CT310 July 2021

CT310

XtremeSense® 2D TMR Angular Sensor

Features

- Angular Error less than 0.30° (After Compensation)
 Over Full Temperature Range
- Dual Full-Bridge Resistor Network
- Operating Magnetic Field: 25 mT to 90 mT
- Differential Outputs for SIN and COS Axes
- Supply Voltage: 1.0 V to 5.5 V
- Package Options:
 - 8-lead TSSOP
 - \circ 8-lead DFN, $2.00 \times 2.00 \times 0.45$ mm

Applications

- Angular Measurements
- Rotary and Angular Sensors
- BLDC Motors

Product Description

The CT310 is a 2D angular sensor in a dual full-bridge configuration from Crocus Technology developed on its patented XtremeSense® 2D TMR technology. The operating magnetic field for this 2D sensor is 25 mT to 90 mT and has an angular error less than 0.30° after compensation over the full operating temperature range. It has differential outputs for both sine (SIN) and cosine (COS) axes and operates with a supply voltage range from 1.0 V to 5.5 V.

It is packaged in an 8-lead TSSOP package and for applications where space is critical, a low profile, small form factor 8-lead DFN package that is $2.00 \times 2.00 \times 0.45$ mm in size.

Ordering Information

Part Number	Operating Temperature Range	Angular Error ⁽¹⁾	Output Type	Package	Packing Method	
CT310LS-IT8-M CT310LS-HT8-M	-40°C to +85°C -40°C to +125°C	0.30°	Differential	8-lead TSSOP 6.40 x 3.05 x 1.10 mm	Tape & Reel	
CT310LS-H16-M	-40°C to +85°C	0.000	D: (())	8-lead DFN	T 0.D 1	
CT310LS-HD8-M	-40°C to +125°C	0.30°	Differential	2.00 x 2.00 x 0.45 mm	Tape & Reel	

⁽¹⁾ After Compensation

Block Diagram

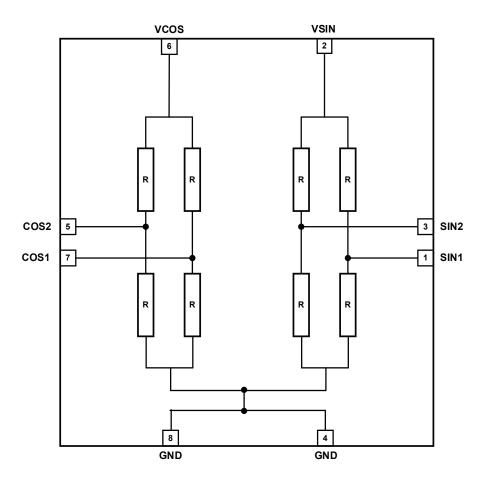
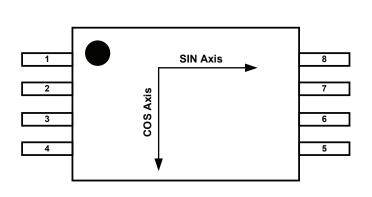
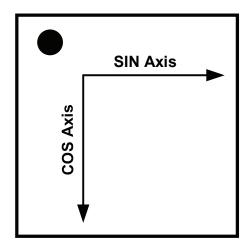
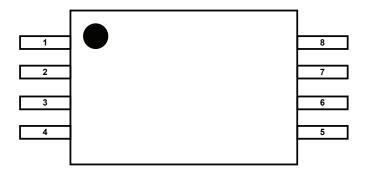



Figure 1. CT310 Functional Block Diagram

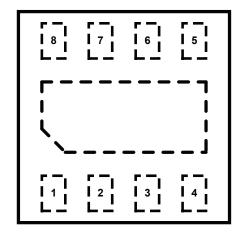
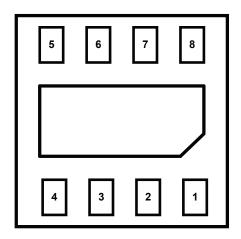

Figure 2. CT310 Axes of Sensitivity for TSSOP-8

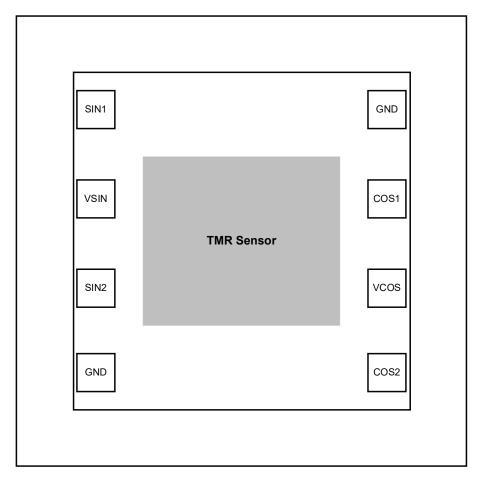
Figure 3. CT310 Axes of Sensitivity for DFN-8


Pin Configurations

TSSOP-8 – Top Down View

DFN-8 – Top Down View

DFN-8 – Bottoms Up View


Figure 4. CT310 Pin-out Diagrams

Pin Definitions

TSSOP-8 Pin #	DFN-8 Pin #	Pin Name	Pin Description			
1	1	SIN1 ⁽¹⁾	Differential output #1 for sine.			
2	2	VSIN	VSIN Supply voltage for sine			
3	3	SIN2 ⁽¹⁾	Differential output #2 for sine.			
4	4	GND	Ground for sine.			
5	5	COS2 ⁽²⁾	Differential output #2 for cosine.			
6	6	vcos	Supply voltage for cosine			
7	7	COS1 ⁽²⁾	Differential output #1 for cosine.			
8	8	GND	Ground for cosine.			

⁽¹⁾ SIN2 – SIN1 = SIN (2) COS2 – COS1 = COS

Pad Configuration

CT310 Die Layout **Top Down View**

Figure 5. CT310 Pad Diagram

Pad Definitions

Pad #	Pad Name	Pad Description			
1	SIN1 ⁽¹⁾	Differential output #1 for sine.			
2	VSIN	Supply voltage for sine			
3	SIN2 ⁽¹⁾	Differential output #2 for sine.			
4	GND	Ground for sine.			
5	COS2 ⁽²⁾	Differential output #2 for cosine.			
6	vcos	Supply voltage for cosine			
7	COS1(2)	Differential output #1 for cosine.			
8	GND	Ground for cosine.			

⁽¹⁾ SIN2 – SIN1 = SIN (2) COS2 – COS1 = COS

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the CT310 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Vcos, Vsin	Supply Voltage		-0.3	6.0	V
V_{OUT}	Analog Output Pins Maximun	n Differential Voltage		±1.5	V
ESD.	Electrostatic Discharge	Human Body Model (HBM) per JESD22-A114	±4.0		10.7
Protection Level	Charged Device Model (CDM) per JESD22-C101	±1.0		- kV	
B _{MAX}	Maximum Magnetic Field, ≤ 5	minutes at T _A = +25°C		±200	mT
Bshift	Life-time Shift		TBD	0	
T _{STG}	Storage Temperature	-65	+165	°C	
TL	Lead Soldering Temperature	, 10 Seconds		+260	°C

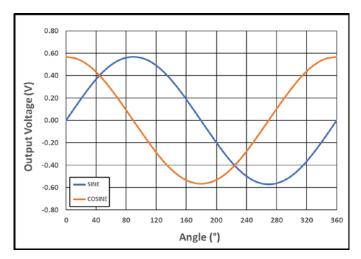
Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual operation of the CT310. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vcos, Vsin	Supply Voltage Range	1.0		5.5	V	
Vcos_d, Vsin_d	COS and SIN Differential Output Vo	-1.37		+1.37	V	
BOPERATING	Operating Magnetic Field	25		90	mT	
T _A O	Operating Ambient Temperature	Industrial	-40	+25	+85	°C
	Operating Ambient Temperature Extended Industrial		-40	+25	+125	

Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.0 V to 5.5 V, C_{BYP} = 0.1 μF , $B_{OPERATING}$ = 25 mT to 90 mT and T_A = -40°C to +150°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Magnetic						
BOPERATING	Operating Magnetic Field		25	60	90	mT
Electrical						
RBRIDGE	Bridge Resistance	T _A = +25°C	3.0	4.5	6.0	kΩ
TCR	Temperature Coefficient of Resistance (1)			500		ppm/°C
Differential (Outputs					
θerr	Angular Error (2)	After Compensation		0.30	0.60	٥
θERR_20mT	Angular Error @ 20 mT (1), (2)	After Compensation, BOPERATING = 20 mT			0.90	٥
θERR_HYST	Angle Error due to Hysteresis		N	No Hysteresis		
V _{SIN_D} , V _{COS_D}	SIN, COS Differential Output Voltage Peak-to-Peak	T _A = +25°C	0.35	0.45	0.50	V/V
ТСVоит	Temperature Coefficient of Differential Output (1)			-1600		ppm/°C
Voff_sin, Voff_cos	SIN, COS Voltage Offset			±1	±5	mV/V
k	SIN, COS Amplitude Synchronism Ratio		97	100	103	%
TCk	Temperature Coefficient of Amplitude Synchronism (1)			3.0		ppm/°C
OEsin, OEcos	SIN, COS Orthogonality Error		88	90	92	٥
tresponse	SIN, COS Response Time (1)	C _L = 22 pF		1.0		μs
en	Noise (1)	f _{BW} = 1 Hz to 10 kHz, V _{DD} = 3.0 V		2.4		μV _{RMS} /V

⁽¹⁾ Guaranteed by design and characterization.

⁽²⁾ Hysteresis error and output noise are included in the Angular Error specification.

Electrical Characteristics

 V_{DD} = 3.0 V and T_A = +25°C

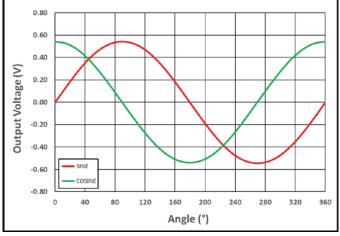
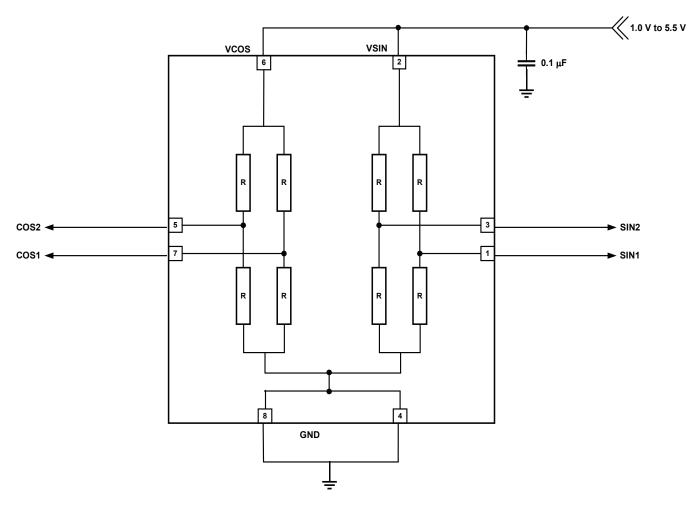


Figure 6. Output Voltage vs. Angle at B_{OP} = 25 mT

Figure 7. Output Voltage vs. Angle at B_{OP} = 90 mT

Recommended Application Circuit



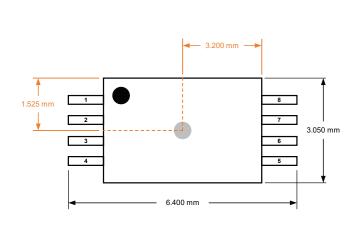
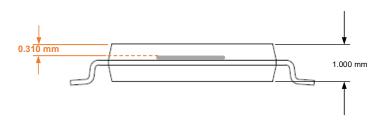

Figure 8. CT310 Application Diagram

Table 1. Recommended External Components

Component	Description	Vendor & Part Number	Parameter	Min.	Тур.	Max.	Unit
Свур	0.1 μF, X7R	Murata GRM033Z71A104KE14	С		0.1		μF
	0.1 µ1,71.11	Others					

Applications Information

The XtremeSense TMR sensor location for the CT310 for the x, y dimensions are shown in Figure 9 and Figure 10 for the TSSOP-8 and DFN-8 packages respectively. Figure 11 and Figure 12 illustrates the location of the CT310's XtremeSense TMR sensor from the z dimension. All dimensions in the figures below are nominal.



1.00 mm

2.00 mm

Figure 9. XtremeSense TMR Sensor Location in x-y Plane for CT310 in TSSOP-8 Package

Figure 10. XtremeSense TMR Sensor Location in x-y Plane for CT310 in DFN-8 Package

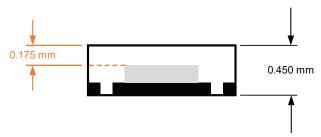


Figure 11. XtremeSense TMR Sensor Location in z Dimension for CT310 in TSSOP-8 Package

Figure 12. XtremeSense TMR Sensor Location in z Dimension for CT310 in DFN-8 Package

TSSOP-8 Package Drawing and Dimensions

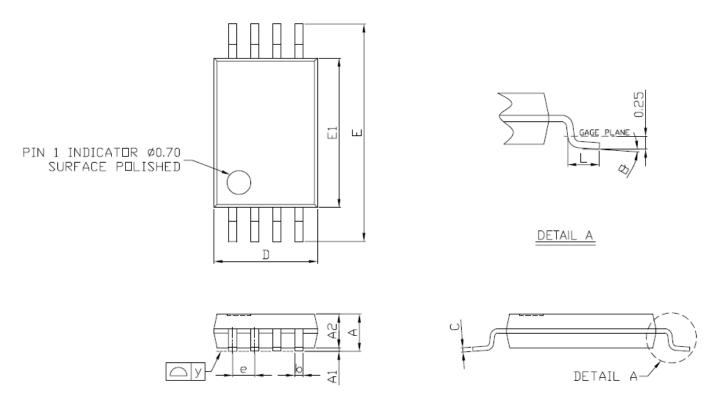


Figure 13. TSSOP-8 Package Drawing

Table 2. CT310 TSSOP-8 Package Dimensions

Symbol	Dimen	Dimensions in Millimeters (mm)					
Syllibol	Min.	Тур.	Max.				
Α	1.05	1.10	1.20				
A1	0.05	0.10	0.15				
A2	•	1.00	1.05				
Ь	0.25	-	0.30				
С	-	0.127	-				
D	2.90	3.05	3.10				
Е	6.20	6.40	6.60				
E1	4.30	4.40	4.50				
е	-	0.65	-				
Ĺ	0.50	0.60	0.70				
у	-	-	0.076				
θ	0°	4°	8°				

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

TSSOP-8 Tape & Pocket Drawing and Dimensions

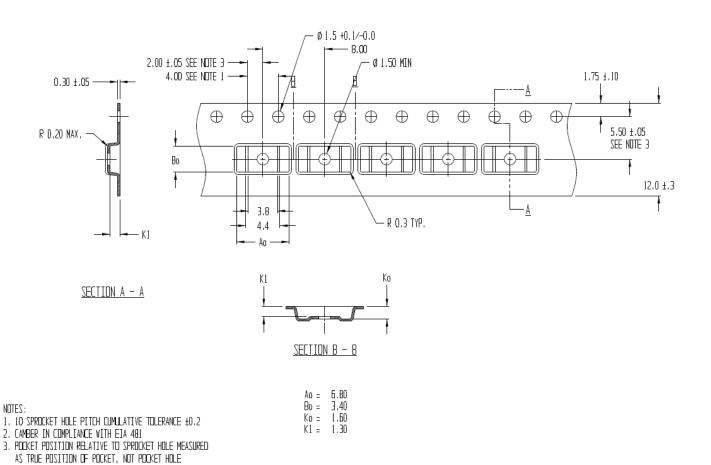
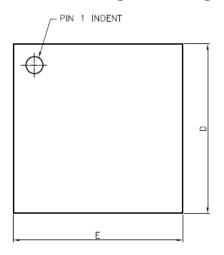
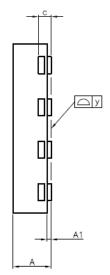
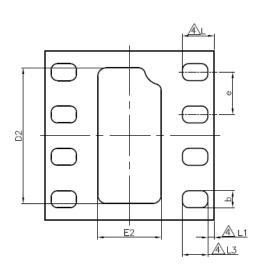





Figure 14. TSSOP-8 Tape and Pocket Drawings

DFN-8 Package Drawing and Dimensions

NOTE:

1. The terminal #1 identifier is a laser marked feature.

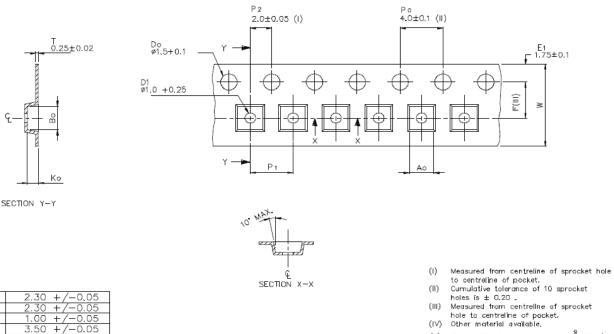

Figure 15. DFN-8 Package Drawing

Table 3. CT310 DFN-8 Package Dimensions

Symbol	Dimensions in Millimeters (mm)						
Symbol	Min.	Тур.	Max.				
Α	0.40	0.45	0.50				
A1	0.00	0.02	0.05				
b	0.15	0.20	0.25				
С	-	0.150 REF	-				
D	1.925	2.000	2.075				
D2	1.550	1.600	1.650				
E	1.925	2.000	2.075				
E2	0.700	0.750	0.800				
е	-	0.500	-				
L A	0.325	0.375	0.425				
L1 🐴	-	0.075	-				
L3 🐴	0.250	0.300	0.350				
у	0.000	-	0.075				

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

DFN-8 Tape & Pocket Drawing and Dimensions

Aα	2.30 +/-0.05
Во	2.30 +/-0.05
Ko	1.00 +/-0.05
F	3.50 +/-0.05
P1	4.00 +/-0.1
W	8.00 +0.3/-0.1

(V) Typical SR of form tape Max 10⁹ OHM/SQ

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 16. DFN-8 Tape and Pocket Drawings

Package Information

Table 4. CT310 Package Information

Part Number	Package Type	# of Leads	Package Quantity	Lead Finish	Eco Plan ⁽¹⁾	MSL Rating	Operating Temperature (3)	Device Marking
CT310LS-IT8-M	TSSOP	8	3,000	Sn	Green & RoHS	1	-40°C to +85°C	CT310LS-IT8 YYWWSS
CT310LS-HT8-M	TSSOP	8	3,000	Sn	Green & RoHS	1	-40°C to +125°C	CT310LS-HT8 YYWWSS
CT310LS-ID8-M	DFN	8	3,000	Sn	Green & RoHS	1	-40°C to +85°C	310I YWWS
CT310LS-HD8-M	DFN	8	3,000	Sn	Green & RoHS	1	-40°C to +125°C	310H YWWS

- (1) RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.
- (2) MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.
- (3) Package will withstand ambient temperature range of -40°C to +150°C and storage temperature range of -65°C to +165°C.
- (4) Device Marking for TSSOP is defined as CT310LS-XT8 YYWWSS where CT310LS = base part number, X = temperature code, T8 = TSSOP-8 package, YY = year, WW = work week and SS = sequential number. DFN is defined as 300X where X = temperature code and Y = year, WW = work week and S = sequential number.

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

Product Status Definition

Data Sheet Identification	Product Status	Definition
Objective	Proposed New Product Idea or In Development	Data sheet contains design target specifications and are subject to change without notice at any time.
Preliminary	First Production	Data sheet contains preliminary specifications obtained by measurements of early samples. Follow-on data will be published at a later date as more test data is acquired. Crocus reserves the right to make changes to the data sheet at any time.
None	Full Production	Data sheet contains final specifications for all parameters. Crocus reserves the right to make changes to the data sheet at any time.
Obsolete	Not in Production	Data sheet for a product that is no longer in production at Crocus. It is for reference only.