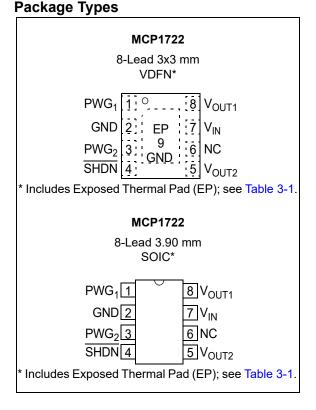


High Voltage LDO with Dual Output and Extended Temperature Range

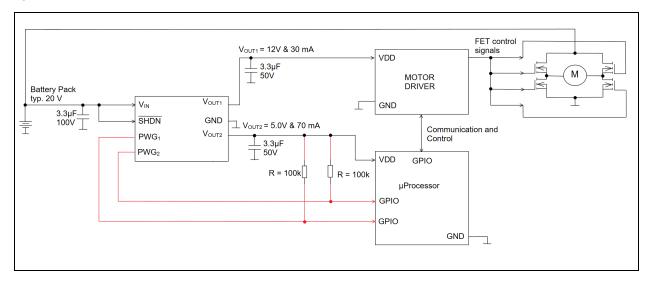
Key Features

- AEC-Q100, Grade 0 Qualified, PPAP Capable
- Input Voltage Range: 4.5V to 55V
- Undervoltage Lock Out (UVLO) 2.7V Typical
- 65V Load Dump Protected (ISO 7637-2/2004)
- Extended Junction Temperature Range: -40°C to +150°C
- Standard Output Regulated Voltages (V_R):
 - V_{OUT1}: 10V or 12V
 - V_{OUT2}: 3.3V or 5.0V
- Tolerance +/- 2% for each LDO Output
- Output Current Capability Typical:
 - V_{OUT1}: 50 mA
 - V_{OUT2}: 100 mA
- Open-Drain Power Good Pins for Both LDO Outputs
- Low Quiescent Supply Current: 50 µA
- · Low Shutdown Quiescent Supply Current: 4 μA
- Stable with Ceramic Output Capacitor: 3.3 μF
- Short Circuit Current Foldback Protection
- Thermal Shutdown Protection: 178°C Typical
- High PSRR:
 - -80 dB @ 100Hz typical
- Available in the Following Packages:
 - VDFN 8-Lead 3x3 mm Body with 2.40x1.60 mm Exposed Pad
 - SOIC 8-Lead 3.90 mm Body with 2.2x3.0 mm Exposed Pad

Applications


- Battery Powered Tools
- Handheld Vacuum
- Startup Bias for PWM Controllers

Description


MCP1722 is a dual output, high voltage, low dropout (LDO) regulator, designed to supply a μ Processor with either 3.3V or 5.0V. It has a current capability of 100 mA, while also providing 10V or 12V to a motor driver with a current capability of 50 mA. These specifications make it ideal for handheld power tools with 20V battery packs.

MCP1722 comes with Power Good indicators (two pins, PWG_1 and PWG_2) for both outputs and shutdown functionality (a single SHDN pin) that places the part in a low current consumption state, of only 4 μ A.

The device comes in two 8-lead VDFN or SOIC packages, both with exposed pads, for improved thermal dissipation. While in operation, MCP1722 is fully protected by thermal shutdown protection and current foldback limiting.

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage	+70.0V
Maximum Voltage on V _{IN} , SHDN	
Maximum Voltage on V _{OUT1}	(GND - 0.3V) to 22V
Maximum Voltage on V _{OUT2}	(GND - 0.3V) to 5.5V
Maximum Voltage on PWG ₁ , PWG ₂	(GND-0.3V) to 5.5V
Output Short-Circuit Duration	Unlimited (Note 2)
Storage Temperature	–55°C to +175°C
ESD protection on all pins:	
НВМ	≥ 4 kV
MM	≥ 300V
CDM 8L SOIC	≥ 1000V
CDM 8L VDFN	≥ 2000V

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{R1} + 1V$ (Note 1), $I_{OUT1} = I_{OUT2} = 1$ mA, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $T_A = +25^{\circ}\text{C}$, SHDN > 2.4V. **Boldface** type applies for ambient temperatures T_A of -40°C to $+150^{\circ}\text{C}$

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Input Voltage Supply						
Input Operating Voltage	V _{IN}	4.5	_	55	V	
UVLO Input Threshold	UVLOV _{IN}	_	2.7	-	V	Rising V _{IN}
UVLO Input Hysteresis		_	0.4	-	V	Falling V _{IN}
Quiescent Current	ا _Q	_	50	80	μA	I _{OUT1} = I _{OUT2} = 0 mA
Quiescent Current for SHDN mode	I_{Q} SHDN	-	4	14	μA	SHDN = GND, V _{IN} = 55V
Ground Current	I _{GND}	-	90	190	μA	I _{OUT1} = 50 mA, I _{OUT2} = 100 mA
Ground Current in Dropout	I _{DROP}	_	90	200	μA	V _{OUT} ≤ 90% of V _{R,} I _{OUT1} = 0 to 50 mA, I _{OUT2} = 0 to 100 mA

Note 1: V_{R1} is the nominal output voltage for LDO₁ the min input voltage is $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ whichever is greater.

- 2: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
- **3:** Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ which ever is greater.
- 4: Characterized, not Production Tested.
- 5: PSRR measurement is carried out with C_{IN} = 0 μF, V_{IN} = 14.5V, V_{INAC} = 0.4 V_{pkpk}. For LDO₁ measurement I_{OUT1} = 30 mA and I_{OUT2} = 1 mA and for LDO₂ measurement I_{OUT2} = 70 mA and I_{OUT1} = 1 mA.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{R1} + 1V$ (Note 1), $I_{OUT1} = I_{OUT2} = 1$ mA, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $T_A = +25^{\circ}\text{C}$, SHDN > 2.4V. **Boldface** type applies for ambient temperatures T_A of -40°C to $+150^{\circ}\text{C}$

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
LDO ₁				I		1
Maximum Output Current	I _{OUT1}	50	-	-	mA	
Line Regulation from V _{IN}	ΔV _{OUT1} / (ΔV _{IN} XV _{OUT1})	-0.05	0.0002	+0.05	% /V	$V_{IN} = 13V$ to $V_{IN(MAX)}$ $V_{OUT1} = 1$ mA $V_{OUT2} = 1$ mA
Load Regulation LDO ₁	$\Delta V_{OUT1} / V_{OUT1}$	-0.1	0.01	+0.1	%	V _{IN} = V _{R1} + 1V V _{OUT1} = 1 to 50 mA V _{OUT2} = 1 mA
Output Voltage Accuracy	_	V _{R1} - 2	_	V _{R1} + 2	%	
Dropout Voltage	V _{DROP1}	_	_	0.75	V	I _{OUT1} = 50 mA (Note 3)
LDO ₂						
Maximum Output Current	I _{OUT2}	100	_	_	mA	
Line Regulation from V _{IN}	ΔV _{OUT2} / (ΔV _{IN} XV _{OUT2})	-0.05	0.0002	+0.05	% /V	$V_{IN} = V_{R1} + 1 \text{ to } V_{IN(MAX)}$ $V_{OUT1} = 1 \text{ mA}$ $V_{OUT2} = 1 \text{ mA}$
Load Regulation LDO ₂	$\Delta V_{OUT2} N_{OUT2}$	-0.5	0.01	+0.5	%	V _{IN} = V _{R1} + 1V V _{OUT1} = 1 mA V _{OUT2} = 1 to 100 mA
Output Voltage Accuracy	-	V _{R2} - 2	-	V _{R2} + 2	%	
Dropout Voltage	V _{DROP2}	_	-	0.75	V	I _{OUT2} = 100 mA (Note 3)
Shutdown Voltage Input						
Logic High Input	V _{SHDN-HIGH}	2.4	_	_	V	
Logic High low	V _{SHDN-HIGH}	_	-	0.75	V	
SHDN Input Leakage Current	SHDNILK	_	-	0.2	μA	SHDN = 55V
Power Good						
PWRGD Input Voltage Range	V _{PG_VIN}	-	-	5	V	I _{PWRGD_SINK} = 5 mA

Note 1: V_{R1} is the nominal output voltage for LDO₁ the min input voltage is $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ whichever is greater.

2: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

- 3: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ which ever is greater.
- 4: Characterized, not Production Tested.
- 5: PSRR measurement is carried out with C_{IN} = 0 μF, V_{IN} = 14.5V, V_{INAC} = 0.4 V_{pkpk}. For LDO₁ measurement I_{OUT1} = 30 mA and I_{OUT2} = 1 mA and for LDO₂ measurement I_{OUT2} = 70 mA and I_{OUT1} = 1 mA.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{R1} + 1V$ (Note 1), $I_{OUT1} = I_{OUT2} = 1$ mA, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $T_A = +25^{\circ}\text{C}$, SHDN > 2.4V. **Boldface** type applies for ambient temperatures T_A of -40°C to $+150^{\circ}\text{C}$

-40°C to +150°C						
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
PWRGD Threshold VS V _{OUT} voltage	V _{PG_TH}	90	92	94	%Vout	Falling Edge of V _{OUT}
PWRGD Threshold Hysteresis VS V _{OUT} Voltage	V _{PG_HYS}	1	2.0	3	%V _{OUT}	Rising Edge of V _{OUT}
PWRGD Output Voltage Low	V _{PG_LOW}	Ι	0.2	0.45	V	I _{PWRGD_SINK} = 5 mA, V _{OUT} = 0V
PWRGD Output Sink Current	I _{PWRGD_SINK}	5	-	Ι	mA	$V_{PWRGD} \le 0.45V$
PWRGD Output Leakage	PWRGD _{LKG}	Ι	-	0.2	μA	V _{PWRGD} = 5.5V
PWRGD Time Delay	T _{PWG}	Ι	115	Ι	μs	Rising Edge, (Note 4)
Detect Threshold to PWRGD Active Time Delay	T _{VDET_PWG}	μ	115	-	μs	V _{OUT} goes from V _{OUT} below V _{OUT} - V _{PWRGD_} TH - 50 mV, (Note 4)
Output Discharge Transisto	r					
Discharge Resistance LDO1	R _{DS_LDO1}	-	90	-	Ω	Note 4
Discharge Resistance LDO2	R _{DS_LDO2}	-	90	-	Ω	Note 4
Protection Features						
FoldBack Current Corner V _{OUT1}	I _{SC1_LIMIT}	-	170	_	mA	Note 4
FoldBack Current Limit V _{OUT1}	I _{LIMIT1}	_	10	_	mA	
FoldBack Current Corner V _{OUT2}	I _{SC2_LIMIT}	_	230	_	mA	
FoldBack Current Limit V _{OUT2}	I _{LIMIT2}	_	10	_	mA	
Transient Performance						
Startup Delay	T _{DELAY}	-	1200	2500	μs	
AC Performance						

Note 1: V_{R1} is the nominal output voltage for LDO₁ the min input voltage is $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ whichever is greater.

- 2: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
- 3: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ which ever is greater.
- 4: Characterized, not Production Tested.
- 5: PSRR measurement is carried out with C_{IN} = 0 μF, V_{IN} = 14.5V, V_{INAC} = 0.4 V_{pkpk}. For LDO₁ measurement I_{OUT1} = 30 mA and I_{OUT2} = 1 mA and for LDO₂ measurement I_{OUT2} = 70 mA and I_{OUT1} = 1 mA.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{R1} + 1V$ (Note 1), $I_{OUT1} = I_{OUT2} = 1$ mA, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $T_A = +25^{\circ}\text{C}$, SHDN > 2.4V. **Boldface** type applies for ambient temperatures T_A of -40°C to $+150^{\circ}\text{C}$

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Output Noise LDO1	e _{N1}	-	550	-	µVrмs	f = 10 Hz to 10 MHz, I _{OUT1} = 30 mA, V _{IN} = 16V, (Note 4)
Output Noise LDO2	e _{N2}	-	300	-		f = 10 Hz to 10 MHz, I _{OUT} = 70 mA, V _{IN} = 16V, (Note 4)
Power Supply Ripple Rejection Ratio	PSRR	-	-80	_	dB	f = 100 Hz (Note 4, Note 5)

Note 1: V_{R1} is the nominal output voltage for LDO₁ the min input voltage is $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ whichever is greater.

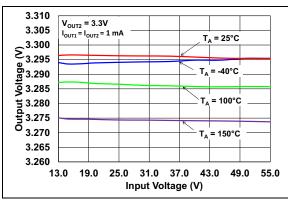
2: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

- **3:** Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{R1} + 1V$ or $V_{IN} = V_{IN_MIN}$ which ever is greater.
- 4: Characterized, not Production Tested.
- 5: PSRR measurement is carried out with C_{IN} = 0 μF, V_{IN} = 14.5V, V_{INAC} = 0.4 V_{pkpk}. For LDO₁ measurement I_{OUT1} = 30 mA and I_{OUT2} = 1 mA and for LDO₂ measurement I_{OUT2} = 70 mA and I_{OUT1} = 1 mA.

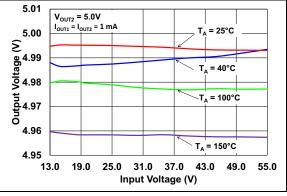
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Thermal Shutdown	T _{SD}	_	178	182	°C	Rising Temperature, (Note 4)
Thermal Shutdown Hysteresis	ΔT_{SD}	-	18	-	°C	Falling Temperature, (Note 4)
Operating Junction Temperature	Τ _J	-40	-	150	°C	
Package Thermal Resistanc	es					
Thermal Resistances, VDFN 8L with Exposed Pad	θ_{JA}	-	72	_	°C/W	Simulated values, natural convection method, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)
	θ_{JC}	-	85	-	°C/W	Simulated values, top cold plate, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)
	θ_{JB}	-	23	-	°C/W	Simulated values, ring cold plate, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)
	Ψ _{JT}	_	4.02	-	°C/W	Simulated values, natural convection method, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)

TEMPERATURE SPECIFICATIONS

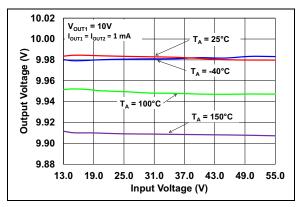
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Thermal Resistances, SOIC 8L with Exposed Pad	θ_{JA}	_	53	_	°C/W	Simulated values, natural convec- tion method, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)
	θ^{JC}	-	67	-	°C/W	Simulated values, top cold plate, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)
	θ_{JB}	-	27	-	°C/W	Simulated values, ring cold plate, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)
	ΨJT	-	7.41	-	°C/W	Simulated values, natural convec- tion method, per EIA/JEDEC JESD51-751-7 4 layer board (Note 2)

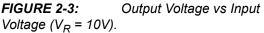

TEMPERATURE SPECIFICATIONS (CONTINUED)

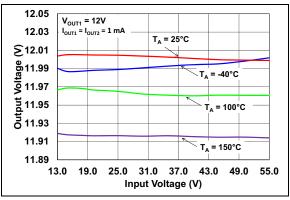
NOTES:

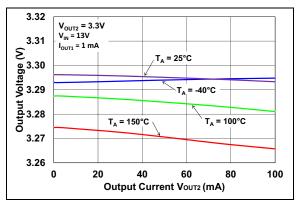

2.0 TYPICAL PERFORMANCE CURVES

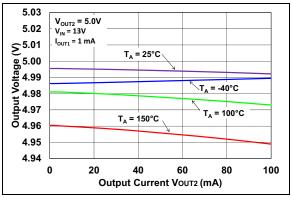
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (for example, outside the specified power supply range) and therefore outside the warranted range.


Note: Unless otherwise indicated, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \,\mu\text{F}$ ceramic (X7R), $I_{OUT1} = I_{OUT2} = 1 \,\text{mA}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{R1} + 1\text{V}$, SHDN = 1 M Ω pull-up to V_{IN} .




FIGURE 2-1: Output Voltage vs. Input Voltage ($V_R = 3.3V$).


FIGURE 2-2: Output Voltage vs Input Voltage ($V_R = 5.0V$).



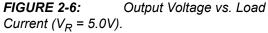


FIGURE 2-4: Output Voltage vs Input voltage ($V_R = 12V$).

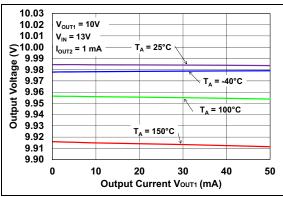
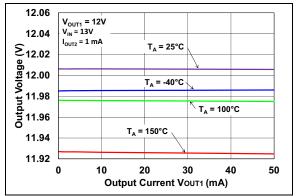
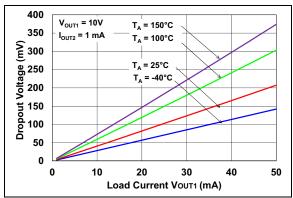
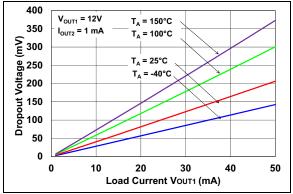
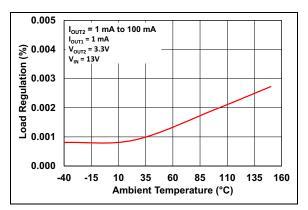


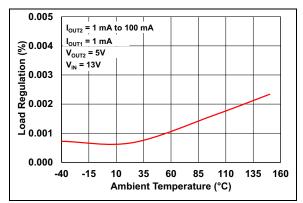
FIGURE 2-5: Output Voltage vs. Load Current ($V_R = 3.3V$).

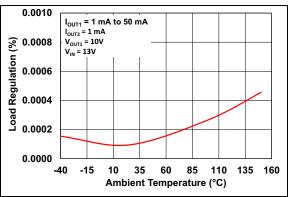


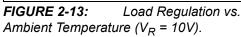

Note: Unless otherwise indicated, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $I_{OUT1} = I_{OUT2} = 1 \ \text{mA}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{R1} + 1\text{V}$, SHDN = 1 M Ω pull-up to V_{IN} .


FIGURE 2-7: Output Voltage vs. Load Current ($V_R = 10V$).


FIGURE 2-8: Output Voltage vs. Load Current ($V_R = 12V$).


FIGURE 2-9: Dropout Voltage vs. Load Current ($V_R = 10V$).


FIGURE 2-10: Dropout Voltage vs. Load Current (V_R = 12V).


FIGURE 2-11: Load Regulation vs. Ambient Temperature ($V_R = 3.3V$).

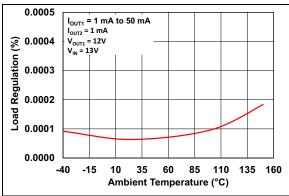
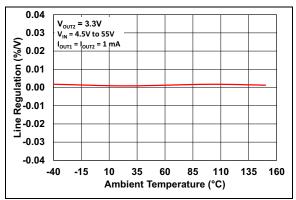
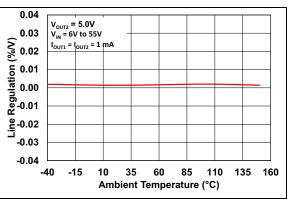
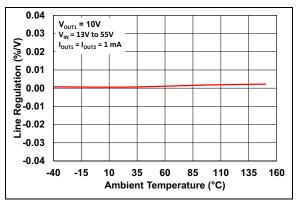


FIGURE 2-12: Load Regulation vs. Ambient Temperature ($V_R = 5.0V$).



Note: Unless otherwise indicated, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $I_{OUT1} = I_{OUT2} = 1 \ \text{mA}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{R1} + 1V$, SHDN = 1 M Ω pull-up to V_{IN} .




FIGURE 2-14: Load Regulation vs. Ambient Temperature ($V_R = 12V$).

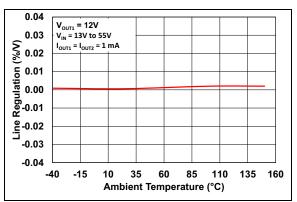

FIGURE 2-15: Line Regulation vs. Ambient Temperature ($V_R = 3.3V$).

FIGURE 2-16: Line Regulation vs. Ambient Temperature ($V_R = 5.0V$).

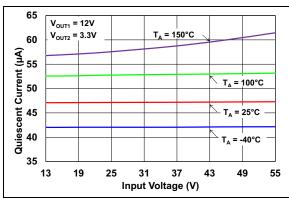


FIGURE 2-17: Line Regulation vs. Ambient Temperature ($V_R = 10V$).

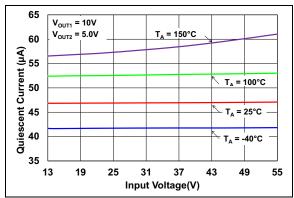
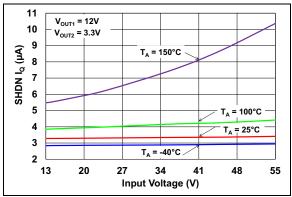
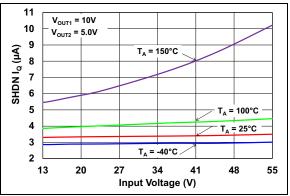
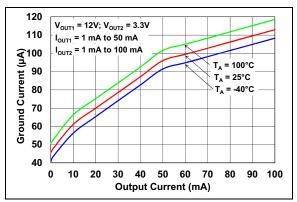
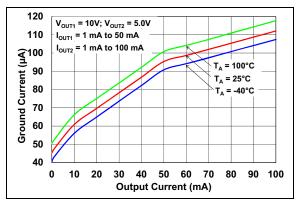


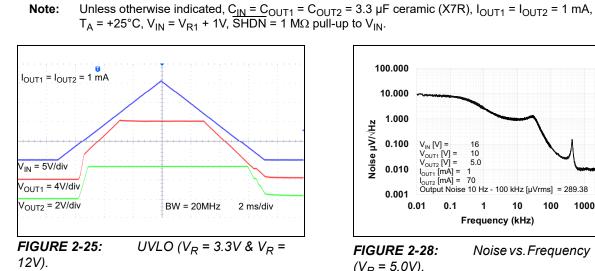
FIGURE 2-18: Line Regulation vs. Ambient Temperature ($V_R = 12V$).

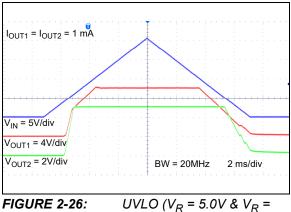

Note: Unless otherwise indicated, $C_{IN} = C_{OUT1} = C_{OUT2} = 3.3 \ \mu\text{F}$ ceramic (X7R), $I_{OUT1} = I_{OUT2} = 1 \ \text{mA}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{R1} + 1\text{V}$, SHDN = 1 M Ω pull-up to V_{IN} .

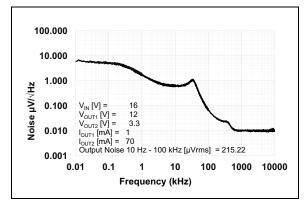

FIGURE 2-19: Quiescent Current vs. Input voltage ($V_R = 3.3V \& V_R = 12V$).

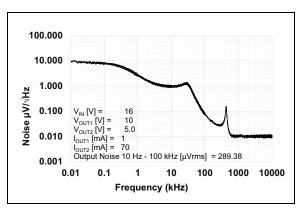

FIGURE 2-20: Quiescent Current vs. Input Voltage ($V_R = 5.0V \& V_R = 10V$).


FIGURE 2-21: SHDN Quiescent Current vs. Input voltage ($V_R = 3.3V \& V_R = 12V$).


FIGURE 2-22: SHDN Quiescent Current vs. Input voltage ($V_R = 5.0V \& V_R = 10V$).


FIGURE 2-23: Ground Current vs. Load Current (V_R = 3.3V & V_R = 12V).


FIGURE 2-24: Ground Current vs. Load Current ($V_R = 5.0V \& V_R = 10V$).


Note:

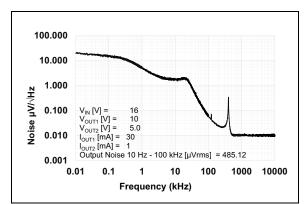
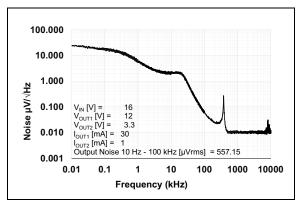
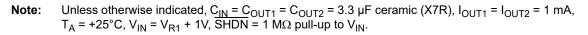
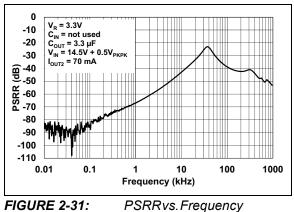
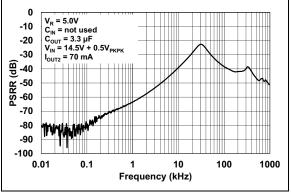
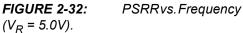

10V).

FIGURE 2-27: Noise vs. Frequency $(V_R = 3.3V).$

FIGURE 2-28: Noise vs. Frequency $(V_R = 5.0V).$

FIGURE 2-29: Noise vs. Frequency $(V_R = 10V).$


FIGURE 2-30: Noise vs. Frequency $(V_R = 12V).$

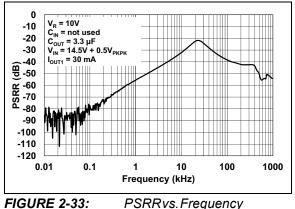
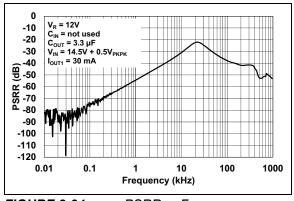


FIGURE 2-31: $(V_R = 3.3V).$



 $(V_R = 10V).$

PSRRvs. Frequency

FIGURE 2-34: $(V_R = 12V).$

PSRRvs. Frequency

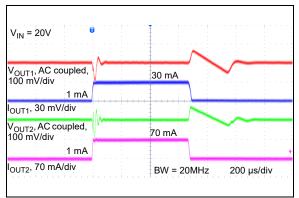


FIGURE 2-35: Dynamic Load Step (V_R = $3.3V \& V_R = 12V$).

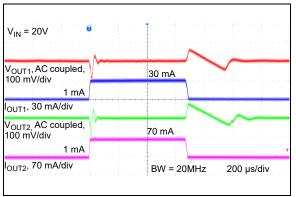
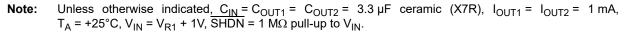
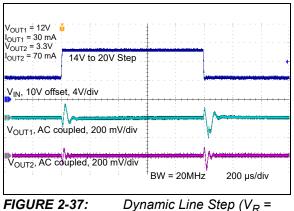
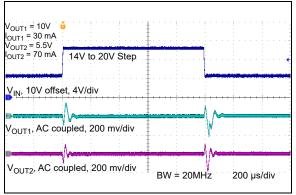
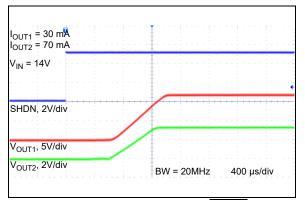





FIGURE 2-36: Dynamic Load Step (V_R = $5.0V \& V_R = 10V$).



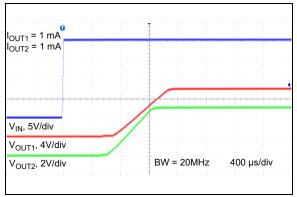

 $3.3V \& V_R = 12V$).

FIGURE 2-38: Dynamic Line Step (V_R = 3.3V & V_R = 12V).

FIGURE 2-39: Start-up from \overline{SHDN} (0V to 5V) ($V_R = 3.3V \& V_R = 12V$)

FIGURE 2-40: Start-up from V_{IN} (0V to 14V) (V_R = 5V & V_R = 10V)

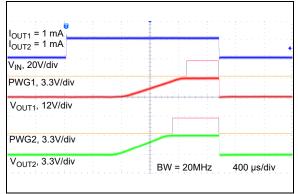
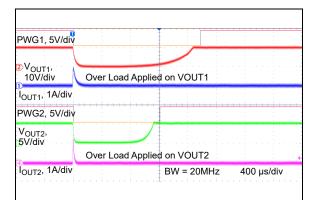



FIGURE 2-41: Power Good Transition (VR=3.3V & VR=12V).

FIGURE 2-42: Power Good Fault Trigger (VR=5V & VR=10V).

NOTES:

3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

8 Lead DFN	8 Lead SOIC	Symbol	Description
1	1	PWG ₁	Open Drain Power Good V _{OUT1}
2	2	GND	Ground
3	3	PWG ₂	Open Drain Power Good V _{OUT2}
4	4	SHDN	Shutdown Control Input (active-low). Do not leave this pin floating.
5	5	V _{OUT2}	Regulated Output Voltage V _{R2} for Second LDO
6	6	NC	Not Connected Pins (should either be left floated or connected to ground)
7	7	V _{IN}	Input Voltage Supply
8	8	V _{OUT1}	Regulated Output Voltage V _{R1} for First LDO
9	9	EP	Exposed Pad - Connect to GND

TABLE 3-1:	PIN FUNCTION TABLE

3.1 Ground Pin (GND)

For optimal noise and Power Supply Rejection Ratio (PSRR) performance, the GND pin of the LDO should be tied to an electrically "quiet" circuit ground. This ensures the LDO power supply rejection ratio and noise device performance. The GND pin of the LDO conducts only ground current, so a wide trace is not required. For applications that have switching or noisy inputs, tie the GND pin to the return of the output capacitor. Ground planes help to lower the inductance and thus reduce the effect of fast current transients.

3.2 Regulated Output Voltage Pin (V_{OUT1} & V_{OUT2})

The V_{OUT1} or V_{OUT2} pins are the regulated output voltage V_R of the respective LDOs. A minimum output capacitance of 3.3 μ F is required for each LDO to ensure the stability in all typical applications.

MCP1722 is stable with ceramic capacitors. For more information on output capacitor selection guidance, see **4.1 "Device Overview**".

3.3 Input Voltage Supply Pin (VIN)

Connect the input voltage source to V_{IN}. If the input voltage source is located several inches away from the LDO, or the input source is a battery, it is recommended that an input capacitor be used. A typical input capacitance value of $3.3 \,\mu\text{F}$ to $10 \,\mu\text{F}$ should be sufficient for most applications. The type of capacitor used is ceramic. However, the low ESR characteristics of the ceramic capacitor will yield better noise and PSRR performance at high frequency.

3.4 Shutdown Control Input (SHDN)

The SHDN input is used to turn the LDO output voltage off. Consequently, when the SHDN input is at a logic high level, the LDO output voltage is enabled and, when the SHDN input is pulled to a logic low level, the LDO output voltage is disabled.

Furthermore, when the \overline{SHDN} input is pulled to a logic-low level, the LDO enters a low-quiescent current shutdown state, where the typical quiescent current is 4 μ A.

3.5 Power Good Output (PWG₁ & PWG₂)

 PWG_1 and PWG_2 are open drain outputs that can be connected to either 3.3V or 5.0V with a pull-up resistor, to monitor the status of the LDO regulated output voltages. PWG_1 monitors the state for $VOUT_1$ and PWG_2 for $VOUT_2$, respectively.

When the regulated output voltages are above 94%, typically, the power good pins will indicate a logic high state. Similarly if the value drops below 94%, the pins will transition to a logic low state.

3.6 Exposed Pad (EP)

To help with the part's thermal dissipation, both packages have an exposed pad tied internally to GND. It is recommended to connect the Exposed Pad to a solid GND plane with multiple vias, to help dissipate excess heat.

4.0 DETAILED DESCRIPTION

4.1 Device Overview

MCP1722 is a dual output LDO, where LDO₁ has a V_R of 10V or 12V and LDO₂, a V_R of 3.3V or 5.0V. This output combination can be used for powering both a MOSFET driver and a μ Processor.

The LDO also comes with high voltage \overline{SHDN} input and low voltage Power Good feedback for regulated output voltages, thus allowing the μ Processor to monitor the state of the power supply and safely shutdown the application, in the case of a power fail.

The LDO requires a 3.3 μ F output capacitor for each output in order to maintain stability. The capacitors will be discharged by the internal discharge blocks, which have a typical resistance of 90 Ω and are activated when the part enters a shutdown state.

The device also features a good PSRR of typ -80 dB for low frequencies.

MCP1722 has a temperature range of -40°C to +150°C and is AEC-Q100 qualified grade 0 capable and has passed 65V Load Dump testing, per ISO 7637-2/2004.

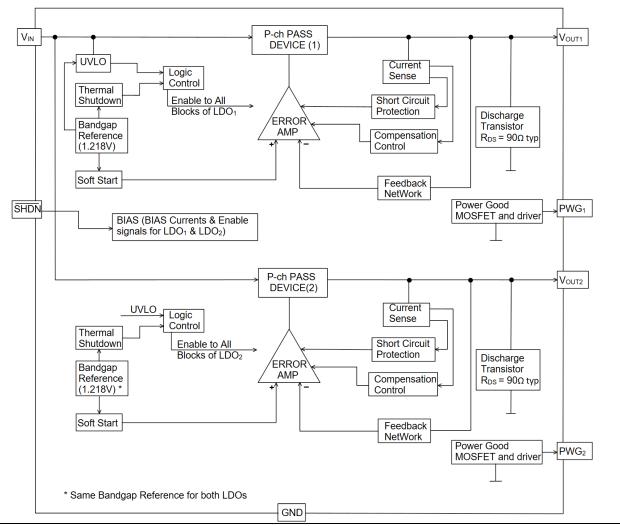


FIGURE 4-1: Functional Block Diagram.

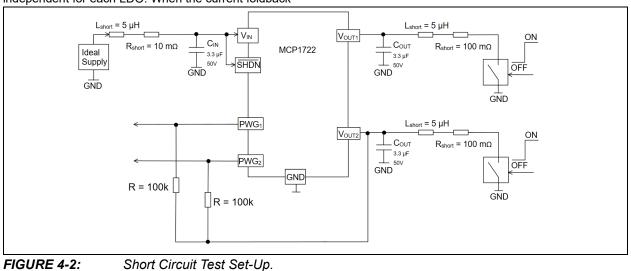
4.2 Output Capacitance Requirements

MCP1722 requires a minimum output capacitance of 3.3 μ F which can be increased up to 33 μ F for output voltage stability. The output capacitor should be located as close to the LDO output as is practical. The device was designed to work with low ESR ceramic capacitors. Ceramic materials X8R\L or X7R have low

temperature coefficients and are well within the acceptable ESR range required. A typical 3.3 μ F X7R 0805 capacitor has an ESR of 50 m Ω .

4.3 Input Capacitance Requirements

For the LDO output to operate correctly, a low input-source impedance is required. When operating using battery power, or in applications with long lead length (> 10 inches) between the input source and the LDO, some input capacitance is recommended. A minimum of $3.3 \,\mu\text{F}$ to $10 \,\mu\text{F}$ of capacitance is recommended for most applications. Given the high input voltage capability of the part (of up to 55V DC), it is recommended to use appropriate voltage rating capacitor, and the de-rating of the capacitance as a function of voltage needs to be taken into account; similar with the output capacitor the ceramic materials need to be X7R or X8R\L because these dielectrics are rated for use with temperatures between -40°C to +125°C or respectively -55°C to +150°C.


4.4 **Circuit Protection**

MCP1722 features current foldback protection during an output short circuit event, that occurs in normal operation. The foldback current protection is independent for each LDO. When the current foldback block detects an increase in load current, over the typical value of each LDO (see Section 1.0 "Electrical Characteristics"), the output current and output voltage will start to decrease until the output current reaches a value of typically 10 mA.

If a short circuit is present during power up the part will enter current limit protection.

MCP1722 was tested using the AEC-Q100 test set-up outlined in Figure 4-2. The testing conditions require the use of very high parasitic inductances on the input and output. For cases such as this, it is required to prevent the output voltage from going below ground by more than 1V (the VOUT pin can withstand a maximum of -0.3VDC). For more information, see Section "Absolute Maximum Ratings †". This can be achieved by placing a diode with the cathode to V_{OUT} and anode to ground.

The thermal shutdown functionality is present on the device and adds to the part's protection features. Typically, thermal shutdown is triggered when the part reaches 178°C and has a typical hysteresis of 18°C.

4.5 **Dropout Operation**

For LDO1, the part can be found operating in a dropout condition when considering the minimum input voltage of 4.5V. Until the supply voltage reaches a value that is equal to V_{R1} + 750 mV, LDO₁ will be tracking the input supply voltage. It is preferred to make sure that the part does not operate in dropout during DC operation so that the AC performance is maintained. The same conditions apply to LDO₂.

The device has a dropout voltage of approximately 250 mV at full load and room temperature, but because of the extended temperature range of 150°C, due to increased leakage, it reaches up to 750 mV.

Shutdown Input (SHDN) and Input 4.6 UVLO

The SHDN input is an active-low input signal that turns the LDO on or off. The SHDN threshold has a logic HIGH level of minimum 2.4V and a logic LOW level of maximum 0.75V.

The SHDN pin ignores low-going pulses that are up to 30 µs. This blanking window helps to reject any system noise spikes on the SHDN input signal. Then, on the rising edge of the SHDN input, the shutdown circuitry adds 1.2 ms delay before allowing the regulator output to turn on. This delay helps to reject any false turn-on signals or noise on the SHDN input signal. After the typical 1.2 ms delay, the regulator start charging the load capacitor as the output rises from 0V to its

regulated value. The charging current will be limited by the current limit value of the device. If the SHDN input signal is pulled low during the 1.2 ms delay period, the timer will be reset and the delay time will start over again on the next rising edge of the SHDN input. Figure 4-3 shows a timing diagram of the SHDN input.

The UVLO block helps prevent false start-ups, during power up sequence, until the input voltage reaches a value of 2.7V.

4.7 Power Good

The Power Good function is available for both LDO_1 and LDO_2 , as they are both low voltage open drain outputs which can be used to monitor the output of the LDOs in relation with the Power Good Threshold level (V_{PWG TH}), which is typically 92%.

During a normal start up sequence the open drain output is held low until the monitored regulated output voltage reaches the value of V_{PWG_TH} plus the hysteresis value. After which the power good time delay (T_{PWG})

will start, and after 115 μ s typically the PWG pin will become inactive and can be pulled high by the external pull up resistor connected to V_{OUT2} or a separate supply rail that is below 5.5V.

For those cases in which the power good is referenced to other external supply rails, when the part is powered up it is required to wait the typical start up delay of 1.2 ms before monitoring the power good pins, in order to prevent false readings.

During transient events, false triggering of the Power Good signals is prevented by means of time delay (T_{VDET_PWG}), typically, of 115 µs. After the internal circuitry detects the regulated output falling below the V_{PWG_TH} the open drained output won't be pulled low until the time delay pases. When the SHDN is pulled low, if the requirements for a valid signal are met, then the Power Good open drained will be pulled low. The output will be discharged by the output discharge block by means of 90 Ω resistor pulled down to GND.

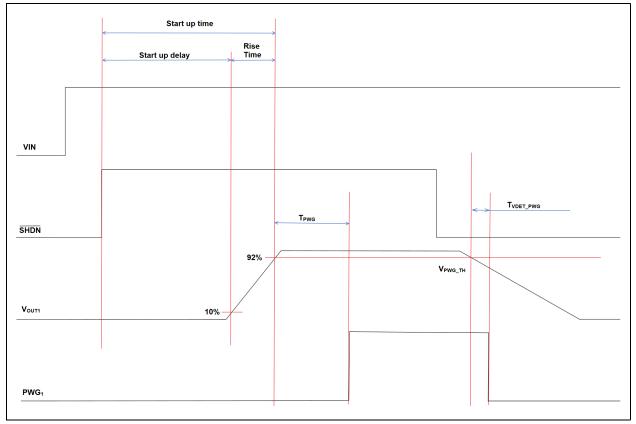
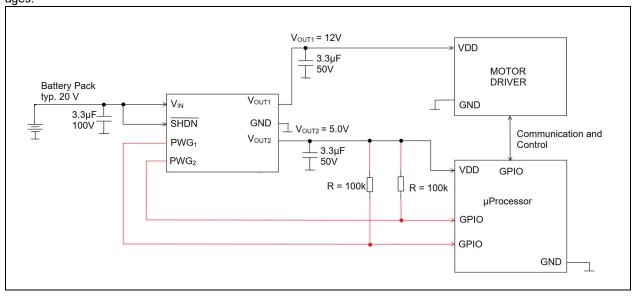


FIGURE 4-3: Timing Diagram.

4.8 Package and Device Qualifications


The Devices are AEC-Q100, grade 0 qualified, which allows the MCP1722 to be used within an extended temperature range, from -40°C to +150°C.

Additionally, both packages have a moisture sensitivity level (MSL) of 1.

5.0 APPLICATION INFORMATION

5.1 Typical Application

MCP1722 is used for applications that require medium input voltage and are prone to high input transient voltages.

FIGURE 5-1: Typical Application Circuit	II.
---	-----

5.2 Power Calculations

5.2.1 POWER DISSIPATION

The internal power dissipation within the MCP1722 is a function of input voltage, output voltage, output current and quiescent current. Equation 5-2 can be used to calculate the internal power dissipation for one of the LDOs, while the total power dissipation is the sum of the power dissipated by LDO_1 and LDO_2 Equation 5-1.

EQUATION 5-1:

$$P_{LDO} = P_{LDO1} + P_{LDO2}$$

Where:

P_{LDO} = Total internal power dissipation of the LDO

P_{LDO2} = Internal power dissipation of the LDO₂ pass device

EQUATION 5-2:

$P_{LDO} = 0$	$(V_{IN(MAX)} - V_{OUT(MIN)}) \times I_{OUT(MAX)}$
Where:	
P_{LDO}	 Internal power dissipation of the LDO pass device
V _{IN(MAX)}	= Maximum input voltage
V _{OUT(MIN)}	= LDO minimum output voltage
I _{OUT(MAX)}	= Maximum output current

In addition to the power dissipation due to the LDO P-ch pass device, additional power dissipation also occurs within MCP1722 as a result of quiescent or ground current. The power dissipation due to the ground current can be calculated using Equation 5-3:

EQUATION 5-3:

$$P_{I(GND)} = V_{IN(MAX)} \times I_{GND}$$

Where:

- P_{I(GND)} = Power dissipation due to the ground current of the LDO
- V_{IN(MAX)} = Maximum input voltage
 - I_{GND} = Current flowing into the GND pin

The total power dissipated within the MCP1722 is the sum of the power dissipated in the LDO pass device and the P(I_{GND}) term. Because of the CMOS construction, the typical I_{GND} for the MCP1722 is typical 90 μ A at full load. Operating at a maximum V_{IN} of 55V results in a power dissipation of 5 mW for. For most applications, this is small compared to the LDO pass device power dissipation, and can be neglected.

The maximum continuous operating junction temperature specified for the MCP1722 is +150°C. To estimate the internal junction temperature of the MCP1722, the total internal power dissipation is multiplied by the thermal resistance from junction-to-ambient (θ_{JA}) of the device. For example, the thermal resistance from junction to ambient for the 8-Lead SOIC with exposed pad package is estimated at 53°C/W.

EQUATION 5-4:

$$T_{J(MAX)} = P_{LDO} \times \theta_{JA} + T_{A(MAX)}$$

Where:

T _{J(MAX)}	=	Maximum continuous junction temperature
P_{LDO}	=	Total power dissipation of the device
θιΑ	=	Thermal resistance from junction to

- θ_{JA} = Thermal resistance from junction to ambient
- $T_{A(MAX)}$ = Maximum ambient temperature

The maximum power dissipation capabilities for a package can be calculated using the junction-to-ambient thermal resistance and the maximum ambient temperature for the application. Equation 5-5 can be used to determine the package maximum internal power dissipation.

EQUATION 5-5:

$$P_{D(MAX)} = \frac{(T_{J(MAX)} - T_{A(MAX)})}{\theta_{JA}}$$

Where:

P _{D(MAX)} =	Maximum power dissipation of the device
T _{J(MAX)} =	Maximum continuous junction temperature

 $T_{A(MAX)}$ = Maximum ambient temperature

 θ_{JA} = Thermal resistance from junction to ambient

EQUATION 5-6:

$$T_{J(RISE)} = P_{D(MAX)} \times \theta_{JA}$$

Where:

T _{J(RISE)}	=	Rise in the device junction
		temperature over the ambient temperature
P _{D(MAX)}	=	Maximum power dissipation of the device
θ_{JA}	=	Thermal resistance from junction to ambient

EQUATION 5-7:

$$T_J = T_{J(RISE)} + T_A$$

Where:

T_J = Junction temperature

T_{J(RISE)} = Rise in the device junction temperature over the ambient temperature

 T_A = Ambient temperature

5.3 Typical Application Examples

Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are all calculated in the example below. In this particular example, the power dissipation as a result of ground current is small enough to be negligible.

5.3.1 POWER DISSIPATION EXAMPLE

Package Package Type = 8 Lead SOIC with Exposed Pad Input Voltage $V_{IN} = 20V \pm 5\%$ LDO Output Voltage and Current $V_{OUT1} = 12V$ $V_{OUT2} = 5.0V$ $I_{OUT2} = 30 \text{ mA}$ $I_{OUT2} = 70 \text{ mA}$ **Maximum Ambient Temperature** $T_{A(MAX)} = +60^{\circ}C$ **Internal Power Dissipation** $P_{LDO1} = (V_{IN(MAX)} - V_{OUT1(MIN)}) \times I_{OUT1}$ P_{LDO1}= ((20V x 1.05) - (12 x 0.98)) x 30 mA P_{LDO1} = 0.27W $P_{LDO2} = (V_{IN(MAX)} - V_{OUT2(MIN)}) \times I_{OUT2}$ $P_{LDO2} = ((20V \times 1.05) - (5.0V \times 0.98))$ x 70 mA

 $P_{LDO(2)}$ = 1.12W $P_{LDO} = P_{LDO1} + P_{LDO2}$ $P_{LDO} = 0.27 + 1.12$ $P_{LDO} = 1.39W$

5.3.2 DEVICE JUNCTION TEMPERATURE RISE EXAMPLE

The internal junction temperature rise is a function of internal power dissipation and of the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient (θ_{JA}) is derived from EIA/JEDEC standards for measuring thermal resistance. The EIA/JEDEC specification is JESD51. The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors such as copper area and thickness. Refer to Application Note AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application" (DS00792), for more information regarding this subject.

EXAMPLE 5-1:

$$\begin{split} T_{J(RISE)} &= P_{TOTAL} \ x \ \theta_{JA} \\ T_{J(RISE)} &= 1.39W \ x \ 53^{\circ}C/W \\ T_{J(RISE)} &= 74^{\circ}C \end{split}$$

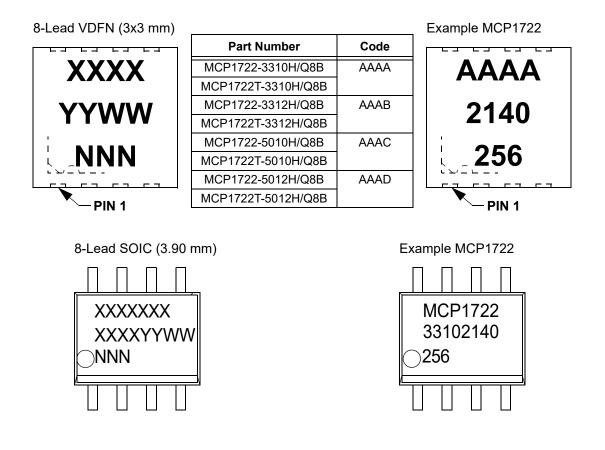
5.3.3 JUNCTION TEMPERATURE ESTIMATE EXAMPLE

To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below:

EXAMPLE 5-2:

T _J =	$T_{J(RISE)} + T_{A(MAX)}$
T _J =	74°C + 60.0°C
Т _Ј =	134°C

5.3.4 MAXIMUM PACKAGE POWER DISSIPATION AT +60°C AMBIENT TEMPERATURE EXAMPLE


EXAMPLE 5-3:

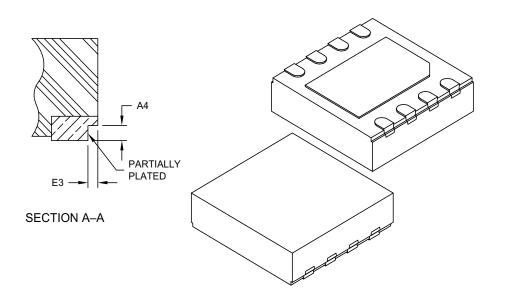
8 Lead SOIC (θ_{JA} = 53°C/W): P_{D(MAX)} = (150°C - 60°C)/53°C/W P_{D(MAX)} = 1.69W

NOTES:

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.



Microchip Technology Drawing C04-21358 Rev D Sheet 1 of 2

8-Lead Very Thin Plastic Dual Flat, No Lead Package (Q8B) - 3x3x1 mm Body [VDFN] With 2.40x1.60 mm Exposed Pad and Stepped Wettable Flanks; Atmel Legacy YCL

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

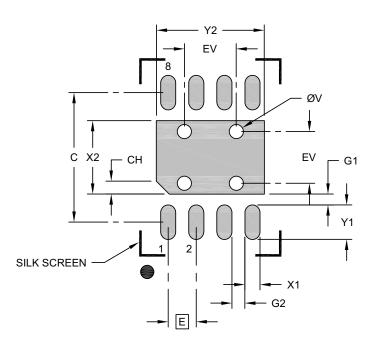
	MILLIMETERS				
Dimension	I Limits	MIN	NOM	MAX	
Number of Terminals	Ν		8		
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.035	0.05	
Terminal Thickness	A3	0.203 REF			
Overall Length	D	3.00 BSC			
Exposed Pad Length	D2	2.30	2.40	2.50	
Overall Width		3.00 BSC			
Exposed Pad Width	E2	1.50	1.60	1.70	
Terminal Width	b	0.25	0.30	0.35	
Terminal Length	L	0.35	0.40	0.45	
Terminal-to-Exposed-Pad	К	0.20	-	-	
Wettable Flank Step Cut Depth	A4	0.10	-	0.19	
Wettable Flank Step Cut Width	E3	-	-	0.085	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-21358 Rev D Sheet 2 of 2

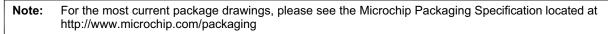
8-Lead Very Thin Plastic Dual Flat, No Lead Package (Q8B) - 3x3x1 mm Body [VDFN] With 2.40x1.60 mm Exposed Pad and Stepped Wettable Flanks

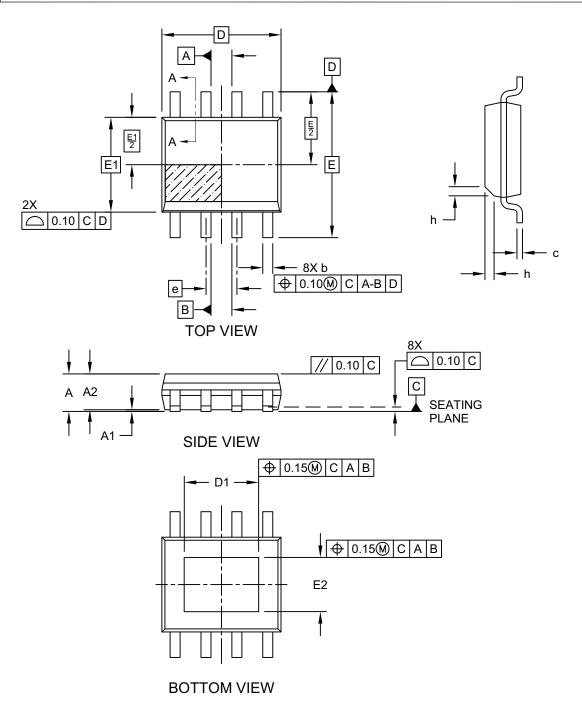
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	I Limits	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	X2			1.70	
Optional Center Pad Length	Y2			2.50	
Contact Pad Spacing	С		3.00		
Contact Pad Width (X8)	X1			0.35	
Contact Pad Length (X8)	Y1			0.80	
Contact Pad to Center Pad (X8)	G1	0.20			
Contact Pad to Contact Pad (X6)	G2	0.20			
Pin 1 Index Chamfer	СН	0.20			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch E			1.20		

Notes:

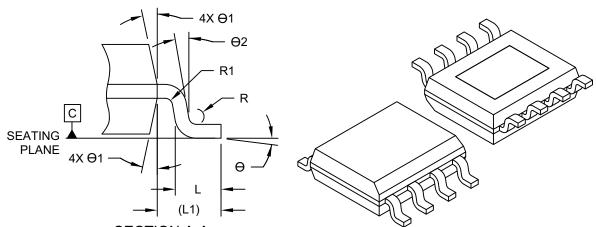

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-23358 Rev D

8-Lead Thermally Enhanced Plastic Small Outline (SE) - Narrow, 3.90 mm Body [SOIC] With 2.2 x 3.0 mm Exposed Pad



Microchip Technology Drawing C04-162 Rev C Sheet 1 of 2

8-Lead Thermally Enhanced Plastic Small Outline (SE) - Narrow, 3.90 mm Body [SOIC] With 2.2 x 3.0 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

Units		MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	Ν	8					
Pitch	e	1.27 BSC					
Overall Height	А	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.00	-	0.15			
Overall Width	E		6.00 BSC				
Molded Package Width	E1		3.90 BSC				
Overall Length	D	4.90 BSC					
Exposed Pad Width	E2	2.05	2.23	2.41			
Exposed Pad Length	D1	2.81	3.06	3.30			
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.04 REF					
Lead Thickness	С	0.17	-	0.25			
Lead Width	b	0.31	-	0.51			
Lead Bend Radius	R	0.07	-	-			
Lead Bend Radius	R1	0.07	-	-			
Foot Angle	θ	0°	-	8°			
Lead Angle	Θ2	0°	-	-			
Mold Draft Angle Top and Bottom	θ1	5°	-	15°			

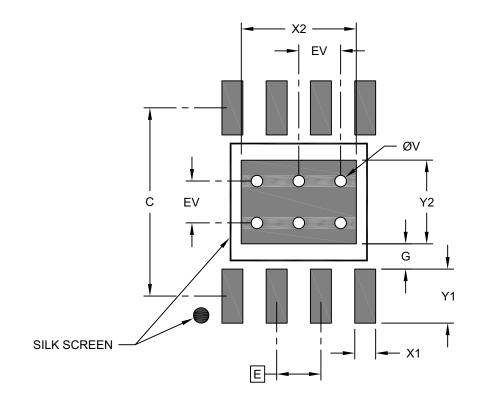
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-163 Rev C Sheet 2 of 2

8-Lead Thermally Enhanced Plastic Small Outline (SE) - Narrow, 3.90 mm Body [SOIC] With 2.2 x 3.0 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Center Pad Width	X2			3.30
Center Pad Length	Y2			2.40
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55
Contact Pad to Center Pad (X8)	G1	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch EV			1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2162 Rev C

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2021)

• Original release of this document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, such as on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>או</u> (1)	<u>-3310/3312</u> 5010/5012	¥	<u>/xxx</u>	Exa	amples:
	and Reel tion \	-5010/5012 /oltage Output	 Temperature Range	Package	a)	MCP1722-3310H/Q8B: 3.3V and 10V Outputs, Extended Temperature, 8-Lead VDFN package
Device:	MCP1722:	Option High Voltage LD		aut	b)	MCP1722-3312H/Q8B: 3.3V and 12V Outputs, Extended Temperature, 8-Lead VDFN package
Device.		 High Voltage LD High Voltage LD (Tape and Reel) 			c)	MCP1722-5010H/Q8B: 5.0V and 10V Outputs, Extended Temperature, 8-Lead VDFN package
Tape and Reel	T = Ta	ape and Reel ⁽¹⁾			d)	MCP1722-5012H/Q8B: 5.0V and 12V Outputs, Extended Temperature, 8-Lead VDFN package
Option:	2240 - Du				e)	MCP1722-3310H/S7X: 3.3V and 10V Outputs, Extended Temperature, 8-Lead SOIC package
Option	3312 = Dua	al Output Voltage: 3 al Output Voltage: 3 al Output Voltage: 5	.3V LDO ₂ / 12V		f)	MCP1722-3312H/S7X: 3.3V and 12V Outputs, Extended Temperature, 8-Lead SOIC package
	5012 = Dua	al Output Voltage: 5	.0V LDO ₂ / 12V	_DO ₁	g)	MCP1722-5010H/S7X: 5.0V and 10V Outputs, Extended Temperature, 8-Lead SOIC package
Temperature Range:	H = -4	0°C to +150°C (Ex	ended)		h)	MCP1722-5012H/S7X: 5.0V and 12V Outputs, Extended Temperature, 8-Lead SOIC package
Package: Q8B =	Q8B = Very Thin Plastic Dual Flat, No Lead Package (Q8B) - 3x3 mm Body [VDFN] With 2.40x1.60 mm Exposed Pad and Stepped Wettable Flanks	x1.60	i)	MCP1722T-3310H/Q8B: Tape and Reel, 3.3V and 10V Outputs, Extended Temperature, 8-Lead VDFN package		
	S7X = TH	Atmel Legacy YCL), 8 hermally Enhanced F arrow, 3.90 mm Body xposed Pad, 8-Lead	3-Lead Plastic Small Outlir / [SOIC] With 2.2 >	ne (SE) -	j)	MCP1722T-3312H/Q8B: Tape and Reel, 3.3V and 12V Outputs, Extended Temperature, 8-Lead VDFN package
	L				k)	MCP1722T-5010H/Q8B: Tape and Reel, 5.0V and 10V Outputs, Extended Temperature, 8-Lead VDFN package
					1)	MCP1722T-5012H/Q8B: Tape and Reel, 5.0V and 12V Outputs, Extended Temperature, 8-Lead VDFN package
					m)	MCP1722T-3310H/S7X: Tape and Reel, 3.3V and 10V Outputs, Extended Temperature, 8-Lead SOIC package
					n)	MCP1722T-3312H/S7X: Tape and Reel, 3.3V and 12V Outputs, Extended Temperature, 8-Lead SOIC package,
					o)	MCP1722T-5010H/S7X: Tape and Reel, 5.0V and 10V Outputs, Extended Temperature, 8-Lead SOIC package
					p)	MCP1722T-5012H/S7X: Tape and Reel, 5.0V and 12V Outputs, Extended Temperature, 8-Lead SOIC package
					Note	e 1: Tape and Reel identifier only appears in th catalog part number description. This identifie is used for ordering purposes and is not printe on the device package. Check with your Micro chip Sales Office for package availability wit the Tape and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-8451-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2365 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-436-6000

San Jose, CA Tel: 408-736-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7365

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1361

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 368-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-364-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820