

3.3-V RS-485 TRANSCEIVERS

DESCRIPTION

The HX65HVD10, HX65HVD11, and HX65HVD12, combine a 3-state differential line driver and differential input line receiver that operate with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. The drivers and receivers have active-high and active-low enables respectively, that can be externally connected together to function as direction control. Very low device standby supply current can be achieved by disabling the driver and the receiver.

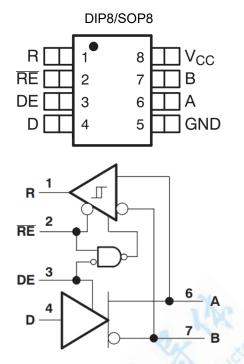
The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

FEATURES

- Operates With a 3.3-V Supply
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Optional Driver Output Transition Times for Signaling Rates (1) of 1 Mbps, 10 Mbps, and 32 Mbps
- Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A
- Bus-Pin Short Circuit Protection From –7 V to 12 V
- Low-Current Standby Mode . . . 1 µA Typical
- Open-Circuit, Idle-Bus, and Shorted-Bus Failsafe Receiver
- Thermal Shutdown Protection
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications

APPLICATIONS

- Digital Motor Control
- Utility Meters
- Chassis-to-Chassis Interconnects
- Electronic Security Stations


- Industrial Process Control
- Building Automation
- Point-of-Sale (POS) Terminals and Networks

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
HX65HVD10EIPG	DIP8L	65HVD10	TUBE	2000pcs/box
HX65HVD11EIPG	DIP8L	65HVD11	TUBE	2000pcs/box
HX65HVD12EIPG	DIP8L	65HVD12	TUBE	2000pcs/box
HX65HVD10EIDRG	SOP8L	65HVD10	REEL	2500pcs/reel
HX65HVD11EIDRG	SOP8L	65HVD11	REEL	2500pcs/reel
HX65HVD12EIDRG	SOP8L	65HVD12	REEL	2500pcs/reel

Pin Connection

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1) (2)

	10	- Ali	UNIT
V _{CC} Supply voltage range	ge	S	–0.3 V to 6 V
Voltage range at A or B		P	–9 V to 14 V
Input voltage range at D	, DE, R or RE	K.	-0.5 V to V _{CC} + 0.5 V
Voltage input range, tran	sient pulse, A and B, through	n 100 Ω, see Figure 11	-50 V to 50 V
Io Receiver output cu	rrent		–11 mA to 11 mA
	Human hady madal(3)	A, B, and GND	±16 kV
Electrostaticdischarge	Human body model ⁽³⁾	All pins	±4 kV
	Charged-device model ⁽⁴⁾	All pins charge	±1 kV
Continuous total power of	lissipation		See Dissipation Rating Table
Electrical Fast Transient/	/Burst ⁽⁵⁾	A, B, and GND	±4 kV
T _J Junction temperatu	re		170°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
- (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A and IEC 60749-26.
- (4) Tested in accordance with JEDEC Standard 22, Test Method C101.
- (5) Tested in accordance with IEC 61000-4-4.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range unless otherwise noted

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		3		3.6		
V _I or V _{IC}	Voltage at any bus terminal (s	separately or common mode)	_7(1)		12		
VIH	High-level input voltage	D, DE, RE	2		VCC	V	
VIL	Low-level input voltage	D, DE, RE	0		0.8		
VID	Differential input voltage	Figure 7	-12		12		
ЮН	High lovel output ourrent	Driver		-60			
UH	High-level output current	Receiver		-8		mA	
		Driver		60			
IOL	Low-level output current	Receiver		8		mA	
RL	Differential load resistance		54	60		Ω	
CL	Differential load capacitance			50		pF	
		HVD10		32			
Signaling r	ate	HVD11		10		Mbps	
		HVD12	1				
TJ	Junction temperature	1		145		°C	

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

(2) See thermal characteristics table for information regarding this specification.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST	CONDITIONS	MIN T	YP(1) MAX	UNIT
VIK	Input clamp voltage	(A)	$I_1 = -18 \text{ mA}$		-	-1.5	V
	4	2	$l_0 = 0$		2	VCC	
V _{od}	Differential output voltage ⁽²⁾	N.	R _L = 54 Ω, S	See Figure 1		1.5	V
			V _{test} = -7 V t	o 12 V, See Figure 2		1.5	
$\Delta V_{OD} $	Change in magnitude of different voltage	ntial output	See Figure 1 and Figure 2		-0.2	0.2	V
VOC(PP)	Peak-to-peak common-mode o	utput voltage				400	mV
VOC(SS)	Steady-state common-mode ou	tput voltage	See Figure 2		1.4	2.5	V
ΔVOC(SS)	Change in steady-state commo outputvoltage	n-mode	See Figure 3	-0.0 5	0.05	V	
IOZ	High-impedance output current		See receiver				
L	Input current	D			-100	0	
l,	input current	DE		0	100	μA	
los	Short-circuit output current		$-7 V \le V_0 \le$	12 V	-250	250	mA
C(OD)	Differential output capacitance		V _{OD} = 0.4 sir at 0 V	n (4E6πt) + 0.5 V, DE		16	pF
			RE at V _{CC} , D & DE at V _{CC} ,No load	Receiver disabled anddriver enabled		9 15.5	mA
ICC	ICC Supply current		REat V _{CC} ,D at V _{CC} ,DE at 0 V,No load	Receiver disabled and driver disabled (standby)		15	μA
		RE at 0 V, D & DE at V _{CC} ,No load	Receiver enabled anddriver enabled		9 15.5	mA	

(1) All typical values are at 25°C and with a 3.3-V supply.

(2) For TA > 85°C, VCC is ±5%.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
		HVD10		5	8.5	16	
tPLH	Propagation delay time, low-to-high-level output	HVD11		18	25	40	ns
		HVD12		135	200	300	
		HVD10		5	8.5	16	
^t PHL	Propagation delay time, high-to-low-level output	HVD11		18	25	40	ns
		HVD12		135	200	300	
		HVD10		3	4.5	10	
tr	Differential output signal rise time	HVD11	$R_{L} = 54 \Omega, C_{L} = 50 pF,$	10	20	30	ns
		HVD12	See Figure 4	100	170	300	
		HVD10		3	4.5	10	
t _f	Differential output signal fall time	HVD11		10	20	30	ns
	1 3	HVD12		100	170	300	
		HVD10	4 4		1.5		
tsk(p) Pulse skew (t _{PHL} – t _{PLH})	Pulse skew (Item – ternil)	HVD11			2.5		
		HVD12		7			ns
		HVD10		6			
sk(nn)	Part-to-part skew	HVD11	a ? ?		11		ns
sk(pp) (2)		HVD12	XX x0	100			
		HVD10			31		
^t PZH	Propagation delay time,	HVD11	on		55		ns
	high-impedance-to-high-level output		$R_{L} = 110 \Omega$, RE at 0 V,		300		ne
	70.		See Figure 5		25		
tPHZ	Propagation delay time, high-level-to-high-	HVD11			55		ns
	impedance output	HVD12	-	300			ne
		HVD10			26		
tPZL	Propagation delay time,	HVD11	-		55		ns
1 22	high-impedance-to-low-level output		R _L = 110 Ω, RE at 0 V,		300		110
			See Figure 6		26		
t _{PLZ}	Propagation delay time, low-level-to-high-	HVD11	-		75		ns
1 62	impedance output	HVD12	-	400			115
^t PZH	Propagation delay time, standby-to-high-level o		R _L = 110 Ω, RE at 3 V, See Figure 5		6		μs
tPZL	Propagation delay time, standby-to-low-level o	output	R_L = 110 Ω, RE at 3 V, See Figure 6		6		μs

(1) All typical values are at 25°C and with a 3.3-V supply.

(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

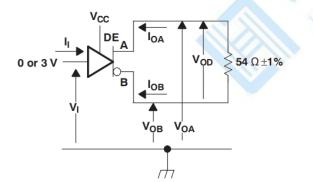
RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDIT	IONS	MIN	ТҮР	MAX	UNIT
VIT+	Positive-going input threshold voltage	I ₀ = –8 mA				-0.06 5	-0.01	N/
VIT-	Negative-going input threshold voltage	l _o = 8 mA	I ₀ = 8 mA		-0.2	-0.1		V
Vhys	Hysteresis voltage (V _{IT+} - V _{IT-})					35		mV
VIK	Enable-input clamp voltage	I₁ = −18 mA				-1.5		V
Vон	High-level output voltage	V _{ID} = 200 mV,	I _{он} = –8 mA,	See Figure 7		2.4		V
Vol	Low-level output voltage	V _{ID} = -200 mV,	I _{OL} = 8 mA,	See Figure 7		0.4		V
IOZ	High-impedance-state output current	V _o = 0 or V _{cc}	RE at V_{CC}		-1		1	μA
		V_A or V_B = 12	2 V			0.05	0.11	
		V_A or V_B = 12	$2 V, V_{CC} = 0 V$	HVD11, HVD12,		0.06	0.13	
		V_A or $V_B = -7 V$		Other input at 0 V	-0.1	-0.05		mA
		V_A or $V_B = -7$	$7 \text{ V}, \text{V}_{\text{CC}} = 0 \text{ V}$		-0.05	-0.04		
l,	Bus input current	V_A or V_B = 12	2 V	No.		0.2	0.5	
		V_A or $V_B = 12$	$2 V, V_{CC} = 0 V$	HVD10,		0.25	0.5	•
		V_A or $V_B = -7$	'V 💫	Other input at 0 V	-0.4	-0.2		mA
		V_A or $V_B = -7$	$7 V, V_{CC} = 0 V$	C.C.	-0.4	-0.15		
IН	High-level input current, RE	V _{IH} = 2 V	X	non	-30		0	μA
١IL	Low-level input current, $\overline{\text{RE}}$	V _{IL} = 0.8 V	15	60.	-30		0	μA
CID	Differential input capacitance	V _{ID} = 0.4 sin	(4E6πt) + 0.5 \	/, DE at 0 V		15		pF
		RE at 0 V, D & DE at 0 V,No load	Receiver ena disabled	bled and driver		4		mA
		The start				8		
ICC	Supply current	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					μA	
		DE at 0 V, No load	disabled (star	ndby)	5			ри V
		RE at 0 V, D & DE at Receiver enabled and driver			9			mA
		V_{CC} , No load	enabled			15.5		

(1) All typical values are at 25°C and with a 3.3-V supply.

RECEIVER SWITCHING CHARACTERISTICS

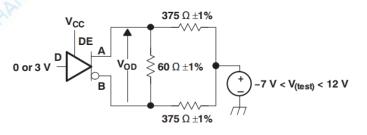
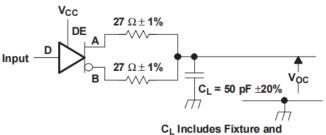

	PARAMETER		TEST CONDITIONS	MIN	ТҮР(1)	MAX	UNIT
t _{PLH} Prop	pagation delay time, low-to-high-level output	HVD10		12.5	20	25	20
t _{PHL} Prop	pagation delay time, high-to-low-level output	HVD10		12.5	20	25	ns
t _{PLH} Prop	pagation delay time, low-to-high-level output	HVD11 HVD12	V _{ID} = −1.5 V to 1.5 V,	30	55	70	ns
t _{PHL} Prop	pagation delay time, high-to-low-level output	HVD11 HVD12	C∟ = 15 pF, See Figure 8	30	55	70	ns
		HVD10	-		1.5		
t _{sk(p)} Pul	se skew (t _{PHL} – t _{PLH})	HVD11			4		ns
		HVD12		4			
		HVD10			8		
t _{sk(pp)} (2)	Part-to-part skew	HVD11			15		ns
		HVD12			15		
tr	Output signal rise time		C _L = 15 pF,	1	2	5	20
f	Output signal fall time		See Figure 8	1	2	5	ns
PZH ⁽¹⁾	Output enable time to high level		N		15		
t _{PZL} ⁽¹⁾			$C_L = 15 \text{ pF}$, DE at 3 V,		15		
t _{PHZ} Output disable time from high level		See Figure 9	20			ns	
t _{PLZ}	Output disable time from low level	RK 20		15			
t _{PZH} ⁽²⁾	Propagation delay time, standby-to-high-leve	el output	C _L = 15 pF, DE at 0,	6			
t _{PZL} ⁽²⁾	Propagation delay time, standby-to-low-leve	loutput	See Figure 10		6		μs

over recommended operating conditions unless otherwise noted

(1) All typical values are at 25°C and with a 3.3-V supply

(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

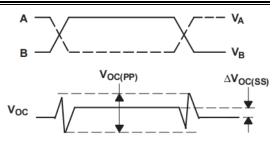
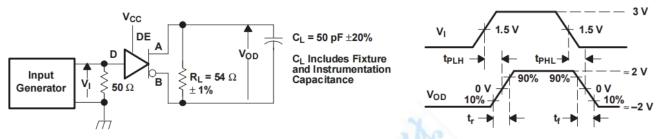

Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions

Figure 2. Driver VOD With Common-Mode Loading Test Circuit

HX65HVD10/11/12



Instrumentation Capacitance

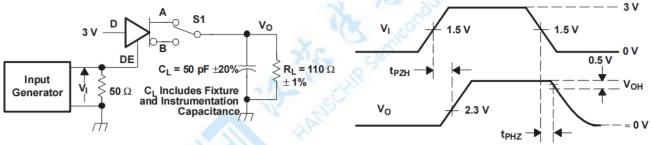

Input: PRR = 500 kHz, 50% Duty Cycle, t_r <6ns, t_f <6ns, Z_0 = 50 Ω

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

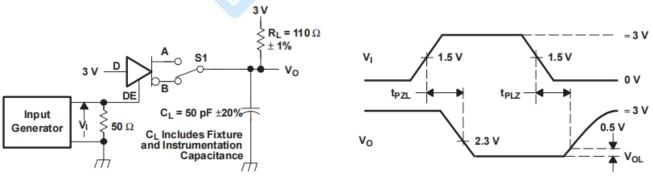
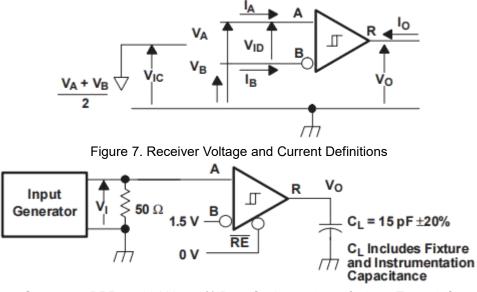

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_r < 6$ ns, $t_f < 6$ ns, $Z_o = 50 \Omega$

Figure 4. Driver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_r < 6$ ns, $t_f < 6$ ns, $Z_o = 50 \Omega$

Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms



Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω

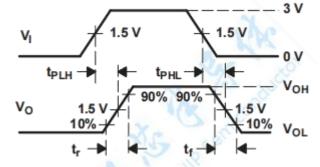
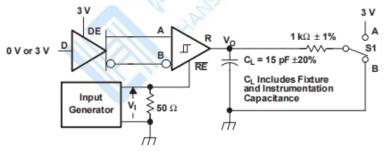



Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

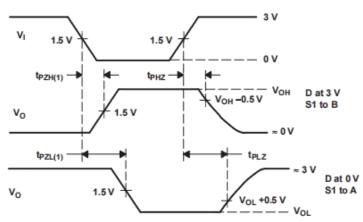
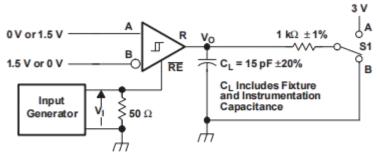



Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

HX65HVD10/11/12

Generator: PRR = 100 kHz, 50% Duty Cycle, tr <6 ns, tr <6 ns, Zo = 50 Ω

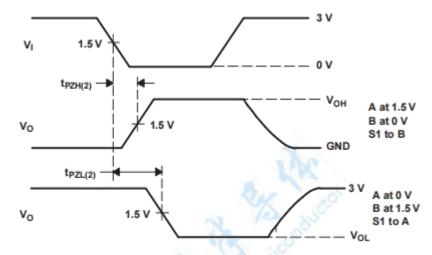
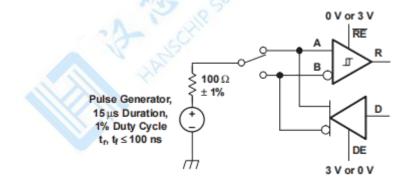



Figure 10. Receiver Enable Time From Standby (Driver Disabled)

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 11. Test Circuit, Transient Over Voltage Test

PARAMETER MEASUREMENT INFORMATION (continued)

FUNCTION TABLES

Table 1. DRIVER(1)

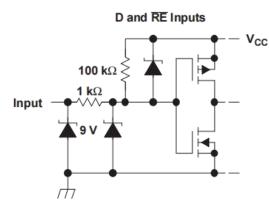
		OUT	PUTS
INPU TD	ENABLE DE	Α	В
Н	Н	Н	L
L	Н	L	н
X	L	Z	Z
Open	Н	Н	L

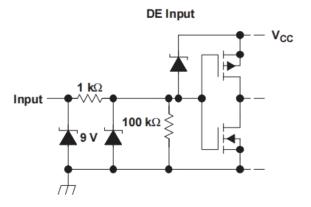
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

Table 2. RECEIVER(1)

DIFFERENTIAL INPUTSVID = VA – VB	EN <u>AB</u> LERE	OUTPUTR
$V_{ID} \leq -0.2 V$	L	L
-0.2 V < V _{ID} < -0.01 V		?
-0.01 V ≤ V _{ID}	L IPC	Н
Х	H	Z
Open Circuit	KAK XO	Н
Short circuit	no l'es jui	Н

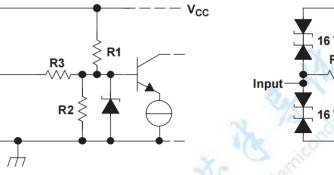
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

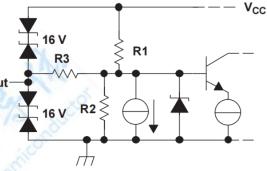


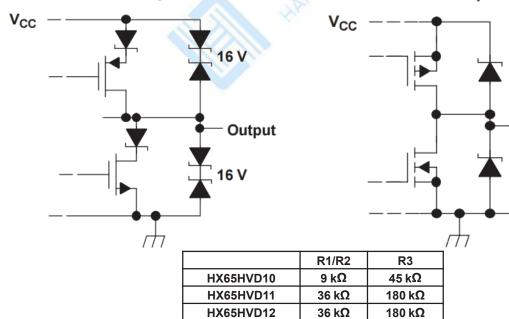

16 V

16 V

Input

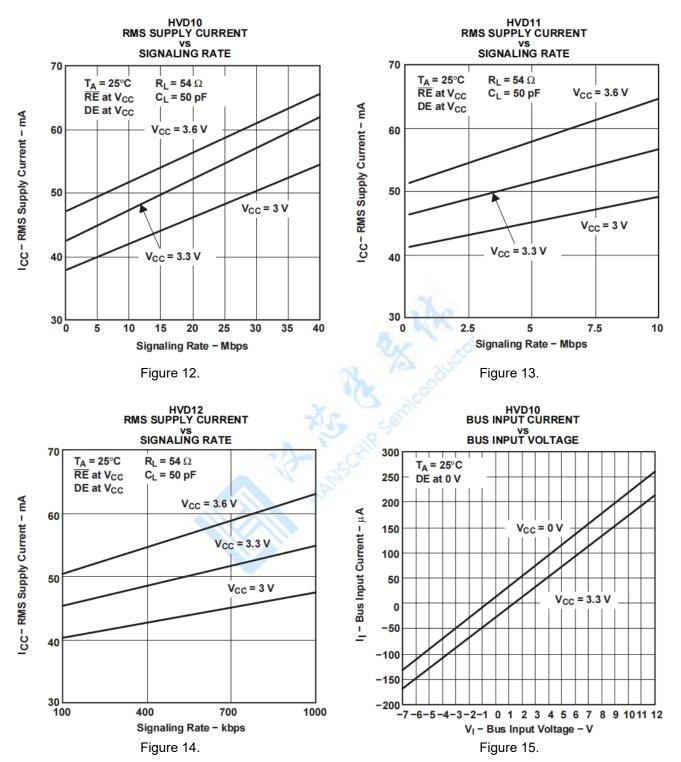

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS





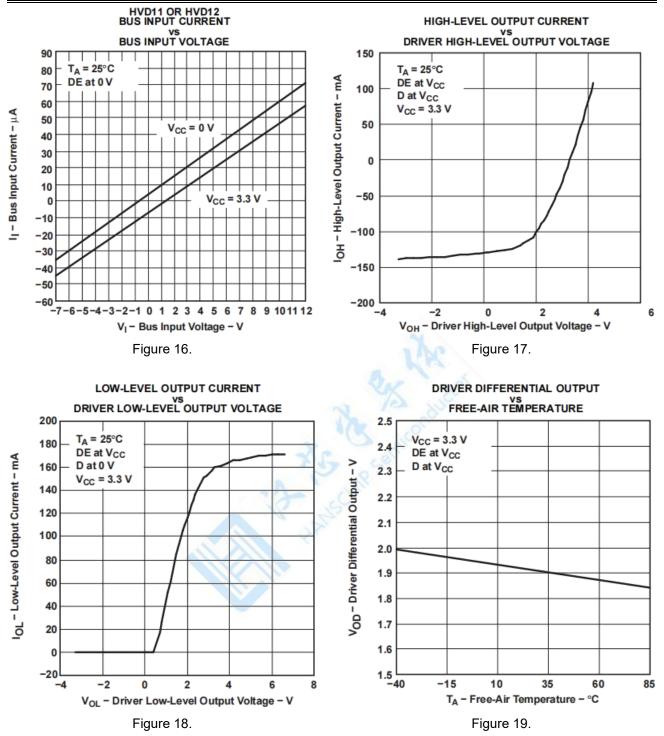
A and B Outputs

5Ω



Output

9 V



TYPICAL CHARACTERISTICS

HX65HVD10/11/12

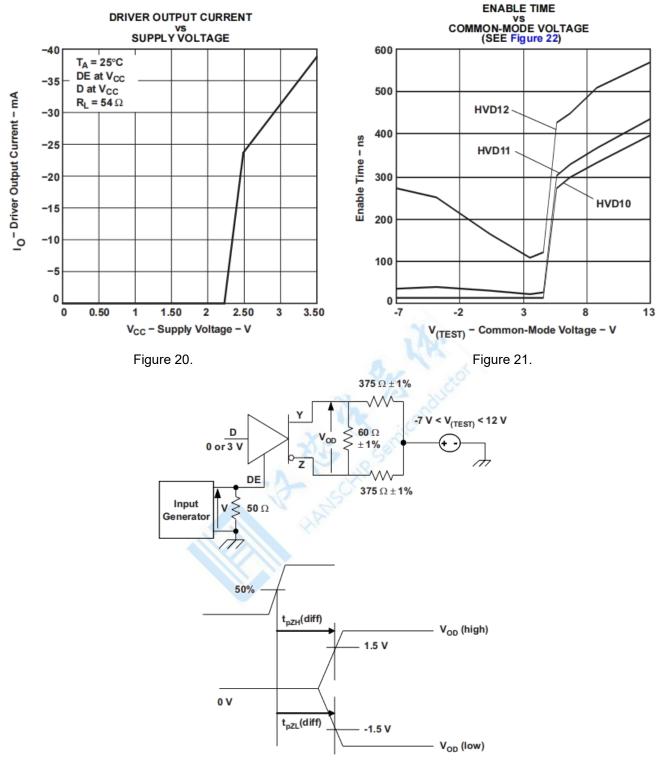
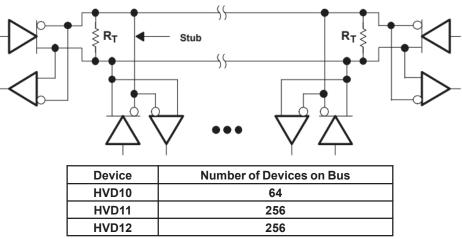



Figure 22. Driver Enable Time From DE to VOD

The time tPZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.

APPLICATION INFORMATION

NOTE: The line should be terminated at both ends with its characteristic impedance (RT = ZO). Stub lengths off the main line should be kept as short as possible.

Figure 23. Typical Application Circuit

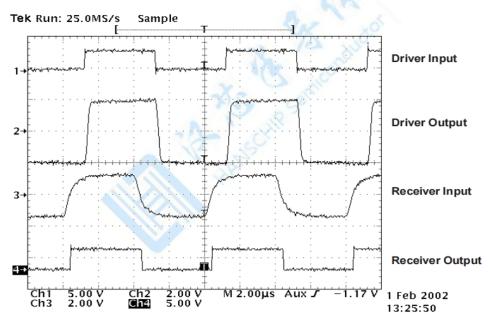
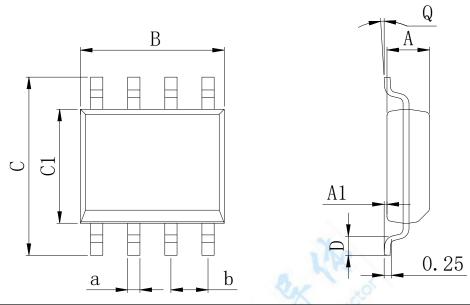
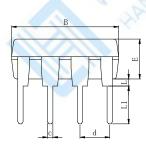


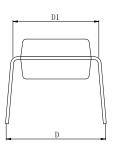
Figure 24. HVD12 Input and Output Through 2000 Feet of Cable

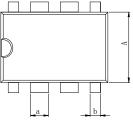
An example application for the HVD12 is illustrated in Figure 23. Two HVD12 transceivers are used to communicate data through a 2000 foot (600 m) length of Commscope 5524 category 5e+ twisted pair cable. The bus is terminated at each end by a $100-\Omega$ resistor, matching the cable characteristic impedance. Figure 24 illustrates operation at a signaling rate of 250 kbps.


LOW-POWER STANDBY MODE

When both the driver and receiver are disabled (DE low and RE high) the device is in standby mode. If the enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.


Physical Dimensions


 $SOP8_{\ (150mil)}$



Symbol: A A1 B C C1 D Q a		
	b	
Min: 1.35 0.05 4.90 5.80 3.80 0.40 0° 0.35	27 860	
Max: 1.55 0.20 5.10 6.20 4.00 0.80 8° 0.45	1.27 BSC	

DIP8

Dimensions In Millimeters(DIP8)												
Symbol:	A	В	D	D1	E	L	L1	а	b	с	d	
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54.000	
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC	

深圳市汉芯半导体有限公司 http://www.hanschip.com

IMPORTANT STATEMENT:

Shenzhen Hanschip semiconductor co., ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.