

Description

The 12KP series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage events.

Features

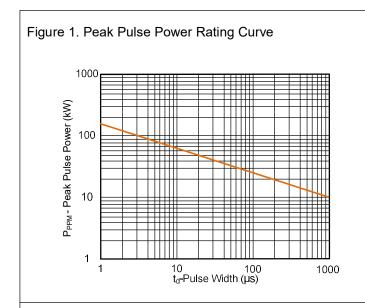
- Halogen free and RoHS compliant
- Glass passivated junction
- Low incremental surge resistance
- Excellent clamping capability
- 12000W peak pulse power capability at 10/1000µs waveform, repetition rate (duty cycle): 0.05%
- Fast response time
- High Temperature soldering guaranteed: 265 °C/10 seconds/.375",
 (9.5mm) lead length, 5lbs (2.3kg) tension
- Plastic package has underwriters laboratory flammability 94V-0
- Meet MSL level1, per J-STD-020
- IEC-61000-4-2 ESD 30kV(Air), 30kV (Contact)
- Unit Weight: 2.1g

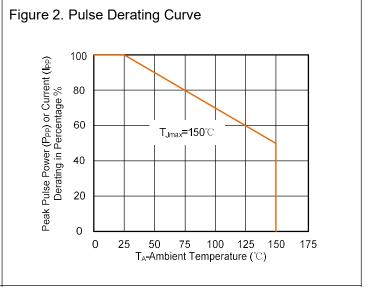
Applications

TVS components are ideal for the protection of I/O Interfaces, VCC bus and other vulnerable circuits used in telecom, computer, Industrial and consumer electronic applications.

Maximum Ratings and Characteristics ($T_A=25^{\circ}$ C)

Rating	Symbol	Value	
Peak pulse power dissipation at 10/1000µs waveform (Note1, Fig.1)	P _{PPM}	12000W	
Peak pulse current of at 10/1000µs waveform (Note 1)	I _{PPM}	See Table(A)	
Steady state power dissipation at T _L =75°C (Fig.4)	P _{M(AV)}	8.0W	
Operating junction and Storage Temperature Ranges	T_{J}, T_{STG}	-55℃ to +150℃	
Typical thermal resistance junction to lead	$R_{ heta JL}$	8℃/W	
Typical thermal resistance junction to ambient	R _{θJA}	40℃/W	


Notes:1. Non-repetitive current pulse, per Fig.3 and derating above T_A=25℃ per Fig.2.



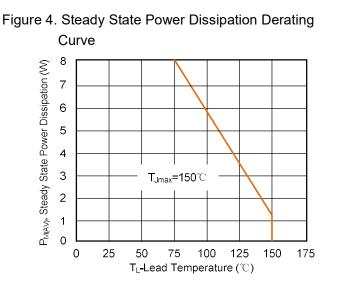
Electrical Characteristics (T_A=25°C)

Part Number	Reverse Stand-Off Voltage	Breakdown Voltage @I _T		Test Current	Maximum Clamping Voltage @I _{PP}	Peak Pulse Current	Reverse Leakage @V _R
	V _R (V)	V _{B Mln.} (V)	V _{B Max.} (V)	I _T (mA)	V _C (V)	I _{PP} (A)	I _R (µA)
12KP36CA	36	40	44.2	5	58.1	206.5	2

Ratings and Characteristic Curves (T_A=25℃)

T_J=25°C
Pulse Width(t_d) is defined as the point where the peak current decays to 50% of I_{PPM}

Peak Value I_{PPM}


Half Value I_{PPM} (I_{PPM}/2)

100

10/1000µs Waveform as defined by R.E.A

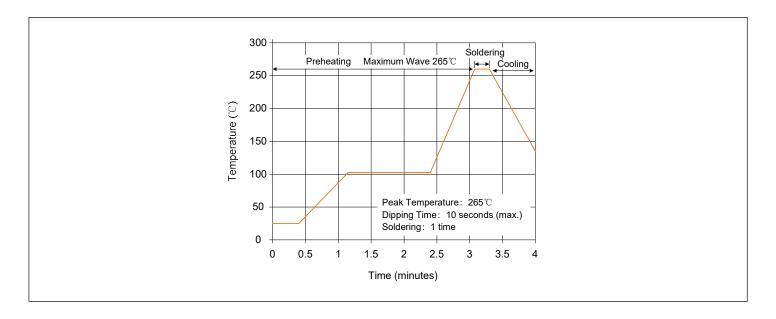
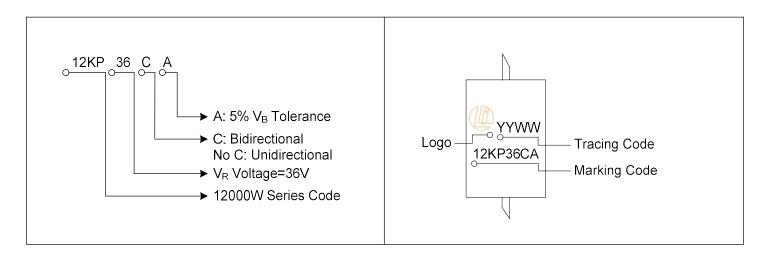
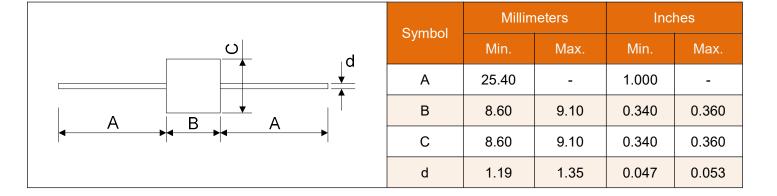
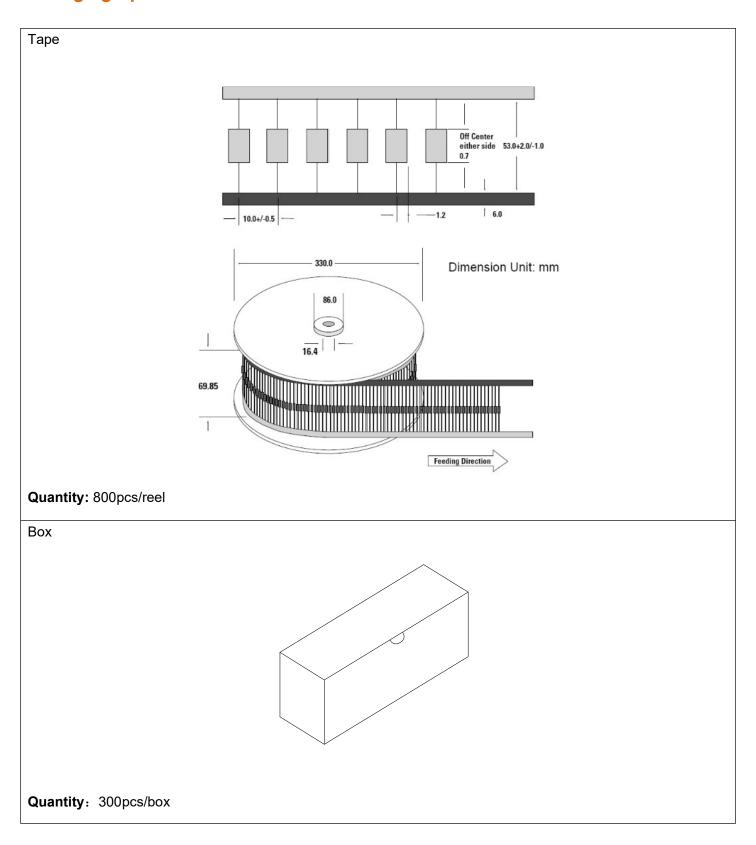

Time (ms)

Figure 3. Pulse Waveform




Wave Soldering

Part Number Code and Marking Code



Dimensions (P600)

Packaging Specification

