

SGM2205-12XK3G 800mA, High Voltage, Low Noise LDO Regulator

GENERAL DESCRIPTION

The SGM2205-12XK3G is a high voltage, low noise and low dropout voltage linear regulator. It is capable of supplying 800mA output current with typical dropout voltage of only 450mV. The operating input voltage range is from 3.6V to 36V.

Other features include short-circuit current limit and thermal shutdown protection.

The SGM2205-12XK3G is available in a Green SOT-89-3 package. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Wide Operating Input Voltage Range: 3.6V to 36V
- Fixed Output Voltage: 12V
- Output Voltage Accuracy: ±1.5% at +25°C
- Low Dropout Voltage: 450mV (TYP) at 800mA
- Current Limiting and Thermal Protection
- Excellent Load and Line Transient Responses
- No-Load Stability
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOT-89-3 Package

APPLICATIONS

Cellular Telephones Palmtop Computers High-Efficiency Linear Power Supplies Portable Equipment

TYPICAL APPLICATION

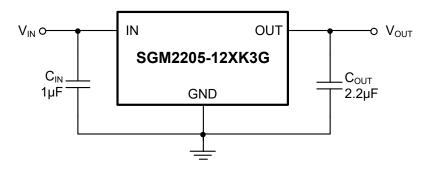


Figure 1. Typical Application Circuit

SGM2205-12XK3G

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	RATURE ORDERING		PACKING OPTION	
SGM2205-12XK3G	SOT-89-3	-40°C to +125°C	SGM2205-12XK3G/TR	GRBXX	Tape and Reel, 1000	

MARKING INFORMATION

NOTE: XX = Date Code.

YYY X X Date Code - Week Date Code - Year Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range, V _{IN}	40V to +40V
Power Dissipation, $P_D @ T_J = +25^{\circ}C$	
SOT-89-3	1.66W
Package Thermal Resistance	
SOT-89-3, θ _{JA}	75°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	6000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

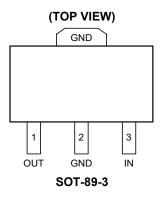
Supply Voltage Range, VIN	3.6V to 36V
Input Effective Capacitance, CIN	0.5µF (MIN)
Output Effective Capacitance, C _{OUT}	1µF to 10µF
Operating Junction Temperature Range4	40℃ to +125℃

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

SGM2205-12XK3G

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	OUT	Regulator Output Pin. It is recommended to use an output capacitor with effective capacitance in the range of 1μ F to 10μ F to ensure stability.
2	GND	Ground.
3	IN	Input Supply Voltage Pin. It is recommended to use a 1μ F or larger ceramic capacitor from IN pin to ground to get good power supply decoupling.

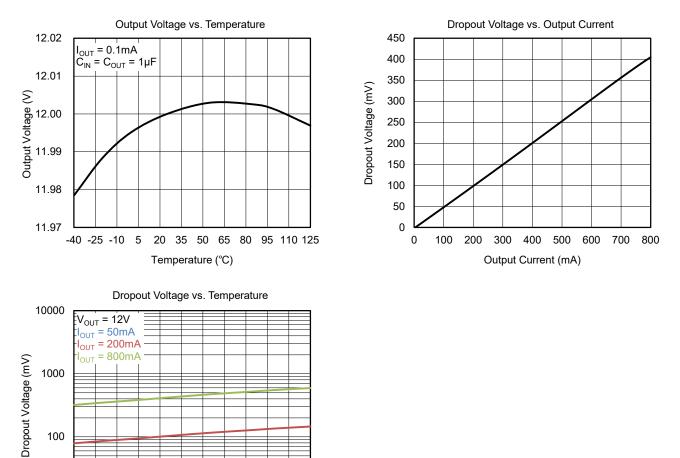
ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT(NOM)} + 1V, I_{OUT} = 0.1mA$ and $C_{OUT} = 2.2\mu$ F, $T_J = -40$ °C to +125°C, typical values are at $T_J = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
Input Voltage Range	V _{IN}	T _J = +25°C	3.6		36	V			
Output Veltage Assuracy	N	Variation from nominal V _{OUT} , T_J = +25°C	-1.5		1.5	%			
Output Voltage Accuracy	V _{OUT}	Variation from nominal V _{OUT}	-2		2	70			
Line Degulation	ΔV оит	$V_{IN} = (V_{OUT(NOM)} + 1V)$ to 36V, $T_J = +25^{\circ}C$		0.0003	0.003	%/V			
Line Regulation	$\overline{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	$V_{IN} = (V_{OUT(NOM)} + 1V)$ to 36V			0.005	70/ V			
Lood Degulation	ΔV оит	I_{OUT} = 0.1mA to 800mA, T _J = +25°C		0.1	0.3	%			
Load Regulation	Vout	I _{OUT} = 0.1mA to 800mA			0.4	70			
		I _{OUT} = 50mA, T _J = +25°C		30	38				
		I _{OUT} = 50mA			55				
Dropout Voltage (1)	V	I _{OUT} = 200mA, T _J = +25°C		115	150	m)/			
Dropout voltage	V _{DROP}	I _{OUT} = 200mA			210	mV			
		I _{OUT} = 800mA, T _J = +25°C		450	610]			
		I _{OUT} = 800mA			850	1			
Output Current Limit	I _{LIMIT}	$V_{OUT} = 90\% \times V_{OUT(NOM)}, T_J = +25^{\circ}C$	820	1100		mA			
Short-Circuit Current	I _{SHORT}	V _{OUT} = 0V		230		mA			
		No load, T_J = +25°C		80	104				
		No load			112]			
		I _{OUT} = 0.1mA, T _J = +25°C		80	104	1			
Ground Pin Current		I _{OUT} = 0.1mA			112	1			
Ground Pin Current	lα	$I_{OUT} = 50 \text{mA}, T_{J} = +25^{\circ}\text{C}$		220	280	μA			
		I _{OUT} = 50mA			290				
		I _{OUT} = 800mA, T _J = +25°C		1950	2250				
		I _{OUT} = 800mA			2350				
Power Supply Rejection Ratio	PSRR	f =1kHz, Vout = 12V, Iout = 50mA		62		dB			
Output Voltage Noise	en	Vout = 12V, Iout = 50mA, Cout = 2.2µF		1900		nV/√Hz			
Output Voltage Temperature Coefficient	$\frac{\Delta V_{\text{OUT}}}{\Delta T_{\text{J}} \times V_{\text{OUT}}}$			40		ppm/°C			
Thermal Shutdown Temperature	T _{SHDN}			155		°C			
Thermal Shutdown Hysteresis	ΔT_{SHDN}			25		°C			

NOTE:

1. The dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls to 95% × $V_{OUT(NOM)}$.


800mA, High Voltage, Low Noise LDO Regulator

TYPICAL PERFORMANCE CHARACTERISTICS

20 35 50 65 80 95 110 125

Temperature (°C)

 T_J = +25°C, C_{OUT} = 2.2µF and I_{OUT} = 0.1mA, unless otherwise noted.

10

-40 -25 -10

5

SGM2205-12XK3G

FUNCTIONAL BLOCK DIAGRAM

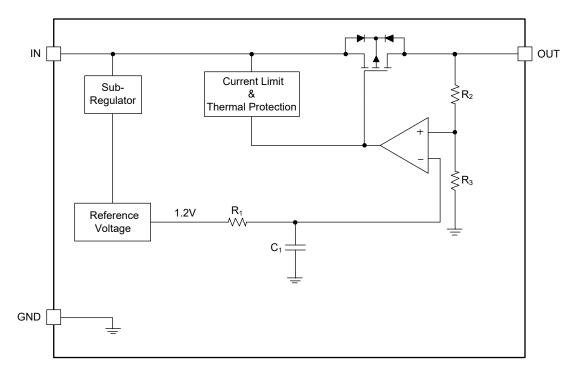


Figure 2. Block Diagram

APPLICATION INFORMATION

The SGM2205-12XK3G is a high voltage, low noise and low dropout LDO and provides 800mA output current. These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply. The high performance also makes the SGM2205-12XK3G useful in a variety of applications. The SGM2205-12XK3G provides protection functions for output overload, output short-circuit condition and overheating.

Input Capacitor Selection (CIN)

The input decoupling capacitor should be placed as close as possible to the IN pin to ensure the device stability. $1\mu F$ or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (COUT)

The output capacitor should be placed as close as possible to the OUT pin. 2.2 μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2205-12XK3G can remain stable is 1 μ F. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Additionally, C_{OUT} with larger capacitance and lower ESR will help increase the high frequency PSRR and improve the load transient response.

No-Load Stability

The SGM2205-12XK3G can maintain stability without output load (except internal voltage divider).

Input Power Supply

The input power supply range is from 3.6V to 36V. V_{IN} must be larger than ($V_{OUT} + V_{DROP}$) in application. The input ceramic capacitor must be placed as close as possible to the IN pin, this C_{IN} can help improve the output noise performance of LDO.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 1100mA (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 230mA (TYP).

Thermal Shutdown

The SGM2205-12XK3G can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2205-12XK3G will be in shutdown state and remain in this state until the die temperature decreases to +130°C.

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2205-12XK3G. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much and the operating junction temperature exceeds +155°C, the OTP circuit starts the thermal shutdown function and turns the pass element off.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all conditions. To guarantee reliable operation, the junction temperature of the SGM2205-12XK3G must not exceed +125°C.

The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction temperature and ambient temperature. The maximum power dissipation can be approximated using the following equation:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$
(1)

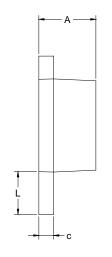
where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

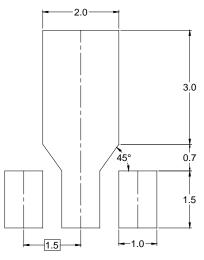
Layout Guidelines

To get good PSRR, low output noise and high transient response performance, the input and output bypass capacitors must be placed as close as possible to the IN pin and OUT pin separately. V_{IN} and V_{OUT} had better use separate ground planes and these ground planes are single point connected to the GND pin.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


AUGUST 2022 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	4
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All



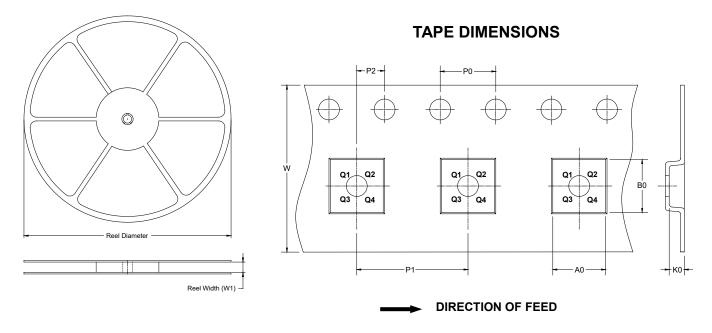
PACKAGE OUTLINE DIMENSIONS

SOT-89-3

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400 0.580		0.016	0.023	
С	0.350 0.440		0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	1.550 REF		REF	
E	2.300	0 2.600 0.091		0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500	1.500 TYP		TYP	
e1	3.000	3.000 TYP		TYP	
L	0.900 1.200		0.035	0.047	

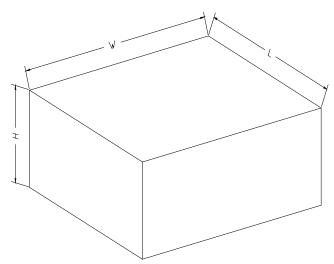
NOTES:


1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-89-3	7″	13.2	4.85	4.45	1.85	4.0	8.0	2.0	12.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

