Specification of MEMS

Microphone

(RoHS Compliance & Halogen Free)

Customer Name :

Customer Model :

GoerTek Model : SD07OT261-041

(GoerTek		CUSTOMER APPROVAL
<u>DESIGN</u> <u>CHKD</u> <u>STANDARD</u> APVD	<u>Jasen</u> <u>Samual</u> Sweety Daniel	2018.11.28 2018.11.28 2018.11.28 2018.11.28	

Tel: +86 536 3051234 E- Mail: <u>goertek@goertek.com</u> Website: <u>http://www.goertek.com</u> Address: No.268 Dongfang Road, High-Tech Industry Development District, Weifang, Shandong, P.R.C.

Restricted

1 Security warning

The information contained in this document is the exclusive property of GoerTek Inc.and should not be disclosed to any third party without the written consent of GoerTek Inc.

2 Publication history

Version	Date	Description	Author	Approved
1.0	2018.11.28	New Design	Jasen	Daniel

Contents

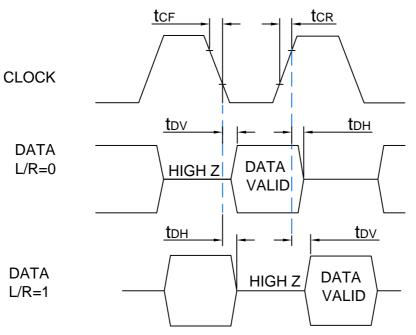
1		4
2	Test Condition	4
3	Electrical and Acoustical Characteristics ————————————————————	4
4	Frequency Response Curve and Limits —————————————————————	5
5	Measurement Circuit	6
6	Test Setup Drawing	6
7	Mechanical Characteristics — — — — — — — — — — — — — — — — — — —	7
8	Reliability Test	8 8 8 8 8 8 8
9	Package	9 10
10	Storage and Transportation	11
11	Land Pattern Recommendation	12 12 12
12	Soldering Recommendation	13 13 13 14
	Cautions When Using MEMS MIC 13.1 Board Wash Restrictions 13.2 Nozzle Restrictions 13.3 Ultrasonic Restrictions 13.4 Wire Width Restrictions	15 15 15 15
14	Output Inspection Standard	15

1 Introduction:

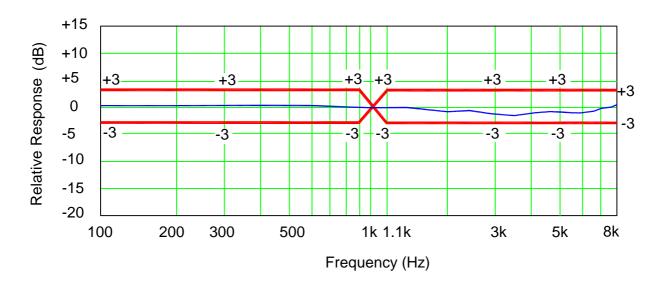
MEMS MIC which is able to endure reflow temperature up to 260 $^{\circ}$ C for 50 seconds can be used in SMT process. It is widely used in telecommunication and electronics device such as mobile phone, MP3, PDAs etc.

2 Test Condition (V_{DD} =1.8V f_{CLK}=2.4MHz, L=50 cm)

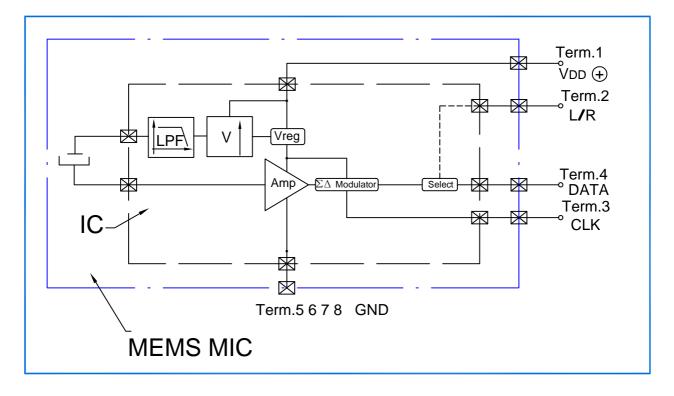
StandardConditions (As IEC 60268-4)	Temperature	Humidity	Air pressure	
Environment Conditions	+15℃~+35℃	25%R.H.~75%R.H.	86kPa \sim 106kPa	
Basic Test Conditions	+20℃±2℃	60%R.H.~70%R.H.	86kPa \sim 106kPa	


3 Electrical and Acoustical Characteristics

Item	Symbol	Test Conditions	Min	Stan.	Max	Unit
Sensitivity	S	f=1kHz,Pin=1Pa	-27	-26	-25	dBFS (Note 1)
Directivity	D(θ)		Omnidirectional			
Current Consumption (Note 2)	ldd	CLK=ON,No load on DATA output			500	uA
Sleep Current	Isleep	CLK=OFF or CLK<1kHz			50	uA
Analog S/N Ratio	S/N	f=1kHz,Pin=1Pa A-Weighted		60		dB
Operating Voltage Range	V _{DD}		1.6	1.8	3.6	V
Clock Frequency Range	f _{ськ}		1.2	2.4	3.5	MHz
Distortion	THD	Pin=94dB SPL@1kHz, S=typ			1	%
Acoustic Overload Point	AOP	10%THD@1kHz , S=typ		120		dBSPL
Power Supply Rejection	PSR	100mVpp square wave @217Hz ,A-weighted		-80		dBFS
Phase	Ph			Unity		
Short Circuit Current	lsc	Grounded DATA Pin			20	mA
Clock Duty Cycle	f _{DC}		40		60	%
Logic Input High	V _{IH}		0.65×Vdd		3.6	V
Logic Input Low	V _{IL}		-0.3		0.35×Vdd	V
Clock rise time	t _{CR}				6	ns
Clock fall time	t _{CF}				6	ns
Dalay Time for Valid Data	t _{DV}	No load for min t _{DV}	18		50	ns
(Note 3)		Max C_{LOAD} for max t_{DV}				
DalayTime for High Z	t _{DH}		5		16	ns
Wake-up time	t _{wu}	VDD=ON Fclk=2.4MHz			20	ms

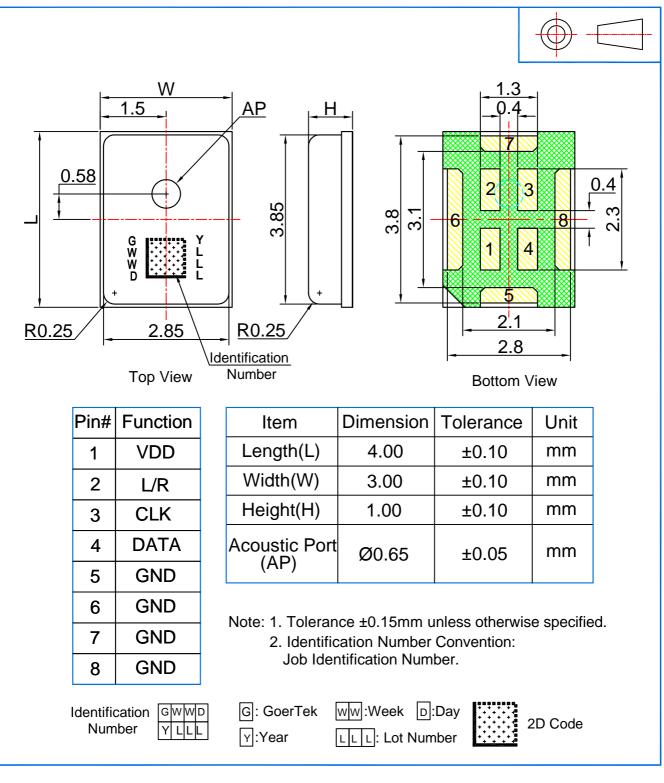

Note 1. dBFS = $20x\log (A/B)$ where A is the level of the signal, B is the level that corrsponds to Full-scale level.

Note 2. The current consumption depends on the applied Clock Frequency and the load on the DATA output.


Note 3. Timing

4 Frequency Response Curve and Limits

5 Measurement Circuit

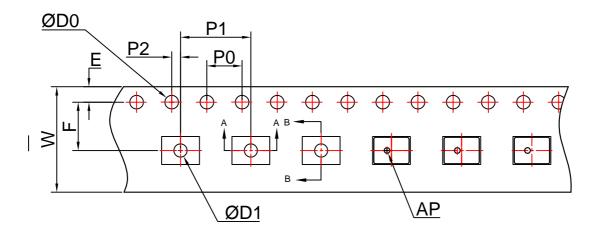


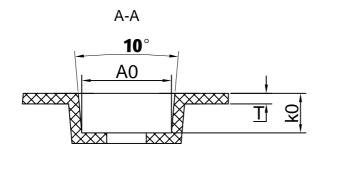
6 Test Setup Drawing

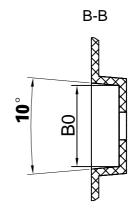
7 Mechanical Characteristics

7.1 Appearance Drawing (Unit: mm)

7.2 Weight

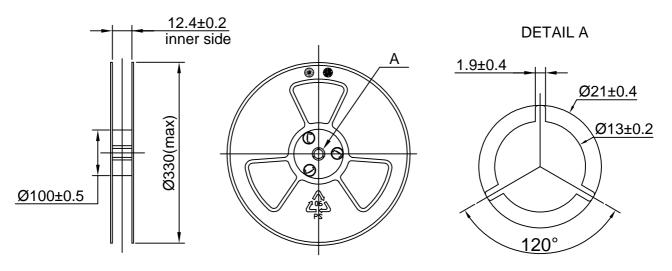

The weight of the MIC is less than 0.05g.


8 Reliability Test


8.1 Vibration Test	To be no interference in operation after vibrations, 4 cycles, from 20 to 2000Hz in each direction(X,Y,Z), 48min, user acceleration of 20g, sensitivity should vary within ±3dB from initial sensitivity. The measurement to be done after 2h of conditioning at +15 ℃~+35℃, R.H. 25%~75% (Refer to JESD22-B103B)
8.2	To be no interference in operation after dropped to 1.0cm steel plate 12 times from 1.5 meter height in JIG, JIG wight of 150g, sensitivity should vary within ±3dB from initial sensitivity.
Drop Test	The measurement to be done after 2h of conditioning at +15 $^{\circ}C$ ~+35 $^{\circ}C$, R.H. 25% ~75% (Refer to IEC 60068-2-32)
8.3	 a) After exposure at +125 °C for 200h, sensitivity should vary within ±3dB from initial sensitivity.
Temperature	The measurement to be done after 2h of conditioning at +15 °C ~+35 °C, R.H. 25% ~75% (Refer to IEC 60068-2-2) b) After exposure at -40 °C for 200h, sensitivity should vary within ±3dB from initial sensitivity.
Test	The measurement to be done after 2h of conditioning at +15 °C ~+35 °C, R.H. 25% ~75% (Refer to IEC 60068-2-1)
8.4 Humidity Test	After exposure at +85 $^\circ$ C and 85% relative humidity for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. The measurement to be done after 2h of conditioning at +15 $^\circ$ C ~+35 $^\circ$ C, R.H. 25% ~75% (Refer to IEC 60068-2-67)
8.5 Mechanical Shock Test	Then subject samples to three one-half sine shock pulses (3000 g for 0.3 milliseconds) in each direction (for six axes in total) along each of the three mutually perpendicular axes for a total of 18 shocks, sensitivity should vary within ±3dB from initial sensitivity. The measurement to be done after 2h of conditioning at +15 $^{\circ}C$ +35 $^{\circ}C$, R.H. 25% ~75% (Refer to IEC 60068-2-27)
8.6	After exposure at -40 $^{\circ}$ C for 30min, at +125 $^{\circ}$ C for 30min (change time 20 seconds)
Thermal	32 cycles, sensitivity should vary within ±3dB from initial sensitivity.
Shock Test	The measurement to be done after 2h of conditioning at +15 $^{\circ}$ C ~+35 $^{\circ}$ C, R.H. 25% ~75% (Refer to IEC 60068-2-14)
8.7	Adopt the reflow curve of item 12.3, after three reflows, sensitivity should vary within ±2dB from initial sensitivity.
Reflow Test	The measurement to be done after 2h of conditioning at +15 $^{\circ}C$ +35 $^{\circ}C$, R.H. 25% ~75%
8.8	Under C=150pF, R=330ohm, air discharge voltage \pm 8KV to the case,10 times, sensitivity should vary within \pm 3dB from initial sensitivity.
ESD Shock	Under C=150pF, R=330ohm, contact discharge \pm 2KV to I/O terminals,10 times(time interval 1.2s), case grounded, sensitivity should vary within \pm 3dB from initial sensitivity.
Test	The measurement to be done after 2h of conditioning at +15 °C ~+35 °C, R.H .25%~75% (Refer to IEC 61000-4-2)

9 Package

9.1 Tape Specification

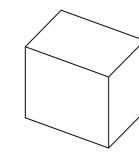

The Dimensions as Follows:

ITEM	W	E	F	ØD0	ØD1
DIM(mm)	12.0±0.10	1.75±0.10	5.50±0.05	1.55±0.05	1.50±0.1
ITEM	P0	10P0	P1	A0	B0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	4.30±0.10	3.20±0.10
ITEM	K0	P2	Т		
DIM(mm)	1.30±0.10	1.00±0.05	0.30±0.05		

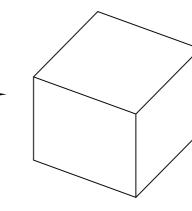
9.2 Reel Dimension

- 7" reel for sample stage
- 13" reel will be provided for the mass production stage

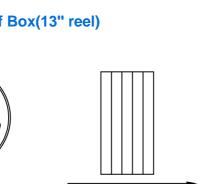
The following is 13" reel dimensions (unit:mm)



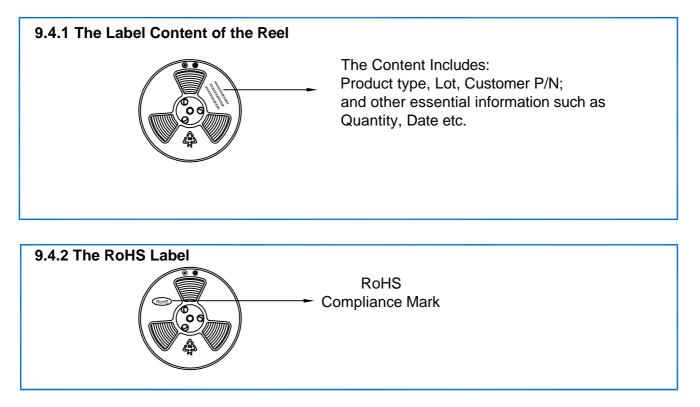
9.3 The Content of Box(13" reel)



Packing (4,000PCS)

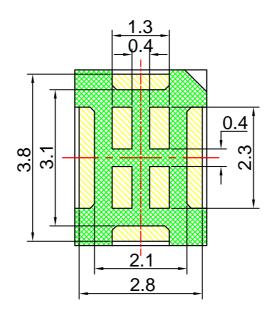

Two Inner Box(40,000PCS)

Inner Box(20,000PCS) (340mm×135mm×355mm)

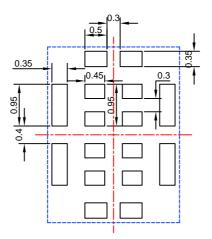


Outer Box(40,000PCS) (370mm×300mm×390mm)

9.4 Packing Explain



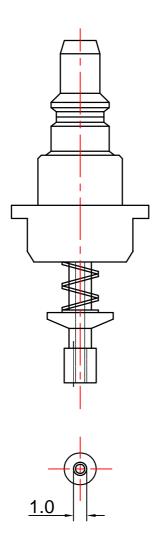
10 Storage and Transportation


- 10.1 Keep MEMS MIC in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field. Recommend storage period no more than 1 year and floor life(out of bag) at factory no more than 4 weeks.
- 10.2 The MEMS MIC with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- 10.3 Storage Temperature Range : -40 °C ~+70 °C
- 10.4 Operating Temperature Range : $-40^{\circ}C \sim +100^{\circ}C$

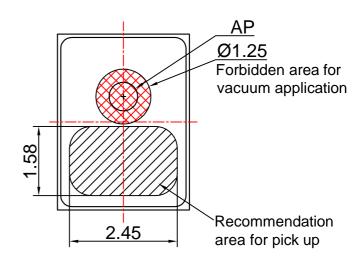
11 Land Pattern Recommendation

11.1 The Pattern of MIC Pad (unit:mm)

11.2 Recommended Solder Stencil Pattern (unit:mm)

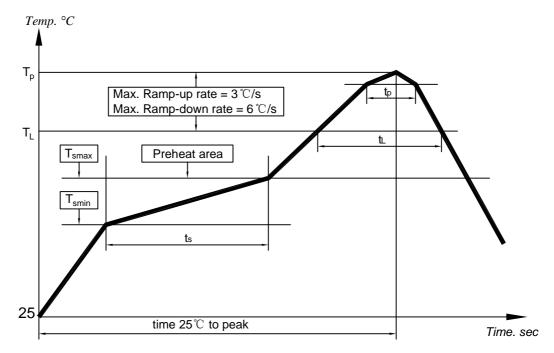


12 Soldering Recommendation


12.1 Soldering Machine Condition

Temperature control	8 zones	
Heater Type	Hot Air	
Solder Type	Lead-free	

12.2 The Drawing and Dimension of Nozzle



Nozzle Diameter: 1.0mm

Please don't vacuum over the acoustic port directly. The recommendation is for reference.

12.3 Reflow Profile

Key Features of The Profile:

Average Ramp-up rate(T _{smax} to T _p)	3℃/s max.
Preheat : Temperature Min(T _{smin}) Temperature Max(T _{smax}) Time(T _{smin} to T _{smax})(t _s)	150℃ 200℃ 60~180s
Time maintained above : Tempreature(T _L) Time(t _L)	217℃ 60~150s
Peak Temperature(T _p)	260 ℃
Time within 5 $^\circ\!{\rm C}$ of actual Peak Temperature(t_p) :	30~40s
Ramp-down rate(T _p to T _{smax})	6℃/s max
Time 25 $^\circ\!\!\!\!\!^\circ \mathbb{C}$ to Peak Temperature	8min max

When MEMS MIC is soldered on PCB, the reflow profile is set according to solder paste and the thickness of PCB etc.

13 Cautions When Using MEMS MIC

13.1 Board Wash Restrictions

It is very important not to wash the PCBA after reflow process, otherwise this could damage the microphone.

13.2 Nozzle Restrictions

It is very important not to be pull a nozzle over the acoustic port of the microphone or blow the acoustic port, otherwise this could damage the microphone.

13.3 Ultrasonic Restrictions

It is very important not to use ultrasonic process, otherwise this could damage the microphone.

13.4 Wire width Restrictions

It is needed to adjust the dumping resistance according to the wire length and wire tod,etc. when using.

It is also necessary to insert dumping resistance in the Data line located adjacent to the microphone according to circumstances.

14 Output Inspection Standard

Output inspection standard is executed according to <<ISO2859-1:1999>>.