## 16-Channel $\pm 135 V$ Push-Pull Driver with RTZ

## Features

- 16-Channel Push-Pull Output
- Return-To-Zero (RTZ) and High Impedance (Hi-Z) Function
- Up to $\pm 135$ V Output Voltage
- 24 mA Minimum Source Sink Output Current
- 250 pF Maximum Output Load
- Current Sensor Output
- SPI Interface with Quad-Latched 2-Bit per Channel Architecture
- Power-On Reset Function
- Shutdown Function
- 59-Ball $8 \times 8$ mm TFBGA Package


## Application

- Surface Haptic Application
- MEMS Driver
- Piezo Driver


## General Description

HV53011 is a high-voltage driver solution for surface haptic applications. It consists of 16 push-pull drivers capable of $\pm 135 \mathrm{~V}$ output swing with Return-To-Zero (RTZ) function. Each output driver is capable of sourcing and sinking at least 24 mA . Each high-voltage output is capable of driving up to 250 pF capacitive load. A global current sensor function is also integrated into this device to monitor the charge and discharge currents. The measured current is mapped to a low voltage analog output with a scale factor of $3.1 \mathrm{~V} / \mathrm{V}$ via a current-sensing resistor.

An SPI interface is used to communicate between the microcontroller/processor and the high-voltage drivers. This interface accepts 3.3 V logic I/O signals up to clock speeds of 32 MHz . Five digital LATCH control signals manage the data flow and the firing pattern. It establishes the output to one of four possible states: $\mathrm{V}_{\mathrm{PP}}$, $\mathrm{V}_{\mathrm{NN}}$, OV or high impedance.
A proper power on and off sequence is critical to ensure the operation of the high-voltage driver. This driver requires four high-voltage power rails, $\mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{PF}}$, $\mathrm{V}_{\mathrm{NN}}, \mathrm{V}_{\mathrm{NF}}$, and three low-voltage power rails, $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{LL}}$. A companion integrated driver IC, HV53001, has a built-in power on/off sequence control circuits to maintain the proper orders.
A shutdown function is available to disable the driver and set it to consume minimum power when the driver is not used.
The HV53011 device is packaged in a $8 \times 8 \mathrm{~mm}$ 59-ball TFBGA package. All high-voltage I/Os are assigned to have sufficient clearance for safety purposes.

## Typical Application Diagram



## Package Types (Top View)



## Block Diagram



### 1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings $\dagger$
High Positive Supply Voltage ( $\mathrm{V}_{\mathrm{PP}}$ ) ..... -0.3 V to +140 V
High Negative Supply Voltage ( $\mathrm{V}_{\mathrm{NN}}$ ). ..... -140 V to +0.3 V
High Positive Floating Supply Voltage ( $\mathrm{V}_{\mathrm{PF}}$ ) ..... $V_{P P}-14 V$ to $V_{P P}$
High Negative Floating Supply Voltage ( $\mathrm{V}_{\mathrm{NF}}$ ) ..... $\mathrm{V}_{\mathrm{NN}}$ to $\mathrm{V}_{\mathrm{NN}}+14 \mathrm{~V}$
Analog Low Positive Voltage Supply ( $\mathrm{V}_{\mathrm{CC}}$ ). ..... -0.3 V to +8.0 V
Analog Low Negative Voltage Supply ( $\mathrm{V}_{\mathrm{SS}}$ ) ..... -8.0 V to +0.3 V
Logic Voltage Supply ( $\mathrm{V}_{\mathrm{LL}}$ ) ..... -0.3 V to +4.0 V
Logic Input Levels (Hi-V Driver, SPI interface, LATCHx and SHDN) ..... -0.3 V to $\mathrm{V}_{\mathrm{LL}}+0.3 \mathrm{~V}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ ) ..... $+125^{\circ} \mathrm{C}$
Storage Temperature ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating on Low Voltage Pins (Human Body Model) ..... 2 kV
ESD Rating on Low Voltage Pins (Charged Device Model) ..... 500 V
ESD Rating on High Voltage Pins (Human Body Model) ..... 500 V
ESD Rating on High Voltage Pins (Charged Device Model) ..... 500 V
$\dagger$ Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

## TABLE 1-1: OPERATING SUPPLY VOLTAGES

Electrical Specifications: Unless otherwise specified: $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Boldface specifications apply over the $T_{A}=T_{J}=$ range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

| Parameter | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| High Positive Supply Voltage | $\mathrm{V}_{\mathrm{PP}}$ | 48 |  | 135 | V | Note 1 |
| High Negative Supply Voltage | $\mathrm{V}_{\mathrm{NN}}$ | -135 |  | -48 | V |  |
| Low Positive Supply Voltage <br> (High Voltage Driver) | $\mathrm{V}_{\mathrm{CC}}$ | 6.0 | 6.5 | 7.0 | V |  |
| Low Negative Supply Voltage <br> (High Voltage Driver) | $\mathrm{V}_{\mathrm{SS}}$ | -6.5 | -6.0 | -5.5 | V |  |
| Logic Input Supply Voltage <br> (SPI Interface) | $\mathrm{V}_{\mathrm{LL}}$ | 3.0 | 3.3 | 3.6 | V |  |
| Negative Floating Supply Voltage | $\mathrm{V}_{\mathrm{NF}}$ | $\mathrm{V}_{\mathrm{NN}}+9 \mathrm{~V}$ | - | $\mathrm{V}_{\mathrm{NN}}+13.2 \mathrm{~V}$ | V |  |
| Positive Floating Supply Voltage | $\mathrm{V}_{\mathrm{PF}}$ | $\mathrm{V}_{\mathrm{PP}}-13.2 \mathrm{~V}$ | - | $\mathrm{V}_{\mathrm{PP}}-9 \mathrm{~V}$ | V |  |
| High-Level Input Logic Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $\mathbf{0 . 8} \mathrm{V}_{\mathrm{LL}}$ |  |  | V |  |
| Low-Level Input Logic Voltage | $\mathrm{V}_{\mathrm{IL}}$ | $\mathbf{0}$ |  | $\mathbf{0 . 2} \mathrm{V}_{\mathrm{LL}}$ | V |  |

Note 1: Specification is obtained by characterization and is not $100 \%$ tested.

## TABLE 1-2: ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits apply for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; Boldface specifications apply over the full operating temperature range of $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \mathrm{~V}_{\mathrm{PF}}=+123 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-123 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=+3.3 \mathrm{~V}$ unless otherwise specified.

| Parameter | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Voltage Driver |  |  |  |  |  |  |
| Quiescent $V_{\text {Pp }}$ Supply Current (Sum of Current at $V_{\text {PP }}$ and $V_{\text {PPO }}$ pins) | IppQ |  | 3.7 | 5.6 | mA |  |
| Quiescent $\mathrm{V}_{\mathrm{NN}}$ Supply Current (Sum of Current at $\mathrm{V}_{\mathrm{NN}}$ and $\mathrm{V}_{\text {NNO }}$ pins) | $\mathrm{I}_{\mathrm{NN}} \mathrm{Q}$ | -5.8 | -3.8 |  | mA |  |
| Quiescent $V_{\text {PF }}$ Supply Current (Source) | $\mathrm{I}_{\mathrm{PF}} \mathrm{Q}$ | -5.2 | -3.6 |  | mA |  |
| Quiescent $\mathrm{V}_{\mathrm{NF}}$ Supply Current (Source) | ${ }^{\text {NF }}$ Q |  | 3.7 | 5.4 | mA |  |
| Quiescent High Voltage Positive Supply Resultant Current, $I_{P P Q}+I_{P F} Q$ | $\mathrm{I}_{\text {PPR }} \mathrm{Q}$ |  |  | 0.4 | mA |  |
| Quiescent High Voltage Negative Supply Resultant Current, $I_{N N} Q+I_{N F} Q$ | $\mathrm{I}_{\mathrm{NNR}} \mathrm{Q}$ | -0.4 |  |  | mA |  |
| $\mathrm{V}_{\mathrm{PP}}$ Supply Current <br> (Sum of current at $\mathrm{V}_{\mathrm{PP}}$ and $V_{\text {PPO }}$ pins) | $\mathrm{I}_{\text {PP }}$ |  |  | 7.5 | mA | $\mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}$, $\mathrm{V}_{\mathrm{PF}}=+78 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V}$, $\mathrm{f}_{\text {HVOUT }}=20 \mathrm{kHz}, \mathrm{CL}=$ 250 pF, Running two channels. Test pattern = Figure 1-3 with $12.5 \mu \mathrm{~s}$ pulse width |
| $\mathrm{V}_{\mathrm{NN}}$ Supply Current <br> (Sum of current at $\mathrm{V}_{\mathrm{NN}}$ and $\mathrm{V}_{\mathrm{NNO}}$ pins) | ${ }^{\text {INN}}$ | -7.5 |  |  | mA |  |
| High Voltage Positive Supply Resultant Current, IPP $+\mathrm{I}_{\mathrm{PF}}$ | lPPR |  |  | 2 | mA | $V_{P P}=+90 \mathrm{~V}, V_{N N}=-90 \mathrm{~V}$, $\mathrm{V}_{\mathrm{PF}}=+78 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V}$, $\mathrm{f}_{\text {HVOUT }}=20 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=$ 250 pF, Running two channels. Test pattern = Figure 1-3 with $12.5 \mu \mathrm{~s}$ pulse width |
| High Voltage Negative Supply Resultant Current, $I_{N N}+I_{N F}$ | $\mathrm{I}_{\text {NNR }}$ | -2 |  |  | mA |  |
| V PF Operating Supply Current | $\mathrm{I}_{\text {PF }}$ | -5.5 |  |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PF}}=+78 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{HVOUT}}=20 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}, \end{aligned}$ <br> Running two channels. <br> Test pattern = <br> Figure $1-3$ with $12.5 \mu \mathrm{~s}$ pulse width |
| $\mathrm{V}_{\mathrm{NF}}$ Operating Supply Current | $\mathrm{I}_{\mathrm{NF}}$ |  |  | 5.5 | mA |  |

Note 1: Recommended operating conditions: $\mathrm{V}_{\mathrm{LL}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}$ all input pins $=0 \mathrm{~V}$ unless noted. $\mathrm{T}_{\mathrm{J}}=25^{\circ} . \mathrm{C}$
2: Design guidance only.
3: Specification is obtained by characterization and is not $100 \%$ tested.

## TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits apply for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; Boldface specifications apply over the full operating temperature range of $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \mathrm{~V}_{\mathrm{PF}}=+123 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-123 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=+3.3 \mathrm{~V}$ unless otherwise specified.

| Parameter | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ Operating Supply Current | $\mathrm{I}_{\mathrm{CC}}$ |  |  | 0.2 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PF}}=+78 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V}, \end{aligned}$ <br> Test pattern = <br> Figure 1-3 with $12.5 \mu \mathrm{~s}$ pulse width |
| $\mathrm{V}_{\text {SS }}$ Operating Supply Current | $\mathrm{I}_{\text {SS }}$ | -0.2 |  |  | mA |  |
| VLL Operating Supply Current | $\mathrm{I}_{\text {LL }}$ |  |  | 25 | mA |  |
| $\mathrm{V}_{\mathrm{NF}}$ Negative Floating Supply Voltage | $\mathrm{V}_{\mathrm{NF}}$ | $\mathrm{V}_{\mathrm{NN}}{ }^{+9 \mathrm{~V}}$ | - | $\mathrm{V}_{\mathrm{NN}}+13.2 \mathrm{~V}$ | V |  |
| $V_{\text {PF }}$ Positive Floating Supply Voltage | $V_{\text {PF }}$ | $\mathrm{V}_{\mathrm{PP}} \mathbf{- 1 3 . 2 V}$ | - | $\mathrm{V}_{\text {PP }}$-9V | V |  |
| $\mathrm{HV}_{\text {OUt }}$ Switching Frequency | $\mathrm{f}_{\text {HVout }}$ | 0 |  | 25 | kHz | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PF}}=+78 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}, \end{aligned}$ <br> Test pattern = Figure 1-3 with $12.5 \mu \mathrm{~s}$ pulse width |
| HV ${ }_{\text {Out }}$ Output Source and Sink Current | Invout | 24 |  |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PF}}=+78 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V} \end{aligned}$ |
| Return-To-Zero Slew Rate 90\% to 10\% <br> (i) from $V_{P P}$ to 0 V <br> (ii) from $V_{N N}$ to $0 V$ | SR | 40 | 100 | 200 | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PF}}=+78 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-78 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{aligned}$ |
| Delay Time for Output to Start Rise/Fall (from LATCHA, B, C, D to 1V HV ${ }_{\text {OUT }}$ ) | $\mathrm{t}_{\mathrm{d} \text { (ON/OFF) }}$ |  |  | 100 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V} \\ & \text { No load (Note 3) } \end{aligned}$ |
| Variation of Delay Time (Channel to Channel) | $\Delta t_{\text {d }}$ |  |  | 40 | ns | Note 3 |
| Shutdown Pin Input Enable Voltage | $\mathrm{V}_{1 \mathrm{H}(\mathrm{SHDN})}$ | 2.5 |  |  | V |  |
| VPPSENSE and VNNSENSE Current Sensor |  |  |  |  |  |  |

Note 1: Recommended operating conditions: $\mathrm{V}_{\mathrm{LL}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}$ all input pins $=0 \mathrm{~V}$ unless noted. $\mathrm{T}_{\mathrm{J}}=25^{\circ} . \mathrm{C}$
2: Design guidance only.
3: Specification is obtained by characterization and is not $100 \%$ tested.

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits apply for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; Boldface specifications apply over the full operating temperature range of $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \mathrm{~V}_{\mathrm{PF}}=+123 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-123 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=+3.3 \mathrm{~V}$ unless otherwise specified.

| Parameter | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VPPSENSE/VNNSENSE <br> Output Voltage | $V_{\text {out }}$ <br> (VPPSENSE/ VNNSENSE) | 0 |  | 3.6 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{PPO}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NNO}}-\mathrm{V}_{\mathrm{NN}}=1.0 \mathrm{~V} \end{aligned}$ |
| Voltage Gain of Current Sensor | $\mathrm{AV}_{\text {SENSE }}$ | -14\% | 3.1 | +14\% | V/V | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{PPO}} \text { and } \\ & \mathrm{V}_{\mathrm{NNO}}-\mathrm{V}_{\mathrm{NN}}: \text { from } 0.1 \text { to } \\ & 1.0 \mathrm{~V} \end{aligned}$ |
| Sensing Amplifier Output Offset | $\mathrm{V}_{\mathrm{OS}}$ | -280 |  | +280 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{PPO}} \text { and } \\ & \mathrm{V}_{\mathrm{NNO}} \mathrm{~V}_{\mathrm{NN}} \text { : from } 0.1 \text { to } \\ & 1.0 \mathrm{~V} \end{aligned}$ |
| Rise Time (Time from 10\% to 90\% of targeted value) | $t_{R}$ |  |  | 300 | ns | (Note 3) <br> $V_{P P}=+90 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{NN}}=-90 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{CC}}=+6.5 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$, <br> Test pulse: 1V, $1 \mu \mathrm{~s}$ pulse width <br> 1. $V_{P P}$ and $V_{P P O}$ <br> 2. $\mathrm{V}_{\mathrm{NN}}$ and $\mathrm{V}_{\mathrm{NNO}}$ |
|  |  |  |  | 740 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-90 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \end{aligned}$ <br> Test pulse: 1V, $1 \mu \mathrm{~s}$ pulse width <br> 1. $\quad V_{P P}$ and $V_{P P O}$ <br> 2. $\mathrm{V}_{\mathrm{NN}}$ and $\mathrm{V}_{\mathrm{NNO}}$ |
| VPPSENSE/VNNSENSE Output Load | $\mathrm{R}_{\text {LOAD }}$ | 10 |  |  | $\mathrm{M} \Omega$ | Note 2 |
|  | $\mathrm{C}_{\text {LOAD }}$ |  |  | 3 | pF | Note 2 |
| SPI Interface |  |  |  |  |  |  |
| Digital Input Clock Frequency | $\mathrm{f}_{\text {CLK }}$ |  |  | 32 | MHz | 3.3V logic input |
| High-Level Input Logic Voltage | $\mathrm{V}_{\text {IH }}$ | $0.8 \mathrm{~V}_{\mathrm{LL}}$ |  |  | V |  |
| Low-Level Input Logic Voltage | $\mathrm{V}_{\text {IL }}$ | 0 |  | $0.2 \mathrm{~V}_{\mathrm{LL}}$ | V |  |
| Logic I/O Pin Rise and Fall Time | $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ |  |  | 5 | ns | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Note 3) |

Note 1: Recommended operating conditions: $\mathrm{V}_{\mathrm{LL}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}$ all input pins $=0 \mathrm{~V}$ unless noted. $\mathrm{T}_{\mathrm{J}}=25^{\circ} . \mathrm{C}$
2: Design guidance only.
3: Specification is obtained by characterization and is not $100 \%$ tested.

## TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits apply for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; Boldface specifications apply over the full operating temperature range of $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \mathrm{~V}_{\mathrm{PF}}=+123 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-123 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=+3.3 \mathrm{~V}$ unless otherwise specified.

| Parameter | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sourced by any standard I/O pin | Isource | 10 |  |  | mA | Note 2 |
| Sunk by any standard I/O pin | Isink | 10 |  |  | mA | Note 2 |
| SPI Quiescent Current of Low Voltage Supplies with Shutdown asserted | $\mathrm{ILL}^{\text {Q }}$ |  |  | 100 | $\mu \mathrm{A}$ | In shutdown mode. All logic input $=0 \mathrm{~V}$. $\mathrm{V}_{(\mathrm{SHDN})}=\mathrm{V}_{\mathrm{LL}}$ |
| Time to Enter and Exit Shutdown | $\mathrm{t}_{\text {SHDN }}$ |  |  | 1 | ms | SCK $=32 \mathrm{MHz}$ and SDI = 16 MHz pulse train. |
| Time from Chip Select and SPI data | $t_{\text {WAIT }}$ | 20 | 50 | - | ns | Refer to Figure 1-1 (Note 2) |
| Time to Transfer 128 Bits of Data | $\mathrm{t}_{\text {PKT }}$ | 4 | - | - | $\mu \mathrm{S}$ | Refer to Figure 1-1 (Note 2) |
| Time from Last Clock Pulse to $\overline{\text { LATCHIN }}$ | $\mathrm{t}_{\mathrm{H} \text { (LAT) }}$ | 20 | 50 | - | ns | Refer to Figure 1-1 (Note 2) |
| Digital Interface |  |  |  |  |  |  |
| Time SPI Latch Held Low | $t_{\text {ab }}$ | 20 | 50 | - | ns | Refer to Figure 1-2 (Note 2) |
| Time Between SPI Latches | $\mathrm{t}_{\mathrm{ac}}$ | 10 | 12 | - | $\mu \mathrm{S}$ | Refer to Figure 1-2 (Note 2) |
| Time from SPI Latch Assert to Data Valid | $t_{\text {ae }}$ | - | 10 | 20 | ns | Refer to Figure 1-2 (Note 2) |
| Time from SPI Latch to Data Latch | $\mathrm{t}_{\mathrm{ak}}$ | 20 | 50 | - | ns | Refer to Figure 1-2 (Note 2) |
| Time Latch Signal Held High | $\mathrm{t}_{\mathrm{gk}}$ | 20 | 50 | - | ns | Refer to Figure 1-2 (Note 2) |
| Time Latch Signal Held Low | $\mathrm{t}_{\mathrm{mn}}$ | 20 | 50 | - | ns | Refer to Figure 1-2 (Note 2) |
| Time Between Two Data Latch Events | $\mathrm{t}_{\mathrm{s}}$ | 80 | 100 | - | ns | Refer to Figure 1-2 (Note 2) |
| Propagation Delay from Data Register to Output Register | $\mathrm{t}_{\mathrm{kv}}$ | - | 10 | 20 | ns | Refer to Figure 1-2 (Note 2) |

Note 1: Recommended operating conditions: $\mathrm{V}_{\mathrm{LL}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}$ all input pins $=0 \mathrm{~V}$ unless noted. $\mathrm{T}_{\mathrm{J}}=25^{\circ} . \mathrm{C}$
2: Design guidance only.
3: Specification is obtained by characterization and is not $100 \%$ tested.

## TEMPERATURE SPECIFICATIONS

Electrical Specifications: $\mathrm{V}_{\mathrm{PP}}=+135 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-135 \mathrm{~V}, \mathrm{~V}_{\mathrm{PF}}=+123 \mathrm{~V}, \mathrm{~V}_{\mathrm{NF}}=-123 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6.0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{LL}}=+3.3 \mathrm{~V}$ unless otherwise specified.

| Parameters | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature Ranges |  |  |  |  |  |  |
| Operating Junction Temperature Range | $\mathrm{T}_{\mathrm{J}}$ | -40 | - | +125 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage Temperature Range | $\mathrm{T}_{\mathrm{A}}$ | -65 | - | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| Package Thermal Resistance |  |  |  |  |  |  |
| Thermal Resistance, 59B 8x8 TFBGA | $\theta_{\mathrm{JA}}$ | - | 33.7 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |

### 1.1 Timing Diagrams



FIGURE 1-1:
SPI and LATCHIN Timing Diagram.


FIGURE 1-2: LATCHA, B, C, D and High Voltage Output Timing Diagram.


FIGURE 1-3: High Voltage Output Test Pattern.

### 1.2 Typical Performance Curves

Note: The graphs and tables provided below are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.


FIGURE 1-4: Typical HV
Waveform $V_{P P}=135 \mathrm{~V}, V_{N N}=-135 \mathrm{~V}$,
Load $=100 \mathrm{pF}$.


FIGURE 1-6: Typical HV $\begin{aligned} & \text { OUt } \\ & \text { from } \\ & 135 \mathrm{~V}\end{aligned}$ to
OV, Load $=100 \mathrm{pF}$.


FIGURE 1-8: $\quad$ Typical HV ${ }_{\text {OUT }}$ from -135V
to $0 V$, Load $=100 \mathrm{pF}$.


FIGURE 1-5: Typical HV OUT from OV to 135V, Load = 100 pF


FIGURE 1-7: $\quad$ Typical $H V_{\text {OUT }}$ from $O V$ to -135 V , Load $=100 \mathrm{pF}$.


FIGURE 1-9: Typ. HV Distribution, from OV to 90V, Load $=250 \mathrm{pF}$.

Note: The graphs and tables provided below are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.


FIGURE 1-10: Typ. HV Out Fall Time
Distribution, from 90V to OV, Load $=250 \mathrm{pF}$.


FIGURE 1-12: Typ. HV
Distribution, from -90V to 0V, Load $=250 \mathrm{pF}$.


FIGURE 1-14: Typical VPPSENSE buffered output, $V_{P P}=135 \mathrm{~V}, V_{N N}=-135 \mathrm{~V}$, Load=100 pF, 6.04 ohm sense resistor, four channels active.


FIGURE 1-11: Typ. HV Distribution, from OV to -90V, Load $=250 \mathrm{pF}$.


FIGURE 1-13: Typical VNNSENSE Buffered Output, $V_{P P}=135 \mathrm{~V}, V_{N N}=-135 \mathrm{~V}$, Load=100pF, 6.04 ohm sense resistor, four channels active.


FIGURE 1-15: Typical HV OUT
Channel-to-Channel Delay.

Note: $\quad$ The graphs and tables provided below are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.


FIGURE 1-16: Typical LATCHA to HV OUT Propagation Delay
 Propagation Delay

FIGURE 1-20: Typical SDO output Rise
Time and Fall Time
 Time and Fal Time


### 2.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 2-1.

## TABLE 2-1: PIN FUNCTION TABLE

| Pin | Symbol | Description |
| :---: | :---: | :---: |
| E11 | $\mathrm{V}_{\mathrm{PP}}$ | Positive High-Voltage Supply |
| C9 | $\mathrm{V}_{\mathrm{PPO}}$ | Positive High-Voltage Current Sense |
| G11 | $\mathrm{V}_{\mathrm{NN}}$ | Negative High-Voltage Supply |
| J9 | $\mathrm{V}_{\mathrm{NNO}}$ | Negative High-Voltage Current Sense |
| D7 | $\mathrm{V}_{\mathrm{CC}}$ | Positive Low-Voltage Supply |
| E7 | $\mathrm{V}_{\text {SS }}$ | Negative Low-Voltage Supply |
| C7 | $\mathrm{V}_{\mathrm{LL}}$ | VLL Logic Voltage |
| $\begin{aligned} & \text { J3-7, H4-7,G5-7, } \\ & \text { F6-7, E6, D3, E3 } \end{aligned}$ | HVGND | High-Voltage Ground |
| E9 | $\mathrm{V}_{\mathrm{PF}}$ | Positive floating voltage supply reference to $\mathrm{V}_{\mathrm{PP}}$ level |
| G9 | $\mathrm{V}_{\mathrm{NF}}$ | Negative floating voltage supply reference to $\mathrm{V}_{\mathrm{NN}}$ level |
| J11 | FILN | $0.1 \mu \mathrm{~F}$ Capacitor across FILN and VNNO |
| C11 | FILP | $0.1 \mu$ F Capacitor across FILP and VPPO |
| C3 | VPPSENSE | Positive High-Voltage Sense Analog Output |
| F3 | VNNSENSE | Negative High-Voltage Sense Analog Output |
| G3 | NC | No connection (Do not connect. Keep the pin floating.) |
| H3 | NC | No connection (Do not connect. Keep the pin floating.) |
| A11 | $\mathrm{HV}_{\text {OUT }} 0$ | High-Voltage Output 0 |
| A9 | HV ${ }_{\text {OUT }} 1$ | High-Voltage Output 1 |
| A7 | HV ${ }_{\text {OUT }}{ }^{2}$ | High-Voltage Output 2 |
| A5 | $\mathrm{HV}_{\text {OUT }}{ }^{3}$ | High-Voltage Output 3 |
| A3 | HV ${ }_{\text {OUT }} 4$ | High-Voltage Output 4 |
| A1 | HV ${ }_{\text {OUT }} 5$ | High-Voltage Output 5 |
| C1 | $\mathrm{HV}_{\text {OUT }} 6$ | High-Voltage Output 6 |
| E1 | HV ${ }_{\text {OUT }} 7$ | High-Voltage Output 7 |
| G1 | $\mathrm{HV}_{\text {OUT }}{ }^{\text {8 }}$ | High-Voltage Output 8 |
| J1 | HV ${ }_{\text {OUT }} 9$ | High-Voltage Output 9 |
| L1 | HV ${ }_{\text {OUT }} 10$ | High-Voltage Output 10 |
| L3 | $\mathrm{HV}_{\text {OUT }}{ }^{11}$ | High-Voltage Output 11 |
| L5 | HV ${ }_{\text {OUT }} 12$ | High-Voltage Output 12 |
| L7 | HV ${ }_{\text {OUT }} 13$ | High-Voltage Output 13 |
| L9 | HV ${ }_{\text {OUT }} 14$ | High-Voltage Output 14 |
| L11 | HV ${ }_{\text {OUT }} 15$ | High-Voltage Output 15 |
| C5 | $\overline{\text { SS }}$ | SPI Chip Select |
| D5 | SDI | SPI Data In |
| E5 | SDO | SPI Data Out (for daisy chain) |
| F5 | SCK | SPI Clock |
| G4 | $\overline{\text { LATCHIN }}$ | Latch SPI Data (SPI -> Latch A, B, C, D) |
| F4 | $\overline{\text { LATCHA }}$ | Latch A -> Output Register |
| E4 | LATCHB | Latch B -> Output Register |
| D4 | $\overline{\text { LATCHC }}$ | Latch C -> Output Register |
| C4 | $\overline{\text { LATCHD }}$ | Latch D -> Output Register |

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

| Pin | Symbol | Description |
| :---: | :---: | :--- |
| C6 | SHDN | Shutdown Mode |
| D6 | Reserved | Reserved Pin. Connect to Ground. |

### 3.0 DEVICE DESCRIPTION

### 3.1 Serial Peripheral Interface

The SPI interface is used to transfer data of the channel settings from the microcontroller to the high-voltage driver. The HV53011 operates as an SPI slave device and receives 128 bits of data from the master device (microcontroller). The HV53011 SPI interface is designed to be compatible with all Microchip 8-bit, 16 -bit and 32 -bit SPI data transmission formats. This SPI interface has a 128-bit shift register buffer to store 128 bits of data.
The $\overline{\mathrm{SS}}$ pin is a chip select function which is similar to the enable function to guard the clock and data input signal. The SCK contains the bus clock signal from the
microcontroller or host processor. The SDI and SDO are the data input and data output pins of the SPI shift register buffer.
The SDI and SDO can be used to cascade multiple HV53011 or HV53011 drivers together if only a single SPI port is available. This SPI interface is compatible with 3.3 V logic input voltage with a maximum clock frequency of 32 MHz .
The SPI shift register captures the data at the SDI input in the rising edge of the SCK clock and pushes out the data from the buffer to the SDO output in the falling edge of the SCK clock. When the SPI bus is at idle status, the $\overline{S S}$ pin stays in logic " 1 " and the SCK clock is expected to stay at " 0 ".


FIGURE 3-1: SPI Signal Diagram.

The bit order of the SDI data input is defined as follows. The first and second data bits represent bit 1 and bit 0 of channel 15 in register D, respectively. The third and fourth bits represent bit 1 and bit 0 of channel 14 in register $D$. The similar pattern is extended all the way to channel 0 . Hence, there are 32 data bits to control register D to cover all sixteen channels.

The next 32 data bits are arranged in the same fashion for register C. Similarly, the exact pattern repeats itself for register B and A. Since each register (A, B, C and D) contains 32 bits of data, the SPI shift register buffer is 128 bits long.
Bit 1 of channel 15 in register D is defined as the MSb (Most Significant bit) and bit 0 of channel 0 in register A as the LSb (Least Significant bit) in this SPI shift register buffer definition.


FIGURE 3-2: SPI Bit Pattern Diagram.

The following table shows the summary of the SPI shift register buffer.

## TABLE 3-1: REGISTER LEGEND

| Sym | Description | Sym |  |
| :---: | :--- | :---: | :--- |
| R | Readable bit | HC | Cleared by Hardware only |
| W | Writable bit | HS | Set by Hardware only |
| U | Unimplemented bit, read as '0' | 1 | Bit is set at Reset |
| P | Programmable bit | 0 | Bit is cleared at Reset |
| S | Settable bit | $x$ | Bit is unknown at Reset |
| C | Clearable bit |  |  |

Example: R/W-0 indicates the bit is both readable or writable, and reads ' 0 ' after a Reset.
TABLE 3-2: SPI_SR 128-BIT BUFFER SUMMARY

| Register Name | Bit Range | $\begin{gathered} \text { Bit } \\ \text { 127/119/111/ } \\ 103 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 126 / 118 / 110 / \\ 102 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 125/117/109/ } \\ 101 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 124 / 116 / 108 / \\ 100 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 123/115/107/ } \\ 99 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 122 / 114 / 106 / \\ 98 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 121/113/105/ } \\ 97 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 120 / 112 / 104 / \\ 96 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { LATCHD }}$ | <127:120> | CH15<1:0> |  | CH14<1:0> |  | CH13<1:0> |  | CH12<1:0> |  |
|  | <119:112> | CH11<1:0> |  | CH10<1:0> |  | CH9<1:0> |  | CH8<1:0> |  |
|  | <111:104> | CH7<1:0> |  | CH6<1:0> |  | CH5<1:0> |  | CH4<1:0> |  |
|  | <103:96> | CH3<1:0> |  | CH2<1:0> |  | CH1<1:0> |  | CH0<1:0> |  |
| Register Name | Bit Range | $\begin{gathered} \text { Bit } \\ 95 / 87 / 79 / 71 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 94 / 86 / 78 / 70 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 93 / 85 / 77 / 69 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 92 / 84 / 76 / 68 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 91 / 83 / 75 / 67 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 90 / 82 / 74 / 66 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 89 / 81 / 73 / 65 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 88 / 80 / 72 / 64 \end{gathered}$ |
| $\overline{\text { LATCHC }}$ | <95:88> | CH15<1:0> |  | CH14<1:0> |  | CH13<1:0> |  | CH12<1:0> |  |
|  | <87:80> | CH11<1:0> |  | CH10<1:0> |  | CH9<1:0> |  | CH8<1:0> |  |
|  | <79:72> | CH7<1:0> |  | CH6<1:0> |  | CH5<1:0> |  | CH4<1:0> |  |
|  | <71:64> | CH3<1:0> |  | $\mathrm{CH} 2<1: 0>$ |  | $\mathrm{CH} 1<1: 0>$ |  | $\mathrm{CH} 0<1: 0>$ |  |
| Register Name | Bit Range | $\begin{gathered} \text { Bit } \\ 63 / 55 / 47 / 39 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 62 / 54 / 46 / 38 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 61 / 53 / 45 / 37 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 60 / 52 / 44 / 36 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 59 / 51 / 43 / 35 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 58 / 50 / 42 / 34 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 57 / 49 / 41 / 33 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 56 / 48 / 40 / 32 \end{gathered}$ |
| $\overline{\text { LATCHB }}$ | <63:56> | CH15<1:0> |  | CH14<1:0> |  | CH13<1:0> |  | CH12<1:0> |  |
|  | <55:48> | CH11<1:0> |  | CH10<1:0> |  | CH9<1:0> |  | CH8<1:0> |  |
|  | <47:40> | CH7<1:0> |  | CH6<1:0> |  | CH5<1:0> |  | CH4<1:0> |  |
|  | <39:32> | CH3<1:0> |  | CH2<1:0> |  | $\mathrm{CH} 1<1: 0>$ |  | $\mathrm{CH} 0<1: 0>$ |  |
| Register Name | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
| $\overline{\text { LATCHA }}$ | <31:24> | CH15<1:0> |  | CH14<1:0> |  | CH13<1:0> |  | CH12<1:0> |  |
|  | <23:16> | CH11<1:0> |  | CH10<1:0> |  | CH9<1:0> |  | CH8<1:0> |  |
|  | <15:8> | CH7<1:0> |  | CH6<1:0> |  | CH5<1:0> |  | CH4<1:0> |  |
|  | <7:0> | CH3<1:0> |  | CH2<1:0> |  | CH1<1:0> |  | CH0<1:0> |  |

### 3.2 Quad-Latched Two-Bit per Channel Architecture

In the Quad-Latched 2-bit per channel architecture, each channel is controlled by a 2-bit encoding for each of the four possible states: " 00 " $=(\mathrm{Hi}-\mathrm{Z})$ high impedance, "01" = Pull-down to $\mathrm{V}_{\mathrm{NN}}, " 10 "=$ Pull-up to $\mathrm{V}_{\mathrm{PP}}$,
"11" = Driven to Ground. Since there are 16 channels on each HV53011 device, a 32-bit output control register is required.
Four separate latched arrays (A, B, C, \& D) hold four possible 32 -bit output configurations. The data is loaded from the arrays into the output control register by four separate external control signals ( $\overline{\mathrm{LATCHA}}, \bar{B}$, $\overline{\mathrm{C}}, \overline{\mathrm{D}})$. When the output control register is being
updated using one of the latch signals, the output will go to a not driven state temporarily to avoid shoot-through.
The data in these four latched arrays can be updated using the SPI shift register buffer. The 128 bits of data is first transmitted from the host processor to this device via the SPI interface. The data format has been discussed in the previous section. After this 128 bits transaction has completed, the data will stay in the SPI shift register buffer. Then the user sends an activation signal at the $\overline{\text { LATCHIN }}$ pin to initiate the transfer of the data from the SPI shift register to the four 32-bit registers (A, B, C and D).
When the application requires more output channels, the user can cascade more driver devices in a daisy chain configuration. The SDO pin is used to pass the data from the SPI shift register buffer to the cascaded driver IC.

The SPI signal pins (SCK, $\overline{\text { SS }}$, SDI and SDO) are used to control the data flow of the SPI shift register buffer. The five latch control signals ( $\overline{\mathrm{LATCHIN}}, \overline{\mathrm{LATCHA}}$,
$\overline{\mathrm{LATCHB}}, \overline{\mathrm{LATCHC}}$ and $\overline{\text { LATCHD }})$ are used to control the data selection of the high-voltage output from the four 32-bit registers. The SPI interface and latch functions are two independent operation blocks.
To achieve some power savings when idling for a period of time, a shutdown pin is available to reduce the quiescent current draw as much as possible.

TABLE 3-3: 2-BIT CONTROL AND OUTPUT VOLTAGE LOGIC TABLE

| CONTROL BITS |  | HVOUT OUTPUT |  |
| :---: | :---: | :--- | :---: |
| Bit $\mathbf{1}$ | Bit $\mathbf{0}$ |  |  |
| 0 | 0 | High Impedance (Hi-Z) |  |
| 0 | 1 | Driven Low $\left(\mathrm{V}_{\mathrm{NN}}\right)$ |  |
| 1 | 0 | Driven High $\left(\mathrm{V}_{\mathrm{PP}}\right)$ |  |
| 1 | 1 | Driven to Ground $(0 \mathrm{~V})$ |  |



FIGURE 3-3: $\quad$ Quad-Latched Two Bits per Channel Architecture.

TABLE 3-4: QUAD-LATCHED TWO-BIT LOGIC STATE TABLE

| $\overline{\text { LATCHIN }}$ | $\overline{\text { LATCHA }}$ | $\overline{\text { LATCHB }}$ | $\overline{\text { LATCHC }}$ | $\overline{\text { LATCHD }}$ | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ | X | X | X | X | SPI bit[127:96] into Latch Register D <br> SPI bit[95:64] into Latch Register C <br> SPI bit[63:32] into Latch Register B <br> SPI bit[31:0] into Latch Register A |
| $\mathrm{X}^{*}$ | $\downarrow$ | X | X | X | Register A to output |
| $\mathrm{X}^{*}$ | X | $\downarrow$ | X | X | Register B to output |
| $\mathrm{X}^{*}$ | X | X | $\downarrow$ | X | Register C to output |
| $\mathrm{X}^{*}$ | X | X | X | $\downarrow$ | Register D to output |

Note: $\quad$ * $=$ Delay $\overline{\text { LATCHX }}$ appropriately if a register update from $\overline{\text { LATCHIN }}$ is still in progress.

$$
\downarrow=\text { Negative edge-triggered. }
$$

X = Don't care.

### 3.3 Driver Shutdown Mode

When the shutdown (SHDN) pin is at logic " 1 ", any unnecessary circuit in the line driver will be disabled to minimize power consumption. It includes the level translator, bias current, voltage reference, driver output, SPI interface, and combinational logic. During shutdown, the quiescent current will be less than $100 \mu \mathrm{~A}$. The system response time is less than 1 ms to switch between shutdown and active modes when a new signal is asserted at the shutdown pin.

### 3.4 Driver Power On Reset

The Power-on Reset function resets all high-voltage HV OUT output to high impedance when the device is initially powered on. It also resets and clears the SPI buffer registers, registers $A, B, C$ and $D$ to logic " 0 ".

### 3.5 Driver Output Current Sensing

Some system designs require a load sensing function to determine the size or any change of the capacitive load. One simple scheme is to place a series current sensing resistor on the power supply rail and measure the voltage drop across this resistor. This solution is very effective as long as the voltage drop is small enough not to affect the operation of the system.
The HV53011 driver IC provides this function by which users can monitor the supply current flowing through both high-voltage positive and negative supplies. Two external current sensing resistors are connected to $\mathrm{V}_{\text {PP }}$ and $\mathrm{V}_{\mathrm{NN}}$ supply rails, respectively, as high side current sensing. The voltage drop across these resistors are fed to two pin pairs, $\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{PPO}}$ and $\mathrm{V}_{\mathrm{NN}}-\mathrm{V}_{\mathrm{NNO}}$. Since this voltage drop is referenced to the $\mathrm{V}_{\mathrm{PP}}$ and $\mathrm{V}_{\mathrm{NN}}$ supply rails, it is not practical for any low-voltage ADC to measure this voltage. Hence, two internal difference amplifiers in the driver IC convert these voltage drops to ground reference.

The difference amplifier accepts maximum input voltage of 1 V . The amplifier gain of 3.1 amplifies this input and send the output to the VPPSENSE and VNNSENSE pins. These amplifiers are designed using high-voltage and high value resistors to minimize its power consumption. These amplifier outputs are high impedance in nature, so an external high bandwidth $(200 \mathrm{MHz})$ unity gain buffer is recommended. The high bandwidth is needed to capture the fast current pulse during the transition.
The user selects the value of the sensing resistor to fit the system requirement. The speed of the difference amplifier is its highest priority because the charge or discharge current appear in a short period of time. The amplifier output accuracy is less important. Both VPPSENSE and VNNSENSE outputs have a tolerance of $\pm 14 \%$.


FIGURE 3-4:
Current Sensing Topology.

TABLE 3-5: ACCEPTABLE POWER-ON SEQUENCES

| Steps | Description |
| :---: | :--- |
| 1 | Connect ground. |
| 2 | Keep shutdown pin to low. |
| 3 | Set all driver inputs to low. |
| 4 | Power-on supplies in this sequence: $\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{NN}}, \mathrm{V}_{\mathrm{NF}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PF}}$ and then $\mathrm{V}_{\mathrm{PP}}$ |
| 5 | Set all inputs to a known state. |

TABLE 3-6: ACCEPTABLE POWER-OFF SEQUENCES

| Steps | Description |
| :---: | :--- |
| 1 | Set all inputs and shutdown pin to low. |
| 2 | Power-off supplies in this sequence: $\mathrm{V}_{\mathrm{PP},} \mathrm{V}_{\mathrm{PF}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{NF}}, \mathrm{V}_{\mathrm{NN}}$ and then $\mathrm{V}_{\mathrm{LL}} \cdot$ |
| 3 | Disconnect ground |

### 4.0 PACKAGING INFORMATION

### 4.1 Package Marking Information

## 59-Ball TFBGA ( $8 \times 8 \times 1.2 \mathrm{~mm}$ )

Example


| Legend: | $\begin{aligned} & \text { XX...X } \\ & \text { Y } \\ & \text { YY } \\ & \text { WW } \\ & \text { NNN } \\ & \text { e8 } \end{aligned}$ | Product Code or Customer-specific information <br> Year code (last digit of calendar year) <br> Year code (last 2 digits of calendar year) <br> Week code (week of January 1 is week '01') <br> Alphanumeric traceability code <br> Pb-free JEDEC designator for Matte Tin (Sn) <br> This package is Pb -free. The Pb -free JEDEC designator (e8 ) can be found on the outer packaging for this package. |
| :---: | :---: | :---: |
| Note: | In the eve be carrie character the corpor | the full Microchip part number cannot be marked on one line, it will over to the next line, thus limiting the number of available customer-specific information. Package may or may not include logo. |

## 59-Ball Thin Fine Pitch Ball Grid Array (KVX) - 8x8 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


## 59-Ball Thin Fine Pitch Ball Grid Array (KVX) - 8x8 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


| Units |  | MILLIMETERS |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MIN | NOM | MAX |
|  | N | 59 |  |  |
| Number of Terminals | e | 0.65 BSC |  |  |
| Pitch | A | - | - | 1.20 |
| Overall Height | A1 | 0.22 | 0.27 | 0.32 |
| Standoff | A2 | 0.53 REF |  |  |
| Mold Thickness | A3 | 0.26 REF |  |  |
| Substrate Thickness | D | 8.00 BSC |  |  |
| Overall Length | D1 | 8.00 BSC |  |  |
| Overall Terminal Spacing | E | 6.50 BSC |  |  |
| Overall Width | E1 | 0.37 |  |  |
| Overall Terminal Spacing | b | 0.32 | 0.42 |  |
| Terminal Diameter |  |  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

## 59-Ball Thin Fine Pitch Ball Grid Array (KVX) - 8x8 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


|  | Units | MILLIMETERS |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MIN |  | NOM |
| MAX |  |  |  |  |
| Contact Pitch | E | 0.65 BSC |  |  |
| Overall Contact Pad Spacing | C1 |  | 6.50 |  |
| Overall Contact Pad Spacing | C2 |  | 6.50 |  |
| Contact Pad Width (X59) | X |  |  | 0.35 |
| Contact Pad to Contact Pad | G | 0.20 |  |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

## APPENDIX A: REVISION HISTORY

Revision A (March 2021)

- Original Release of this Document.


## HV53011

NOTES:

## PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.


## HV53011

NOTES:

## Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS beEn AdVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

## Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, QuietWire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-7930-7

Microchip

## Worldwide Sales and Service

## AMERICAS <br> Corporate Office 2355 West Chandler Blvd. <br> Chandler, AZ 85224-6199 <br> Tel: 480-792-7200 <br> Fax: 480-792-7277 <br> Technical Support: <br> http://www.microchip.com/ support <br> Web Address: <br> www.microchip.com

## Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

## Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

## Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

## Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, $\operatorname{IN}$
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

## ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

## Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

## EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

