SHANGHAI SINO-IC MICROELECTRONICS CO., LTD.

August 2005

SEMFXXXLCC series Low Capacitance Quad Array for ESD Protection Description

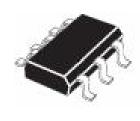
Revision:A

General Description

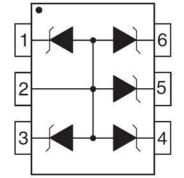
This integrated transient voltage suppressor device (TVS) is designed for applications requiring transient overvoltage protection, printers, business machines, communication systems, medical equipment, and other applications. Its integrated design provides very effective and reliable protection for separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Applications

- Serial and Parallel Ports
- Microprocessor Based Equipment
- Notebooks, Desktops, Servers
- Cellular and Portable Equipment


Features

- Four Separate Unidirectional Configurations for Protection
- Low Leakage Current < 1 µ A @ 3Volts
- Power Dissipation: 380mW
- Small SOT-363 SMT Package
- Low Capacitance
- Complies to USB 1.1 Low Speed & Speed Specifications
- These are Pb-Free Devices


Complies with the following standards IEC61000-4-2

- Level 4 15 kV (air discharge) 8 kV(contact discharge)
- MIL STD 883E Method 3015-7 Class 3 25 kV HBM (Human Body Model)

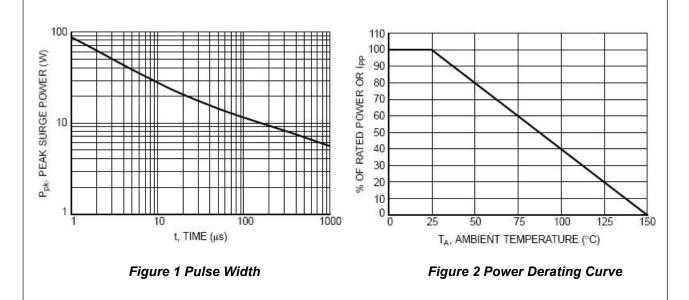
Functional diagram

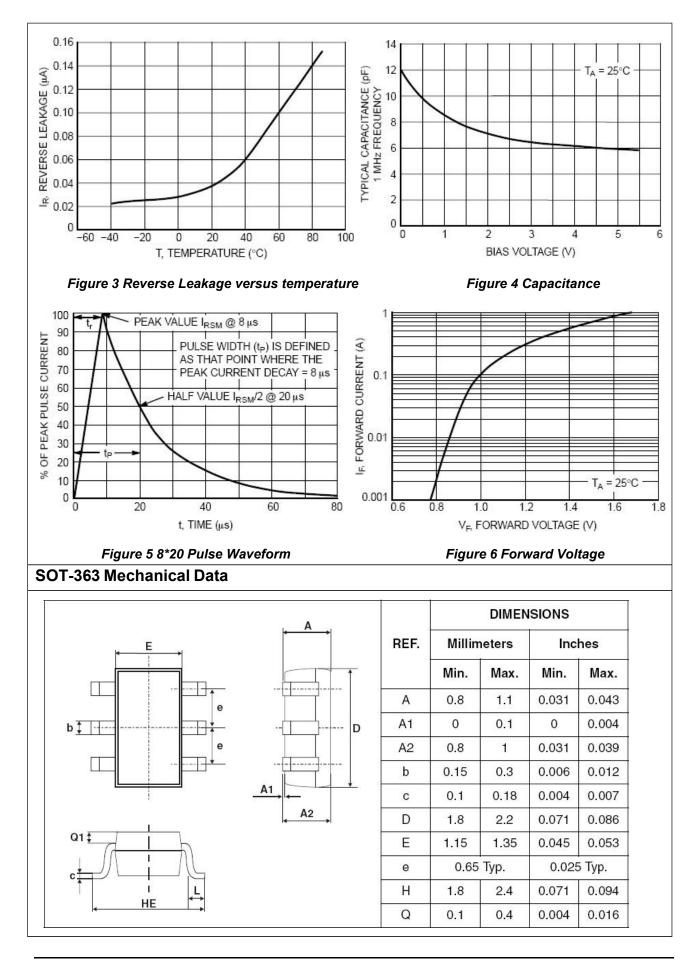
SOT-363

Maximum Ratings (T_A=25°C)

waxiiiiuiii	Ratings (TA=25 C)		
Symbol	Parameter	Value	Units
P _{PK}	Peak Power Dissipation($8 \times 20 \ \mu \ s@T_{A}=25 \ C$)	30	W
PD	Steady State Power-1 Diode	380	mW
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	327	°C/W
	Above 25°C, Derate	3.05	Mw /℃
T_{Jmax}	Maximum Junction Temperature	150	°C
T_JT_stg	Operation Junction and Storage Temperature Range	-55 to +150	°C
ΤL	Lead Solder Temperature(10 seconds duration)	260	°C

Maximum Reverse Peak Pulse Current	
Clamping Voltage @ I _{PP}	
Norking Peak Reverse Voltage	
Maximum Reverse Leakage Current(/ _{RWM}	
Test Current	
Breakdown Voltage @ I⊤	
Forward Current	IPP
Forward Voltage @ I _F	
	Aaximum Reverse Leakage Current @ ∕ _{RWM} Test Current Breakdown Voltage @ I⊤ Forward Current


Part Numbers	V _{BR}					VF		С	
	Min.	Тур.	Max.	Ιτ	V _{RWM}	I _R	Max.	IF	Typ. 0v
									bias
	V	V	V	mA	V	μA	V	mA	pF
SEMF3V3LCC	5.3	5.6	5.88	1	3.3	1.0	1.25	200	28
SEMF05LCC	6.47	6.8	7.14	1	5.0	1.0	1.25	200	19


1. Non-repetitive current per Figure 1.

2. Only 1 diode under power. For 4 diodes under power

3. Capacitance of one diode at f=1MHz,T_A=25 $^\circ\!\mathrm{C}$

Typical Characteristics

The SINO-IC logo is a registered trademark of ShangHai Sino-IC Microelectronics Co., Ltd. © 2005 SINO-IC – Printed in China – All rights reserved.

SHANGHAI SINO-IC MICROELECTRONICS CO., LTD

Add: Building 3, Room 3401-03, No.200 Zhangheng Road, ZhangJiang Hi-Tech Park, Pudong, Shanghai 201203, China