

SGM8771 High Voltage, High Precision, Single Comparator with Voltage Reference

GENERAL DESCRIPTION

The SGM8771 is a single, high precision voltage comparator with a 1.225V voltage reference. The device optimized for high voltage operation from 2.8V to 36V single supply. It consumes low supply current without being affected by the supply voltage. Input common mode voltage is 1.5V lower than $\pm V_s$. The SGM8771 has an open-drain output structure that needs external pull-up resistor. It also has a 1.225V voltage reference that saves external reference and reduces system cost.

The SGM8771 features low input offset voltage of 2.4mV (MAX). It is suitable for applications requiring precision.

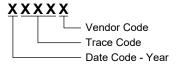
The SGM8771 is available in Green SOIC-8 and TDFN-3×3-8L packages. It is operated over the -40°C to +125°C temperature range.

FEATURES

- Single Power Supply
- Wide Supply Voltage Range: 2.8V to 36V
- Low Supply Current: 180µA (TYP)
- Low Input Offset Voltage: 2.4mV (MAX)
- Low Input Bias Current: ±20pA (TYP)
- Minimum Input Common Mode Voltage: -Vs
- Maximum Differential Input Voltage: +36V/-36V
- Internal Voltage Reference: 1.225V
- Open-Drain Output Structure
- Low Output Saturation Voltage
- Supports CMOS or TTL Logic
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-8 and TDFN-3×3-8L Packages

APPLICATIONS

Power System Monitor
Medical Equipment
Industrial Application
Battery Management System



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE ORDERING NUMBER		PACKAGE MARKING	PACKING OPTION
SGM8771	SOIC-8	-40°C to +125°C	SGM8771XS8G/TR	SGM 8771XS8 XXXXX	Tape and Reel, 4000
SGINIO//I	TDFN-3×3-8L	-40°C to +125°C	SGM8771XTDB8G/TR	SGM 8771DB XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

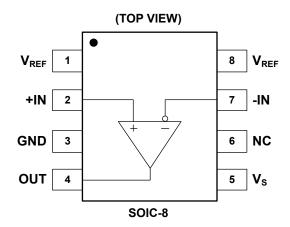
Supply Voltage, V _S	40V
Differential Input Voltage, V _{ID}	40V
Input Voltage Range	0.3V to $(+V_S) + 0.3V$
Output Voltage, V _{OUT}	0.3V to (+V _S) + 0.3V
Output Voltage, V _{REF}	0.3V to 5.5V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	2000V
CDM	1000V

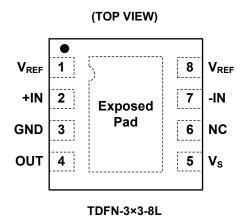
RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +125°C
Power Supply Range	2.8V to 36V

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 8	V_{REF}	Reference Output.
2	+IN	Non-Inverting Input of Comparator.
3	GND	Ground.
4	OUT	Output of Comparator.
5	Vs	Power Supply.
6	NC	No Connection.
7	-IN	Inverting Input of Comparator.
Exposed Pad	Exposed Pad	Exposed Pad (TDFN-3×3-8L Package Only). Exposed pad should be left floating.

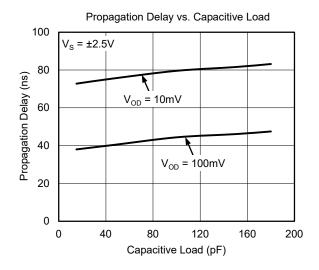
ELECTRICAL CHARACTERISTICS

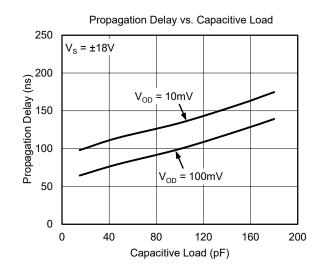
(At $T_A = +25^{\circ}C$, $V_S = \pm 1.4V$ to $\pm 18V$, Full = $-40^{\circ}C$ to $+125^{\circ}C$, unless otherwise specified.)

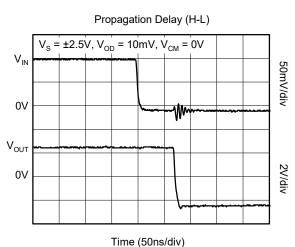
PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Offact Valtage	\/	\/ - 0\/	+25°C		0.6	2.4	m\/	
Input Offset Voltage	V _{os}	V _{CM} = 0V	Full			2.8	mV	
Input Bias Current	I _B	V _{CM} = 0V	+25°C		±20	±200	pА	
Input Offset Current	Ios	V _{CM} = 0V	+25°C		±20	±200	pА	
Maximum Differential Input Voltage	V _{ID}		Full			Vs	V	
Maximum Input Difference Bias Current		$V_S = \pm 18V, V_{ID} = \pm 18V$	+25°C		2.2	4		
Maximum input Dillerence bias Current	I _{ID}	V _S - ±10V, V _{ID} - ±10V	Full			5	μA	
Input Common Mode Voltage Range (1)	V _{CM}		Full	-V _S		(+V _S) - 1.5V	V	
Common Mode Rejection Ratio	CMRR	V _S = ±18V,	+25°C	90	116		- dB	
Common wode Rejection Ratio	CIVIKK	$V_{CM} = (-V_S)$ to $(+V_S)$ - 1.5V	Full	87				
Power Supply Rejection Ratio	PSRR	V _S = 2.8V to 36V	+25°C	96	116		- dB	
Fower Supply Rejection Ratio			Full	93				
Large-Signal Differential Voltage	A _{VD}	V_S = 36V, V_{OUT} = 0.1V to 28.8V, R_L = 120k Ω to V_S	+25°C	90	100		- dB	
Amplification			Full	85				
Output Voltage Swing from Rail	\/	I _{SINK} = 8mA, V _{ID} = -0.2V	+25°C		210	280	mV	
Output voltage Swing Irom Kali	V _{OL}	ISINK - OTTA, VIDU.ZV	Full			400		
Output Short-Circuit Current	I _{SINK}	$V_{OL} = (-V_S) + 1.5V, V_{ID} = -0.2V$	+25°C	25	36		mA	
		V _{OH} = 2.8V, V _{ID} = 0.2V	+25°C		0.4	0.7		
High Lavel Output Current		V _{OH} - 2.0V, V _{ID} - 0.2V	Full			1	μA	
High-Level Output Current	I _{OH}	\\ - 20\\ \\ - 0.0\\	+25°C		6	8.5		
		$V_{OH} = 36V, V_{ID} = 0.2V$	Full			35		
Supply Current		1 = 0m A	+25°C		180	210		
Supply Current	l _s	I _{OUT} = 0mA	Full			250	μA	
Voltage Reference	V_{REF}	$V_S = 2.8V \text{ to } 36V, I_{REF} = 0 \text{ to } 5\text{mA}$	+25°C	1.205	1.225	1.245	V	

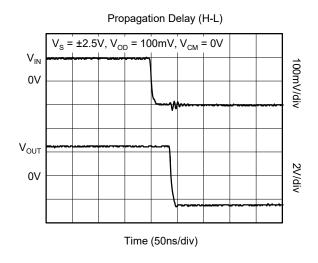
SWITCHING CHARACTERISTICS

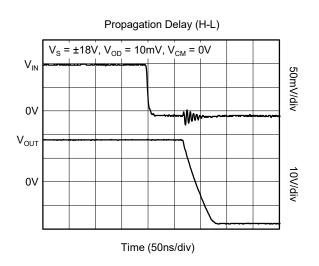
(At T_A = +25°C, V_S = ±2.5V, C_L = 15pF $^{(2)}$, unless otherwise noted.)

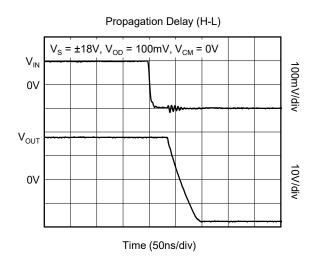

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Propagation Dolay (High to Law)	t _{PHL}	Overdrive = 10mV	+25°C		85		ns
Propagation Delay (High to Low)		Overdrive = 100mV	+25°C		50		ns
Fall Time	t _{FALL}	Overdrive = 10mV	+25°C		12		ns
raii iiiie		Overdrive = 100mV	+25°C		12		ns

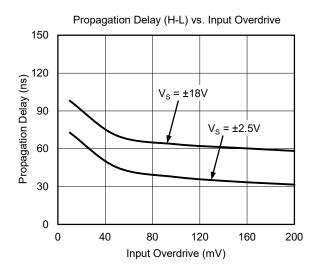

NOTES:

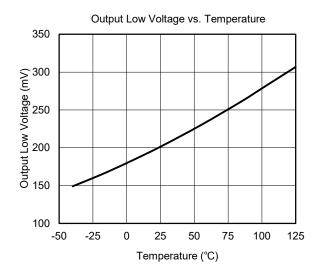

- 1. Any input voltage should not be lower than $(-V_S)$ 0.3V. The maximum input common mode voltage is $(+V_S)$ 1.5V, but it will not be damaged when the upper limit of the input voltage reaches 36V.
- 2. C_L: Load capacitance (jig and probe included).

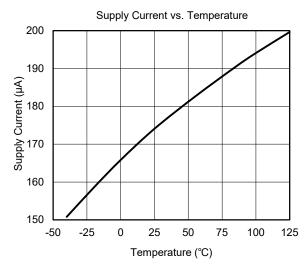

TYPICAL PERFORMANCE CHARACTERISTICS

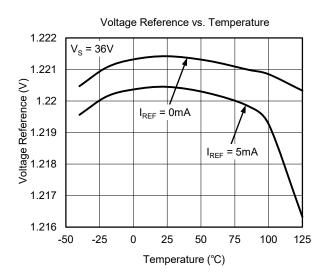

At $T_A = +25$ °C, $V_S = \pm 18$ V and $C_L = 15$ pF, unless otherwise noted.

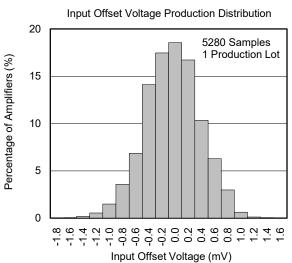







TYPICAL PERFORMANCE CHARACTERISTICS (continued)


At $T_A = +25$ °C, $V_S = \pm 18$ V and $C_L = 15$ pF, unless otherwise noted.



DETAILED DESCRIPTION

The SGM8771 is a single, high precision, low power comparator. The wide input voltage range and power supply range make the device a good choice for industrial equipment. Open-drain structure needs external pull-up resistor. The SGM8771 can be compatible with CMOS and TTL logics.

Output Structure

In Figure 1, the SGM8771 has an open-drain output stage. When output is changed from logic high to low, the changed sink current pulls output pin to logic low. Beginning this transition, larger sink current is used to create a high slew rate transit from high to low. Once the output voltage reaches V_{OL} , it will reduce the sink current to a just right value to maintain the V_{OL} static condition. This current-driven open-drain output stage will significantly reduce the power consumption in application system.

If low slew rate transition is needed in system design, adjusting the load capacitance will change the slew rate. The heavier capacitive load will slow down the output voltage transition. This feature will be used to reduce the interference generated by fast edge of transition between 1 and 0 in noise-sensitive system.

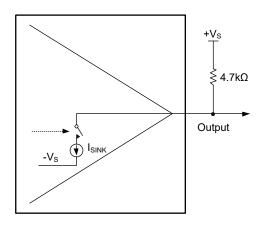


Figure 1. Open-Drain Output Structure

APPLICATION INFORMATION

Layout and Bypassing

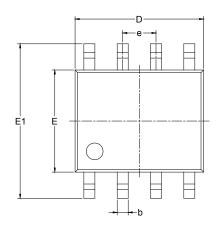
Good power supply decoupling, layout and grounding are very important for SGM8771 to realize the full high-speed capabilities in system, following skills will be used:

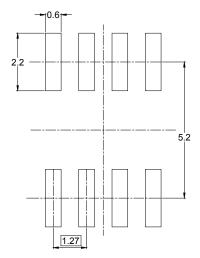
 \bullet A 0.1µF to 4.7µF range ceramic capacitor is used to provide good power supply decoupling. This ceramic capacitor must be placed as close to V_S pin as possible.

- For grounding, unbroken and low-inductance ground plane is a good choice.
- For Layout, use short PCB trace to avoid unwanted parasitic feedback around the comparator. SGM8771 must be soldered directly to the PCB and the socket is not recommended.

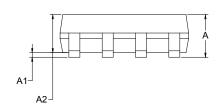
High Voltage, High Precision, Single Comparator with Voltage Reference

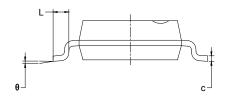
SGM8771

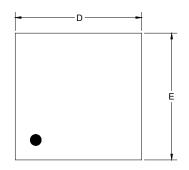

REVISION HISTORY

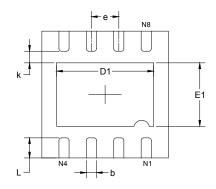

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2019) to REV.A

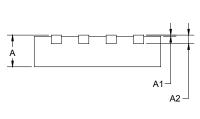

Page

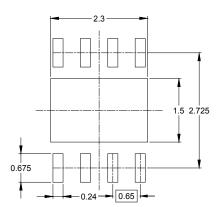

PACKAGE OUTLINE DIMENSIONS SOIC-8


RECOMMENDED LAND PATTERN (Unit: mm)

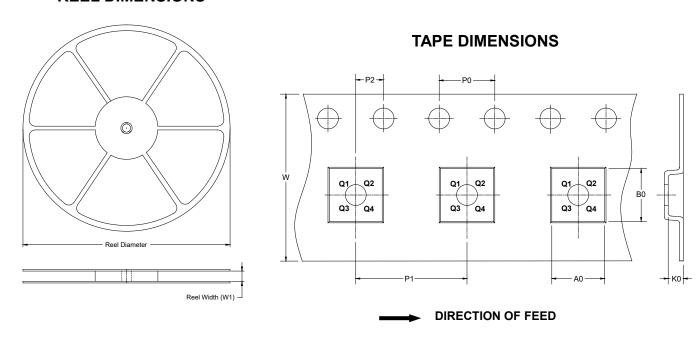


Symbol		nsions meters	Dimensions In Inches			
,	MIN MAX		MIN	MAX		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
Е	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.27	1.27 BSC		BSC		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		


PACKAGE OUTLINE DIMENSIONS TDFN-3×3-8L



SIDE VIEW

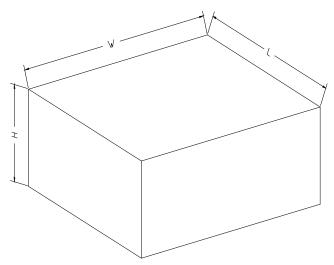


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.203	0.203 REF		REF		
D	2.900	3.100	0.114	0.122		
D1	2.200	2.400	0.087	0.094		
E	2.900	3.100	0.114	0.122		
E1	1.400	1.600	0.055	0.063		
k	0.200	0.200 MIN		MIN		
b	0.180	0.300	0.007	0.012		
е	0.650) TYP	0.026	TYP		
L	0.375 0.575		0.015	0.023		

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-8L	13"	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5