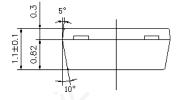

# MW601-4T InSb Hall Element


Ultra High-sensitivity InSb Hall element

Classic SOT Package

Shipped in packet-tape reel (3,000pcs per reel)

## Dimensional Drawing (Unit: mm)





| 引脚定义(Pinning) |       |       |
|---------------|-------|-------|
| 输入<br>Input   | 1 (±) | 3 (干) |
| 输出<br>Output  | 2 (±) | 4 (∓) |

# **Absolute Maximum Rating**

Operating Temperature Range Storage Temperature Range Maximum Input Voltage *I*<sub>cmax</sub> -40°C ~ 125°C -55°C ~ 150°C 20mA

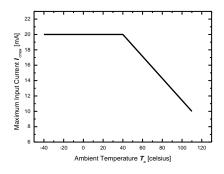



Figure 1. Maximum input current Icmax

Copy Right Reserved JZWI-DS-021 Version 2.1



## Electrical Characteristics (RT=25°C)

Table 1. Electrical Characteristics of MW601-4T.

| Item                                   | Symbol               | Test Condi.                                                                                | Min. | Тур. | Max. | Unit |
|----------------------------------------|----------------------|--------------------------------------------------------------------------------------------|------|------|------|------|
| Hall Voltage                           | <b>V</b> H           | <b>B</b> = 50mT, <b>V</b> <sub>0</sub> =1V<br><b>T</b> <sub>a</sub> = RT                   | 168  |      | 516  | mV   |
| Input Resistance                       | <b>R</b> in          | <b>B</b> = 0mT, $I_C$ = 0.1mA<br>$T_a$ = RT                                                | 240  |      | 550  | Ω    |
| Output Resistance                      | <b>R</b> out         | $B = 0mT$ , $I_C = 0.1mA$<br>$T_a = RT$                                                    | 240  |      | 550  | Ω    |
| Offset Voltage                         | <b>V</b> os          | <b>B</b> = 0mT, $V_C$ = 1V $T_a$ = RT                                                      | -5   |      | +5   | mV   |
| Temp. Coeffi. of <b>V</b> <sub>H</sub> | α <b>V</b> H         | $B = 50 \text{mT}, I_C = 5 \text{mA},$ $T_a = 0 ^{\circ}\text{C} \sim 40 ^{\circ}\text{C}$ | 1    | -1.8 | >    | %/°C |
| Temp. Coeffi. of Rin                   | α <b><i>R</i></b> in | $B = 0mT$ , $I_C = 0.1mA$ ,<br>$T_a = 0^{\circ}C \sim 40^{\circ}C$                         |      | -1.8 |      | %/°C |
| Dielectric strength                    |                      | 100V D.C                                                                                   | 1.0  |      |      | МΩ   |

#### Note:

1. 
$$V_{\rm H} = V_{\rm H-M} - V_{\rm os}$$

In which  $\emph{V}_{\text{H-M}}$  is the Output Hall Voltage,  $\emph{V}_{\text{H}}$  is the Hall Voltage and  $\emph{V}_{\text{os}}$  is the offset Voltage

under the identical electrical stimuli.

2. 
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

3. 
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$

$$T_1 = 20$$
°C,  $T_2 = 0$ °C,  $T_3 = 40$ °C



## Classification of Output Hall Voltage ( 1/4 )

Table 2. Classification of Hall Voltage

| Rank | <b>V</b> <sub>H</sub> [mV] | Conditions            |  |
|------|----------------------------|-----------------------|--|
| С    | 168 ~ 204                  |                       |  |
| D    | 196 ~ 236                  |                       |  |
| E    | 228 ~ 274                  |                       |  |
| F    | 266 ~ 320                  | D=50mT 1/=4\/         |  |
| G    | 310 ~ 370                  | B=50mT, <b>V</b> c=1V |  |
| Н    | 360 ~ 415                  |                       |  |
| ı    | 405 ~ 465                  |                       |  |
| J    | 454 ~ 516                  |                       |  |

### **Characteristic Curves**

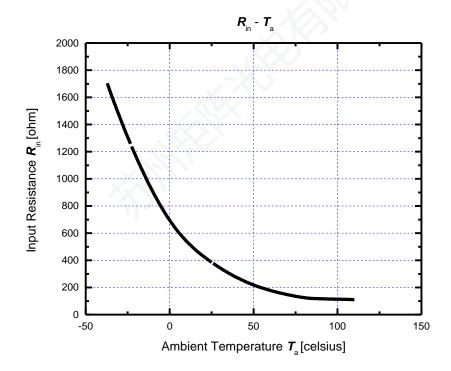



Figure 2. Input resistance  $R_{in}$  as a function of ambient temperature  $T_{a.}$ 

Copy Right Reserved

JZWI-DS-021 Version 2.1

Matriconta Co. Ltd in the guarant of the trademarks used in this decument, which has the evaluation right to proport



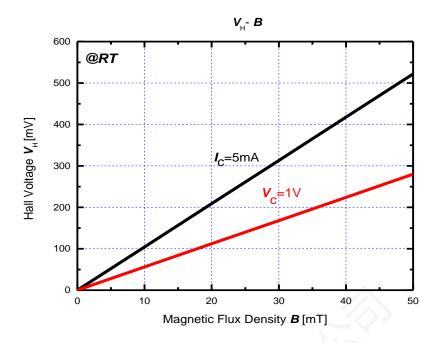



Figure 3. Hall voltage  $V_H$  as a function of magnetic flux density B.

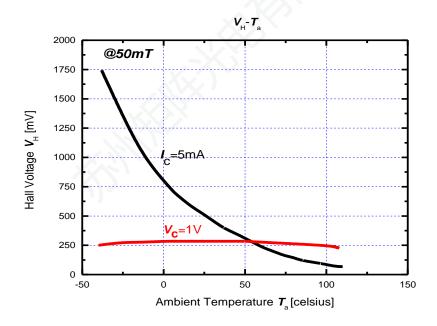



Figure 4. Hall voltage  $V_{\rm H}$  as a function of ambient temperature  $T_{\rm a.}$ 



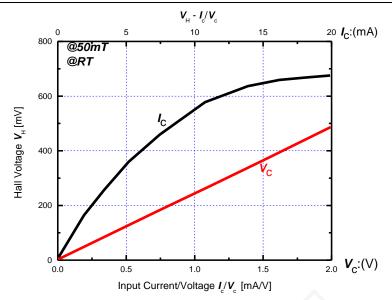



Figure 5. Hall voltage  $V_H$  as a function of electrical stimuli  $I_c/V_c$ .

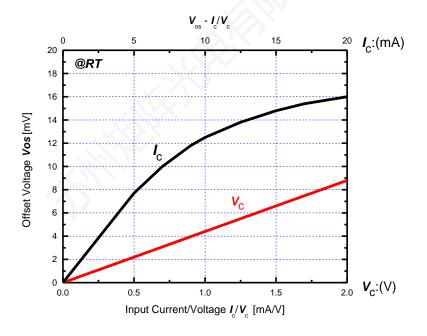



Figure 6. Offset voltage  $V_{os}$  as a function of electrical stimuli  $I_c/V_c$ .



## **Reliability Test Terms**

Table 2. Reliability Test Terms, Conditions and Duration.

| No. | Terms                           | Conditions                                                                                           | Duration  |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------|-----------|
| 1   | High Temperature Storage (HTS)  | [JEITA EIAJ ED-4701]                                                                                 | 1000 hrs  |
| 2   | Heat Cycle (HC)                 | $T_a$ =150 ( 0 ~ +10 ) °C  [JEITA EIAJ ED-4701] $T_a$ =-55°C~150 °C  high temp normal temp low temp. | 30 cycles |
| 3   | Temp. Humidity Storage<br>(THS) | 30 min - 5 min - 30 min  【JEITA EIAJ ED-4701】  7 <sub>a</sub> =85±3 °C , R <sub>H</sub> =85±5 %      | 1000 hrs  |
| 4   | Reflow Soldering<br>(RS)        | 【JEITA EIAJ ED-4701】<br>260±5 ℃                                                                      | 10 sec    |
| 5   | High Temp. Operating (HTO)      | <b>7</b> <sub>a</sub> =125 °C , <b>V</b> <sub>c</sub> =1∨                                            | 1000 hrs  |

### Criteria:

- Variation of Hall Voltage  $\emph{V}_{H}$  and input/output resistances  $\emph{R}_{\text{in/out}}$  are less than 20%.
- Variation of offset voltage  $V_{os}$  is less than ±16mV.
- Other parameters in **Table 1**. are still within their ranges stated in **Table 1**.



# Matrix Opto. Co., Ltd -MW601-4T InSb Hall Element-

# **Soldering Conditions**

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

### Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

### Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

### Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 °C for less than 5s.

### Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 270°C.



### **Precautions for ESD**

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

### **Precautions for Storage**

- Products should be stored at an appropriate temperature and humidity (5°C to 35°C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H<sub>2</sub>O of atmosphere oxidizes leads of products and lead solder ability get worse.

## **Precautions for Safety**

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.