913-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Garching

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Finland - Espoo

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820