

# 獨石電容器承認書

# APPROVAL SPECIFICATIONS FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)

| 客戶<br>CUSTOMER       | 立創商城          |                                       |              |  |
|----------------------|---------------|---------------------------------------|--------------|--|
| 客戶料號<br>CUSTOMER P/N | C3293119      |                                       |              |  |
| 規格描述<br>DESCRIPTION  | 100V/473K/F5. | 100V/473K/F5.08/L24/X7R/0805/AEC-Q200 |              |  |
| 產品品號<br>PART NUMBER  | CD2A473KC9IER | D2A473KC9IER1EZAE                     |              |  |
| 日期<br>DATE           | 2022-07-08    | 文件編號<br>DOC. NO.                      | DEC-SA-WI010 |  |

| AFPF                           | 德爾創承認問<br>OVED BY DERS | 客戶承認欄<br>APPROVED BY CUSTOMER |                |                    |                |
|--------------------------------|------------------------|-------------------------------|----------------|--------------------|----------------|
| 批準《<br>APPROVEL <del>B</del> 连 | · 審核<br>CHECK BY       | FR                            | 制訂<br>ULATE BY | 批 準<br>APPROVED BY | 審核<br>CHECK BY |
| 彭少雄                            | 吴成愛<br>样品承认章           | 1 12                          | 東冬花            |                    |                |

東莞市德爾創電子有限公司 DONGGUAN CITY DERSONIC ELECTRONICS CO., LTD. 廣東省東莞市長安鎮錦廈河南工業區錦平路 5 號 No.5, JINGPING ROAD, JINXIA HENAN INDUSTRIAL ZONE, CHANGAN TOWN DONGGUAN CITY, PRC TEL: 86-769-8155 5686 FAX: 86-0769-8155 5989 WEBSITE: <u>HTTP://WWW.DERSONIC.COM</u> E-MAIL: <u>SALES@DERSONIC.COM</u>

| $\checkmark$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             | ®                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       | DOC NO                                                                                                                                                                                                | L                                               | DEC-SA-W1010                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|
| -            | )ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>ΓΣΟΠΙΟ</b><br>ΔΟΟΩΛΙ/ΛΙ                                                                                                  |                                                    | ATTONC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       | REV.:                                                                                                                                                                                                 |                                                 | A/0                                                                            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FOR MONO                                                                                                                    | Ο ΓΕΟΓΓΙΟ<br>Ο ΓΓΗΤΟ ΓΔ                            | ATIONS<br>IPACTTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                | ORFI/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       | DATE:                                                                                                                                                                                                 |                                                 | 2022-07-07                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                    | 1710110/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7120 0200                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       | PAGE:                                                                                                                                                                                                 |                                                 | 2 / 10                                                                         |
|              | <ul> <li>APPLICATION</li> <li>This specification is applied to ZAE series monolithic capacitor in accordance with AEC-Q200 requirements used for automotive electronic equipment.</li> <li>ZAE series monolithic capacitor has the following characteristics:</li> <li>Complies AEC-Q200 requirements</li> <li>Miniature size, large capacitance, tape and reel packaging suitable for auto-placement.</li> <li>Epoxy coating creates excellent performance in humidity resistance, mechanical strength and heat resistance.</li> <li>Standard size, various lead configurations.</li> <li>Comply with RoHS 2.0, reach, halogen-free available.</li> </ul> |                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                 |                                                                                |
| ,            | PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t number (r                                                                                                                 | ATING)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                 |                                                                                |
|              | <u>CD</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>2A</u>                                                                                                                   | <u>473</u>                                         | <u>K</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>C</u>                                                                                                                                                         | <u>9</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>E</u>                                                                                                                                                                              | <u>R1</u>                                                                                                                                                                                             | <u>E</u>                                        | ZAE                                                                            |
|              | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rated<br>voltage                                                                                                            | Nominal capacitance                                | Capacitance<br>tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead<br>spacing                                                                                                                                                  | Lead Lead I<br>style or ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ength Coating<br>ping                                                                                                                                                                 | Temp.<br>Char.                                                                                                                                                                                        | Chip                                            | o Series                                                                       |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туре                                                                                                                        |                                                    | CD: Mono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lithic capacitor                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                 |                                                                                |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rated voltage                                                                                                               |                                                    | 1H: DC50<br>2J: DC630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>)V                                                                                                                                                          | 2A: DC1<br>3A: DC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mark>00V</mark><br>KV                                                                                                                                                                | 2E: D0                                                                                                                                                                                                | C250V                                           |                                                                                |
|              | <ul> <li>The first two digits denote significant figures; the last digit denotes the multiplier ex.) In case of 473</li> <li>■ Nominal capacitance 47×10<sup>3</sup>=47000pF=0.047µF</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  | of 10 in nF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                 |                                                                                |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal capac                                                                                                               | itance                                             | ex.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In case of $473$<br>$47 \times 10^3 =$                                                                                                                           | 47000pF=0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | res; the last digit<br>I <mark>µF</mark>                                                                                                                                              |                                                                                                                                                                                                       | Iutipliei                                       | or 10 m pr.                                                                    |
| -            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal capac<br>Capacitance to                                                                                             | itance<br>Ierance                                  | J: ±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In case of 473<br>47×10 <sup>3</sup> =                                                                                                                           | 47000pF=0.047<br>K: ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res; the last digit<br>/µF<br>0%                                                                                                                                                      | M: ±                                                                                                                                                                                                  | ±20%                                            | οι το π μ.                                                                     |
| -            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal capac<br>Capacitance to<br>Lead spacing (I                                                                          | itance<br>lerance<br>F)                            | J: ±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                                                                                                                                                                | 47000pF=0.047<br>K: ±1<br>C: 5.08n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | res; the last digit<br>/µF<br>0%<br>nm                                                                                                                                                | M: =                                                                                                                                                                                                  | ±20%                                            |                                                                                |
| -            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)                                                        | itance<br>lerance<br>F)                            | J: ±5%<br>A: 2.54m<br>1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                                                                                                                | 47000pF=0.047<br>K: ±1<br>C: 5.08n<br>9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | res; the last dign<br>1 <mark>µF<br/>0%</mark><br>nm<br>0:                                                                                                                            | M: =                                                                                                                                                                                                  | ±20%                                            |                                                                                |
| -            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)                                                        | itance<br>lerance<br>F)                            | Lean<br>4: 2.54m<br>1: ■<br>• Lean<br>4:<br>8:<br>A:<br>1: ■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m<br>d length (Bulk)<br>3.5mm<br>8mm<br>24mm                                                                                                                     | 47000pF=0.047<br>K: ±1<br>C: 5.08n<br>9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | res; the last dign<br>µF<br>0%<br>nm<br>0:<br>↓<br>Taping<br>T: Reel<br>P. Amp                                                                                                        | M: =                                                                                                                                                                                                  | ±20%                                            |                                                                                |
| -            | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)                                                        | itance<br>lerance<br>F)                            | Lear<br>4: 2.54m<br>1: ■<br>• Lear<br>4:<br>8:<br>A:<br>1: ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m<br>d length (Bulk)<br>3.5mm<br>5mm<br>24mm                                                                                                                     | 47000pF=0.047<br><u>K: ±1</u><br><u>C: 5.08n</u><br>9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res; the last dign<br>/µF<br>0%<br>nm<br>0:<br>Taping<br>T: Reel<br>P: Amn                                                                                                            | M: =                                                                                                                                                                                                  | ±20%                                            |                                                                                |
| -            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)<br>Lead length or to<br>Coating                        | itance<br>lerance<br>F)<br>taping                  | Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean<br>Lean | m<br>d length (Bulk)<br>3.5mm<br>5mm<br>24mm<br>24mm                                                                                                             | 47000pF=0.047<br><u>K: ±1</u><br><u>C: 5.08n</u><br>9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res; the last digit<br>/µF<br>0%<br>nm<br>0:<br>↓<br>Taping<br>T: Reel<br>P: Amn                                                                                                      | M: =                                                                                                                                                                                                  | ±20%                                            |                                                                                |
| -            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)<br>Lead length or<br>Coating                           | itance<br>lerance<br>F)<br>taping                  | J: ±5%         A: 2.54m         1:         ●         Leaa         4:         8:         A:         I:         E:         Epoxy (Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d length (Bulk)<br>3.5mm<br>5mm<br>24mm<br>24mm<br>24mm<br>2004 (Blue)<br>Temperature<br>characteristic                                                          | 47000pF=0.047<br><u>K: ±1</u><br><u>C: 5.08n</u><br>9:<br>6: 4mm<br>9: 6mm<br>B: 10mm<br>M: 32mm<br>2:<br>2:<br>5:<br>1:<br>1:<br>1:<br>1:<br>1:<br>1:<br>1:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res; the last digit<br>///F<br>0%<br>1m<br>0:<br>Taping<br>T: Reel<br>P: Amn<br>P: Amn<br>2:<br>Temperatu<br>coefficien                                                               | M: =                                                                                                                                                                                                  | ±20%                                            | Dperating temp.<br>range                                                       |
| -            | 8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)                                                        | itance<br>lerance<br>F)<br>taping                  | J: ±5%         A: 2.54m         1:         ●         Lean         4:         8:         A:         1:         •         Lean         4:         5:         E:         Epoxy         Code         CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m<br>d length (Bulk)<br>3.5mm<br>5mm<br>8mm<br>24mm<br>coating (Blue)<br>Temperature<br>characteristic<br>COG                                                    | 47000pF=0.047         K: ±1         C: 5.08n         9:         6: 4mm         9:         6: 4mm         9: 6mm         B: 10mm         M: 32mm         e         Temperature         c: -55~25°C         25~125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Temperatu<br>coefficien<br>0+30/-72ppr<br>0±30ppm/                                                                                                                                  | M: =<br>M: =<br>packing<br>no packing<br>re Stand<br>t temper<br>n/°C 25°C                                                                                                                            | ±20%                                            | Dperating temp.<br>range<br>-55~125°C                                          |
| -            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)                                                        | itance<br>lerance<br>F)<br>taping                  | J: ±5%         A: 2.54m         1:         ●         Lean         4:         8:         4:         8:         1:         •         Lean         4:         8:         1:         •         •         E:         Epoxy         Code         CH         Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m<br>d length (Bulk)<br>3.5mm<br>5mm<br>8mm<br>24mm<br>coating (Blue)<br>Temperature<br>characteristic<br>COG<br>Temperature<br>characteristic                   | e significant figu $47000pF = 0.047$ K: ±1         C: 5.08n         9:         6: 4mm         9:         6: 4mm         9: 6mm         B: 10mm         M: 32mm         e         Temperature         c         25~25°C         25~125°C         e         Temperature         c         range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | res; the last digit<br>///F<br>0%<br>m<br>0:<br>Taping<br>T: Reel<br>P: Amn<br>P: Amn<br>0+30/-72ppr<br>0±30ppm/<br>e Capacitar<br>change                                             | M: =<br>M: =<br>packing<br>packing<br>re Stand<br>t temper<br>n/°C 25°C<br>rce Stand<br>temper                                                                                                        | ±20%<br>Lard (<br>ature C<br>Lard (<br>rature ( | Dperating temp.<br>range<br>-55~125°C<br>Dperating temp.<br>range              |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)<br>Lead length or<br>Coating                           | itance<br>lerance<br>F)<br>taping                  | J: ±5%         A: 2.54m         1:         ●         Lear         4:         8:         A:         1:         ●         Lear         4:         8:         A:         1:         ●         Lear         4:         8:         A:         1:         •         Lear         4:         8:         1:         •         Code         Ch         Code         R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m<br>d length (Bulk)<br>3.5mm<br>5mm<br>8mm<br>24mm<br>coating (Blue)<br>Temperature<br>characteristic<br>COG<br>Temperature<br>characteristic<br>X7R            | 47000pF=0.047         K: ±1         C: 5.08n         9:         6: 4mm         9:         9:         6:         7:         7:         7:         7:         7:         7:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>res; the last digit<br/>/µF<br/>0%<br/>m<br/>0:<br/>Taping<br/>T: Reel<br/>P: Amn<br/>P: Amn<br/>P: Amn<br/>0+30/-72ppr<br/>0±30ppm/<br/>e Capacitar<br/>change<br/>2 ±15%</pre> | M: =<br>M: =<br>packing<br>packing<br>re Stand<br>t temper<br>n/°C 25°C<br>ice Stand<br>temper<br>25°C                                                                                                | E 20%                                           | Dperating temp.<br>range<br>-55~125°C<br>Dperating temp.<br>range<br>-55~125°C |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal capac<br>Capacitance to<br>Lead spacing (I<br>Lead style (L)<br>Lead length or<br>Coating<br>Temperature ch<br>Chip | itance<br>lerance<br>F)<br>taping<br>naracteristic | J: ±5%         A: 2.54m         1:         ●         Leaa         4:         8:         A:         1:         ●         Leaa         4:         8:         A:         1:         ●         Leaa         4:         8:         A:         1:         E:         E:         Code         R1         E:         0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d length (Bulk)<br>3.5mm<br>5mm<br>8mm<br>24mm<br>24mm<br>24mm<br>Coating (Blue)<br>Temperature<br>characteristic<br>COG<br>Temperature<br>characteristic<br>X7R | e significant figures<br>47000pF=0.047<br>K: $\pm 1$<br>C: 5.08n<br>9: $\bigcirc$<br>6: 4mm<br>9: $\bigcirc$<br>6: 4mm<br>9: $\bigcirc$<br>6: 4mm<br>9: $\bigcirc$<br>6: 4mm<br>9: $\bigcirc$<br>0: 5.08n<br>9: $\bigcirc$<br>0: 5.08n<br>0: 5.08 | res; the last digit<br>///F<br>0%<br>1m<br>0:<br>Taping<br>T: Reel<br>P: Amn<br>P: Amn<br>0:<br>0:<br>0:<br>0:<br>0:<br>0:<br>0:<br>0:<br>0:<br>0:                                    | M:       =         M:       =         packing       =         no packing       =         re       Stand         t       25 °C         ice       Stand         temper       25 °C         G:       121 | ±20%<br>±20%<br>lard (<br>ature C<br>C<br>10    | Dperating temp.<br>range<br>-55~125℃<br>Dperating temp.<br>range<br>-55~125℃   |

| 9  | Dersonic                                                                                                                                        |                |                                                                                 |                                    |                                                                                                                                                                                                                           |          |              |                                                      | D.:                         | DEC-SA-WI010      | D |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------------------------------------------|-----------------------------|-------------------|---|
| ~  | AP                                                                                                                                              | PROVAL SP      | PECIFICATIONS                                                                   |                                    |                                                                                                                                                                                                                           |          |              | DA'                                                  | v.:<br>TE:                  | A/U<br>2022-07-07 |   |
|    | FO                                                                                                                                              | R MONOLIT      | THIC CAPACITO                                                                   | RS (AEC-                           | -Q200 RE                                                                                                                                                                                                                  | .)       |              | PA                                                   | GE:                         | 3 / 10            |   |
| 3. | MARKING<br>Temperature<br>characteristic<br>R: X7R<br>C: COG<br>Nominal<br>capacitance<br>3 digit numbers<br>ex.) 104=10×10 <sup>4</sup> =0.1µF |                |                                                                                 | <b>R1</b><br>0 <sup>4</sup> =0.1μF | ZNR         Dersonic         tradem           104K2A         Rated voltag         2A: 100V           Capacitance         2E: 250V         tolerance           J: ±5%         3A: 1KV           K: ±10%         (50V, no r |          |              | lemark<br>tage<br>OV<br>OV<br>V<br>V<br>V<br>o mark) | nark)                       |                   |   |
| 4. | SPECIFICATIONS LIST                                                                                                                             |                |                                                                                 |                                    |                                                                                                                                                                                                                           |          |              |                                                      |                             |                   |   |
|    |                                                                                                                                                 | Leau Style     | 600e. 0                                                                         | 1                                  |                                                                                                                                                                                                                           | A        | ,            | 5                                                    |                             |                   |   |
|    | 01                                                                                                                                              | Temperature    | Capacitance                                                                     | TI                                 |                                                                                                                                                                                                                           | Di       | imensions (m | m)                                                   |                             | Lead              |   |
|    | Chip                                                                                                                                            | characteristic | range                                                                           | loierance                          | W<br>max                                                                                                                                                                                                                  | H<br>max | T<br>max     | F<br>±0.8                                            | $rac{	extsf{Ød}}{\pm 0.1}$ | style             |   |
|    | 0805                                                                                                                                            | COG            | 50V: 100-103<br>100V: 100-682<br>250V: 100-222<br>630V: 100-391                 | ±5%<br>±10%                        | 4.5                                                                                                                                                                                                                       | 3.8      | 2.5          | 2.54                                                 | 0.47                        | 1                 |   |
|    |                                                                                                                                                 | X7R            | 50V: 101-224<br>100V: 101-104<br>250V: 101-223<br>630V: 101-103                 | ±10%                               | 4.0                                                                                                                                                                                                                       | 5.0      | 0.0          | 5.08                                                 | 0.47                        | 0                 |   |
|    | 1206                                                                                                                                            | COG            | 50V: 100-103<br>100V: 100-103<br>250V: 100-472<br>630V: 100-222<br>1KV: 100-102 | ±5%<br>±10%                        | 5.5                                                                                                                                                                                                                       | 4.5      | 4.0          | 5.08                                                 | 0.47                        | 9                 |   |
|    |                                                                                                                                                 | X7R            | 50V: 151-475<br>100V: 151-105<br>250V: 101-104<br>630V: 101-103                 | ±10%                               |                                                                                                                                                                                                                           |          |              |                                                      |                             | U                 |   |
|    | 1210                                                                                                                                            | COG            | 50V: 100-473<br>100V: 100-473<br>250V: 100-153<br>630V: 100-103<br>1KV: 100-102 | ±5%<br>±10%                        | 5.5                                                                                                                                                                                                                       | 6.5      | 4.5          | 5.08                                                 | 0.47                        | 9                 |   |
|    |                                                                                                                                                 | X7R            | 50V: 102-105<br>100V: 102-105<br>250V: 101-474<br>630V: 101-223<br>1KV: 101-103 | ±10%                               | 0.0                                                                                                                                                                                                                       | 0.0      |              |                                                      | 5.17                        | 0                 |   |

| APPROVAL SPECIFICATIONS<br>FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)       REV. :<br>DATE:         PAGE:       DATE:         PAGE:       PAGE:         AEC-Q200 MURATA STANDARD SPECIFICATIONS AND TEST METHODS       Test and measurement shall be made at the room condition (temperature 15 to 35 °C, relative humidity<br>atmosphere pressure 86 to 106kPa).         Unless otherwise specified herein, If doubt occurred on the value of measurement, and measurement<br>customer capacitors shall be measured at the reference condition (temperature 25±2°C, relative hum<br>atmosphere pressure 86 to 106kPa).         No       Test Item       Specification         1       Pre-and Post-Stress<br>Electrical Test       Image: COG: Within ±3% or ±0.3pF<br>(Whichever is larger)         Appearance       No defects or abnormalities.       Sit the capacitor for 1000±12h at 150±3°C.         High $\Delta C/C$ COG: Within ±3% or ±0.3pF<br>(Whichever is larger)       Sit the capacitor for 1000±12h at 150±3°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A/0<br>2022-07-07<br>4 / 10<br>ity 45 to 75%,<br>t was requested by<br>midity 60 to70%, |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| APPROVAL SPECIFICATIONS       DATE:         FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)       DATE:         PAGE:       PAGE:         AEC-Q200 MURATA STANDARD SPECIFICATIONS AND TEST METHODS         Test and measurement shall be made at the room condition (temperature 15 to 35 °C, relative humidity atmosphere pressure 86 to 106kPa).         Unless otherwise specified herein, If doubt occurred on the value of measurement, and measurement customer capacitors shall be measured at the reference condition (temperature 25±2°C, relative hum atmosphere pressure 86 to 106kPa).         No       Test Item       Specification       Test Method         1       Pre-and Post-Stress       Image: Coolected at the reference condition (temperature 25±2°C, relative hum atmosphere pressure 86 to 106kPa).         No       Test Item       Specification       Test Method         1       Pre-and Post-Stress       Image: Coolected at the reference condition (temperature 25±2°C, relative hum atmosphere pressure 86 to 106kPa).         No       Test Item       Specification       Test Method         1       Pre-and Post-Stress       Image: Coolected at the reference condition (temperature 25±2°C, relative hum atmosphere pressure 86 to 106kPa).       Sit the capacitor for 1000±12h at 150±3°C.         4       Appearance       No defects or abnormalities.       Image: Coolected at the reference condition the measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2022-07-07<br><u>4</u> / 10<br>ity 45 to 75%,<br>t was requested by<br>midity 60 to70%, |
| PAGE: PAGE                                                                                                                                                                                                                                                                                                                 | 4 / 10<br>ity 45 to 75%,<br>t was requested by<br>midity 60 to70%,                      |
| AEC-Q200 MURATA STANDARD SPECIFICATIONS AND TEST METHODS         Test and measurement shall be made at the room condition (temperature 15 to 35 °C, relative humidity atmosphere pressure 86 to 106kPa).         Unless otherwise specified herein, If doubt occurred on the value of measurement, and measurement customer capacitors shall be measured at the reference condition (temperature 25±2°C, relative hum atmosphere pressure 86 to 106kPa).         No       Test Item       Specification       Test Method         1       Pre-and Post-Stress Electrical Test       Image: COG: Within ±3% or ±0.3pF (Whichever is larger)       Sit the capacitor for 1000±12h at 150±3°C.         VIE: within ±12.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ity 45 to 75%,<br>t was requested by<br>midity 60 to70%,                                |
| No     Test item     Specification       1     Pre-and Post-Stress<br>Electrical Test     Image: Specification       4     Appearance     No defects or abnormalities.       4     Appearance     No defects or abnormalities.       4     Appearance     COG: Within ±3% or ±0.3pF<br>(Whichever is larger)       4     AcC/C     COG: Within ±12 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Let sit for 24±2h                                                                     |
| 1     Pre-and Post-Stress<br>Electrical Test       Appearance     No defects or abnormalities.       High     ΔC/C       COG: Within ±3% or ±0.3pF<br>(Whichever is larger)       X7P, within ±12 5%   Sit the capacitor for 1000±12h at 150±3°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Let sit for 24±2h                                                                     |
| AppearanceNo defects or abnormalities.High $\Delta C/C$ COG: Within $\pm 3\%$ or $\pm 0.3 pF$<br>(Whichever is larger)X7P: within $\pm 12.5\%$ Sit the capacitor for $1000\pm 12h$ at $150\pm 3$ °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '. Let sit for 24±2h                                                                    |
| High $\Delta C/C$ COG: Within $\pm 3\%$ or $\pm 0.3 pF$<br>(Whichever is larger)Sit the capacitor for $1000 \pm 12h$ at $150 \pm 3$ °C.Y7B: within $\pm 12.5\%$ at room condition then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Let sit for 24±2h                                                                     |
| 2 Temperature Arrite Within 12.2.376 Pretreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |
| Exposure<br>(Storage) $COG: \ge 30pF, Q > 350$<br>$< 30pF, Q > 275 + 5C/2$<br>X7R: 0.04 max.Perform the heat treatment at $150 + 0/-10^{\circ}$<br>and then let sit for $24 \pm 2h$ at room condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J℃ for 60±5 min<br>ı.                                                                   |
| IR More than 10% initial specified value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |
| Appearance No defects or abnormalities. Perform the 1000 cycles according to the fou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | our heat treatments                                                                     |
| $\Delta C/C \qquad \begin{array}{c} \text{COG: Within } \pm 5\% \text{ or } \pm 0.5\text{pF} \\ \text{(Whichever is larger)} \\ \text{X7R: within } \pm 12.5\% \end{array} \qquad \begin{array}{c} \text{Ifsted in the following table. Let sit fol } 24\pm 2\text{if} \\ \text{then measure.} \\ \hline \text{Step}  1  2  3 \\ \hline \text{Tomp} \ (\Box)  -55  \text{Room}  12 \\ \hline \text{Tomp} \ (\Box)  -5  -5  \text{Room}  12 \\ \hline \ (\Box)  -5  -5  -5  \text{Room}  -5  -5  -5  -5  -5  -5  -5  -$                                                                                                                                                                                                                                                                                                                                                                                      | <u>3 4</u><br>125 Room                                                                  |
| S       Cycling       C0G: $\geq$ 30pF, Q > 350       Time (min.)       +0/-3       temp.       +3/         DF       <30pF, Q > 275 + 5C/2       Time (min.)       15±3       1       15±         V7R: 0.05 max.       Pretreatment       Perform the heat treatment at 150 + 0/-10°       Pretreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/-0 temp.<br>$5\pm3$ 1<br>0°C for 60+5 min                                             |
| IR More than 10% initial specified value. and then let sit for $24\pm 2h$ at room condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l.                                                                                      |
| AppearanceNo defects or abnormalities.Apply the 24h heat (25 to $65^{\circ}$ C) and humidity (8)<br>treatment shown below, 10 consecutive times.<br>Let sit for 24±2h at room condition, then measure<br>Humidity: 90~98% 80~98% 90~98%<br>$30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (80 to 98%)<br>(80 to 98%)<br>(80~98%90~98%)                                            |
| 4 Moisture $\Delta C/C$ $COG: Within \pm 5\% \text{ or } \pm 0.5 \text{pF}$<br>(Whichever is larger)<br>X7R: within $\pm 12.5\%$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |
| Resistance       C0G: $\geq$ 30pF, Q > 200         DF       C0G: $\geq$ 30pF, Q > 100 + 10C/3         X7R: 0.05 max.       0         0       2       4       6       8       10       12       14       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| IR More than 10% initial specified value. ■ Pretreatment<br>Perform the heat treatment at 150+0/-10°C<br>and then let sit for 24±2h at room condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $10^{\circ} 20^{\circ} 22^{\circ} 40^{\circ} \text{Hours}$<br>C for 60 ± 5 min<br>1.    |
| Appearance No defects or abnormalities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |
| $ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $ | add 100k $\Omega$ resistor)<br>$\pm$ 12h.<br>Jition, then measure.<br>A.                |
| HumidityCOG: $\geq$ 30pF, Q>200PretreatmentDF $<$ 30pF, Q>100+10C/3Preform the heat treatment at 150+0/-10°C from the less that the less the less that the less                                                                                                                                                                                                                                                                                                                                        | for $60\pm5$ min and                                                                    |
| IR More than 10% initial specified value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |

|                                           | DOC NO.: | DEC-SA-WI010 |
|-------------------------------------------|----------|--------------|
| Dersonic                                  | REV.:    | A/0          |
| APPROVAL SPECIFICATIONS                   | DATE:    | 2022-07-07   |
| FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.) | PAGE:    | 5 / 10       |

| No   | Test                                               | ltem                 | Specification                                                                                | Test Method                                                                                                                                                                                                                                     |  |  |  |
|------|----------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      |                                                    | Appearance           | No defects or abnormalities.                                                                 | Apply voltage in Table for $1000 \pm 12h$ at $125 \pm 3$ °C. Let sit for $24 \pm 2h$ at room condition, then measure. The charge/discharge                                                                                                      |  |  |  |
| c    | Operational                                        | ∆C/C                 | COG: Within ±3% or ±0.3pF<br>(Whichever is larger)<br>X7R: within ±12.5%                     | current is less than 50mA.<br>■ Pretreatment<br>Apply test voltage for 60±5 min at test temperature. Remove<br>and let sit for 24+2h at room condition                                                                                          |  |  |  |
| 0    | Life                                               | DF                   | COG: $\geq$ 30pF, Q>350<br>< 30pF, Q>275+5C/2<br>X7R: 0.04 max.                              | Rated voltage         Test voltage           DC50V/DC100V         200% of the rated voltage           DC250V         150% of the rated voltage                                                                                                  |  |  |  |
|      |                                                    | IR                   | More than 10% initial specified value.                                                       | DC630V 120% of the rated voltage<br>DC1000V 110% of the rated voltage                                                                                                                                                                           |  |  |  |
| 7    | Externa                                            | l Visual             | No defects or abnormalities.                                                                 | Visual inspection.                                                                                                                                                                                                                              |  |  |  |
| 8    | Physical [                                         | Dimension            | Within the specified dimensions.                                                             | Using calipers and micrometers.                                                                                                                                                                                                                 |  |  |  |
| 9    | Mar                                                | king                 | To be easily legible.                                                                        | Visual inspection.                                                                                                                                                                                                                              |  |  |  |
|      |                                                    | Appearance           | No defects or abnormalities.                                                                 |                                                                                                                                                                                                                                                 |  |  |  |
|      |                                                    | Capacitance          | Within the specified tolerance.                                                              | Per MIL-STD-202 Method 215<br>Solvent 1 : 1 part (by volume) of isopropyl alcohol                                                                                                                                                               |  |  |  |
| 10   | Resistance<br>to Solvents                          | DF                   | COG: $\geq$ 30pF, Q>1000<br>< 30pF, Q>400+20C<br>X7R: 0.025 max.                             | 3 parts (by volume) of mineral spirits<br>Solvent 2 : Terpene defluxer<br>Solvent 3 : 42 parts (by volume) of water                                                                                                                             |  |  |  |
|      |                                                    | IR                   | More than 10,000M $\Omega$ or 500M $\Omega\mu\text{F}$ (Whichever is smaller)                | 1 part (by volume) of monoethanolamine                                                                                                                                                                                                          |  |  |  |
|      |                                                    | Appearance           | No defects or abnormalities.                                                                 |                                                                                                                                                                                                                                                 |  |  |  |
|      | Mechanical                                         | Capacitance          | Within the specified tolerance.                                                              | Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks)                                                                                                                           |  |  |  |
| 11   | Shock                                              | DF                   | C0G: ≥30pF, Q>1000<br><30pF, Q>400+20C<br>X7R: 0.025 max.                                    | The specified test pulse should be Half-sine and should have a duration 0.5ms, peak value 1500G and velocity change 4.7m/s.                                                                                                                     |  |  |  |
|      |                                                    | Appearance           | No defects or abnormalities.                                                                 | The capacitor should be subjected to a simple harmonic motion                                                                                                                                                                                   |  |  |  |
| 10   | 101                                                | Capacitance          | Within the specified tolerance.                                                              | uniformly between the approximate limits of 10 and 2,000Hz. The                                                                                                                                                                                 |  |  |  |
| 12   | VIDration                                          | DF                   | COG: $\geq$ 30pF, Q>1000<br>< 30pF, Q>400+20C<br>X7R: 0.025 max.                             | trequency range, from 10 to 2000Hz and return to 10Hz, should be<br>traversed in approximately 20 min.<br>This motion should be applied for 12 items in each 3 mutually<br>perpendicular directions (total of 36 times).                        |  |  |  |
|      |                                                    | Appearance           | No defects or abnormalities.                                                                 | The lead wires should be immersed in the melted solder 1.5 to                                                                                                                                                                                   |  |  |  |
| 13-1 | Resistance<br>to Soldering<br>Heat                 | ∆C/C                 | COG: Within ±2.5% or ±0.25pF<br>(Whichever is larger)<br>X7R: within ±7.5%                   | 2.0mm from the root of terminal at $260\pm5$ °C for $10\pm1$ seconds.<br>Pre-treatment<br>Capacitor should be stored at $150\pm0/-10$ °C for 1h, then place at<br>room condition for $24\pm2h$ before initial measurement                       |  |  |  |
|      | (Non-Preheat)                                      | TV<br>(Lead to lead) | No defects                                                                                   | <ul> <li>Post-treatment</li> <li>Capacitor should be stored for 24±2h at room condition.</li> </ul>                                                                                                                                             |  |  |  |
|      |                                                    | Appearance           | No defects or abnormalities.                                                                 | First the capacitor should be stored at $120 + 0/-5$ °C for $60 + 0/-5$ seconds. Then, the lead wires should be immersed in the melted                                                                                                          |  |  |  |
| 13-2 | Resistance<br>to Soldering<br>Heat<br>(On-Preheat) | ∆C/C                 | COG: Within $\pm 2.5\%$ or $\pm 0.25$ pF<br>(Whichever is larger)<br>X7R: within $\pm 7.5\%$ | solder 1.5 to 2.0mm from the root of terminal at $260 \pm 5$ °C for $7.5 + 0/-1$ seconds.<br>Pre-treatment<br>Capacitor should be stored at $150 + 0/-10$ °C for 1h, then place<br>at room condition for $24 \pm 2b$ before initial macaurement |  |  |  |
|      |                                                    | TV<br>(Lead to lead) | No defects                                                                                   | <ul> <li>Post-treatment</li> <li>Capacitor should be stored for 24±2h at room condition.</li> </ul>                                                                                                                                             |  |  |  |

|                                           | DOC NO.: | DEC-SA-WI010 |
|-------------------------------------------|----------|--------------|
| Dersonic                                  | REV.:    | A/0          |
| APPROVAL SPECIFICATIONS                   | DATE:    | 2022-07-07   |
| FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.) | PAGE:    | 6 / 10       |

| No   | Test                                                                     | Item                       | Specification                                                                                                       | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------|--------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | Desistance                                                               | Appearance                 | No defects or abnormalities.                                                                                        | Temperature of iron-tip : $350 \pm 10^{\circ}$ C<br>Soldering time: $3.5 \pm 0.5$ seconds Soldering position                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 13-3 | to Soldering<br>Heat<br>(soldering<br>iron mothod)                       | ∆C/C                       | COG: Within $\pm 2.5\%$ or $\pm 0.25$ pF<br>(Whichever is larger)<br>X7R: within $\pm 7.5\%$                        | Crimp Lead: 1.5 to 2.0mm from the root of terminal<br>Crimp Lead: 1.5 to 2.0mm from the end of lead bend<br>■ Pre-treatment<br>Capacitor should be stored at 150+0/-10°C for 1h, then place                                                                                                                                                                                                                                                            |  |  |  |
|      | non method)                                                              | TV<br>(Lead to lead)       | No defects or abnormalities                                                                                         | <ul> <li>at room condition for 24±2h before initial measurement.</li> <li>Post-treatment<br/>Capacitor should be stored for 24±2h at room condition.</li> </ul>                                                                                                                                                                                                                                                                                        |  |  |  |
|      |                                                                          | Appearance                 | No defects or abnormalities.                                                                                        | Perform the 300 cycles according to the two heat treatments listed                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 14   | Thermal                                                                  | ∆C/C                       | COG: Within ±5% or ±0.5pF<br>(Whichever is larger)<br>X7R: within ±12.5%                                            | in the following table (Maximum transfer time is 20s.).<br>Let sit for $24\pm 2h$ at room condition, then measure.<br>Step 1 2<br>Temp (°C) $-55\pm 3/-0$ $125\pm 3/-0$                                                                                                                                                                                                                                                                                |  |  |  |
| 14   | Shock                                                                    | DF                         | COG: $\ge$ 30pF, Q>350<br>< 30pF, Q>275+5C/2<br>X7R: 0.05 max.                                                      | Time (min.)     15±3     15±3       ■ Pretreatment     Perform the heat treatment at 150+0/-10°C for 60±5 min                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|      |                                                                          | IR                         | More than 10% initial specified value.                                                                              | and then let sit for $24\pm2h$ at room condition.                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |                                                                          | Appearance                 | No defects or abnormalities.                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|      |                                                                          | Capacitance                | Within the specified tolerance                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 15   | ESD                                                                      | DF                         | COG: $\ge$ 30pF, Q $\ge$ 1000<br>< 30pF, Q $\ge$ 400 + 20C<br>X7R: 0.025 max.                                       | Per AEC-Q200-002                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|      | IR More than 10,000M $\Omega$ or 100M $\Omega$ µF (Whichever is smaller) |                            | More than 10,000M $\Omega$ or 100M $\Omega\mu\text{F}$ (Whichever is smaller)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 16   | Solder                                                                   | ability                    | Lead wire should be soldered with uniform coating on the axial direction over 95% of the circumferential direction. | Should be placed into steam aging for $8h \pm 15$ min.<br>The terminal of capacitor is dipped into a solution of ethanol and<br>rosin (25% rosin in weight proportion). Immerse in solder solution<br>for $2\pm0.5$ seconds.<br>In both cases the depth of dipping is up to about 1.5 to 2mm from<br>the terminal body.<br>Temp. of solder : $245\pm5^{\circ}$ C Lead Free Solder (Sn-3.0Ag-0.5Cu)<br>$235\pm5^{\circ}$ C H60A or H63A Eutectic Solder |  |  |  |
|      |                                                                          | Appearance                 | No defects or abnormalities.                                                                                        | Visual inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                                                          | Capacitance                | Within the specified tolerance                                                                                      | The capacitance/DF should be measured at 25 $^\circ\!\mathrm{C}$ at the frequency and voltage shown in the table.                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |                                                                          | DF                         | COG: $\geq$ 30pF, Q $\geq$ 1000<br>< 30pF, Q $\geq$ 400+20C<br>X7R: 0.025 max.                                      | FrequencyVoltageCOG $\leq$ 1000pF, 1±0.1MHz1±0.2Vrms>1000pF, 1±0.1kHz1±0.2VrmsX7R1±0.1kHz1±0.2Vrms                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                                                          | IR                         | More than 10,000M $\Omega$ or 100M $\Omega\mu$ F (Whichever is smaller)                                             | The insulation resistance should be measured with rated voltage or DC500V (Whichever is smaller) at 25°C within 2 min, of charging.                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 17   | Electrical<br>Characteriza<br>tion                                       | TV<br>(Lead to lead)       | No defects or abnormalities                                                                                         | The capacitor should not be damaged when voltage in Table is applied between the terminations for 1 to 5 seconds.         (Charge/Discharge current ≤50mA.)         Rated voltage       Test voltage         DC50V/ DC100V       250% of the rated voltage         DC250V       200% of the rated voltage         DC630V       150% of the rated voltage         DC1000V       120% of the rated voltage                                               |  |  |  |
|      |                                                                          | TV<br>(Body<br>Insulation) | No defects or abnormalities                                                                                         | The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 200% of the rated DC voltage (DC1300V in case of rated voltage: DC630V, DC1000V) is impressed for 1 to 5 seconds between capacitor terminals and metal balls.                                                                                                                               |  |  |  |

|                                           | DOC NO.: | DEC-SA-WI010 |
|-------------------------------------------|----------|--------------|
| Dersonic                                  | REV.:    | A/0          |
| APPROVAL SPECIFICATIONS                   | DATE:    | 2022-07-07   |
| FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.) | PAGE:    | 7 / 10       |

| No | Test Item                                   |                                           | Specification                                                                                                                                                                                                                                                       | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|----|---------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | Tensile<br>Strength                         |                                           | Termination not to be broken or loosened.                                                                                                                                                                                                                           | As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for $10\pm1$ seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 18 | 18 Terminal<br>Strength Bending<br>Strength | Termination not to be broken or loosened. | Each lead wire should be subjected to a force of 2.5N and then be<br>bent 90° at the point of egress in one direction. Each wire is then<br>returned to the original position and bent 90° in the opposite<br>direction at the rate of one bend per 2 to 3 seconds. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 19 | Capacitance<br>Charact                      | Temperature<br>teristics                  | C0G:<br>25~125°C: 0±30ppm/°C<br>-55~25°C: 0+30/-72ppm/°C<br>X7R: Within ±15%                                                                                                                                                                                        | The $\Delta$ C/C should be measured after 5min. at each specified<br>temperature step.Step12345Temp.25-552512525COGThe temperature coefficient is determined using the capacitance<br>measured in step 3 as a reference. When cycling the<br>temperature sequentially from step 1 through 5 (-55°C to<br>125°C) the capacitance should be within the specified tolerance<br>for the temperature coefficient and capacitance change as table.<br>The capacitance drift is calculated by dividing the differences<br>between the maximum and minimum measured values in the<br>step 1, 3 and 5 by the capacitance value in step 3.X7RThe ranges of $\Delta$ C/C compared with the above 25°C value over<br>the temperature ranges shown in the table should be within the<br>specified ranges.Pretreatment<br>Perform the heat treatment at 150+0/-10°C for 60±5 min<br>and then let sit for 24±2h at room condition.<br>Perform the initial measurement |  |  |  |  |  |

#### 6. PACKING AND STORAGE

## 6.1. STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment.

Store the capacitors where the temperature and relative humidity do not exceed  $5 \sim 40^{\circ}$ C and  $20 \sim 70\%$ . Use capacitors within 6 months. For more than 6 months, confirm the solderability and capacitance before use.

## 6.2. MINIMUM PACKAGE QUANTITY

Bulk type



Minimum package quantity: 1000pcs/bag

Taping



Minimum package quantity: 1000pcs/box



|                               | d                         | $0.47 \pm 0.05$ |                                        |  |
|-------------------------------|---------------------------|-----------------|----------------------------------------|--|
|                               | Pitch of component        | Р               | 12.7±1.0                               |  |
|                               | PO                        | 12.7±0.3        | Cumulative pitch error: 1.0mm/20 pitch |  |
|                               | Feed hole center to lead  | P1              | 5.10±0.7<br>3.85±0.7                   |  |
| Hole cent                     | ter to component center   | P2              | $6.35 \pm 1.3$                         |  |
|                               | Lead-to-lead distance     | F               | $2.54 {\pm} 0.8$<br>$5.08 {\pm} 0.8$   |  |
|                               | Component alignment       | Δh              | ≤2.0                                   |  |
| Deviation                     | along tape, Left or right | ∆S              | ≤1.3                                   |  |
|                               | Tape width                | W               | 18.0+1.0/-0.5                          |  |
|                               | Hold-down tape width      | W0              | ≥7.0                                   |  |
|                               | Hole position             | W1              | 9.0+0.75/-0.5                          |  |
| ŀ                             | lole-down tape position   | W2              | ≤3.0                                   |  |
| Height of component from tape | Straight lead             | Н               | 18.0+2/-0                              |  |
| center                        | Kinked lead               | HO              | $16.0\pm0.5$                           |  |
|                               | Component height          |                 | ≤32.25                                 |  |
|                               | Feed hole diameter        | DO              | 4.0±0.3                                |  |
|                               | t1                        | ≤0.9            | Ground paper: 0.5±0.1mm                |  |
| Total thickn                  | ess, tape and lead wire   | t2              | ≤1.5                                   |  |
|                               | Length of snipped         | L               | ≤11.0                                  |  |

#### 7. CAUTION

## 7.1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing this irregular voltage.

|                                           | DOC NO.: | DEC-SA-WI010 |
|-------------------------------------------|----------|--------------|
| Dersonic                                  | REV.:    | A/0          |
| APPROVAL SPECIFICATIONS                   | DATE:    | 2022-07-07   |
| FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.) | PAGE:    | 9 / 10       |

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.



## 7.2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp. Char. : X7R), applied voltage should be the load such as self-generated heat is within  $20^{\circ}$ C on the condition of atmosphere temperature  $25^{\circ}$ C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp. Char. : COG). When measuring, use a thermocouple of small thermal capacity-K of  $\emptyset$ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

#### 7.3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

## 7.4. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### 7.5. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.



Fig.: Wave-soldering temperature-time profile to recommend

When soldering capacitor with a soldering iron, it should be performed in the following conditions. Temperature of iron-tip:  $350^{\circ}$ C Max.

Soldering iron wattage: 40W max.

Soldering time: 3.0s Max.

## 7.6. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing

|                                                                                                                                                                                              | DOC NO.:                                                                                                        | DEC-SA-WI010           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--|--|
|                                                                                                                                                                                              | REV.:                                                                                                           | A/0                    |  |  |
| APPROVAL SPECIFICATIONS                                                                                                                                                                      | DATE:                                                                                                           | 2022-07-07             |  |  |
| FUR MUNULITHIC CAPACITURS (AEC-Q200 REV.)                                                                                                                                                    | PAGE:                                                                                                           | 10 / 10                |  |  |
| organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor                                                                  |                                                                                                                 |                        |  |  |
| is damaged by the organic solvents and it may result, worst case, in a short circuit.                                                                                                        |                                                                                                                 |                        |  |  |
| The variation in thickness of adhesive or molding resin may cause a outer coating resi                                                                                                       | The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic |                        |  |  |
| element cracking of a capacitor in a temperature cycling.                                                                                                                                    |                                                                                                                 |                        |  |  |
| 7.7. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT                                                                                                                                   |                                                                                                                 |                        |  |  |
| When the outer coating is hot (over 100 $^\circ \! \mathbb{C}$ ) after soldering, it becomes soft and fragile                                                                                | When the outer coating is hot (over 100 $^\circ\mathrm{C}$ ) after soldering, it becomes soft and fragile.      |                        |  |  |
| So please be careful not to give it mechanical stress.                                                                                                                                       |                                                                                                                 |                        |  |  |
| Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion                                                                       |                                                                                                                 |                        |  |  |
| when the product is used.                                                                                                                                                                    |                                                                                                                 |                        |  |  |
| 7.8. LIMITATION OF APPLICATIONS                                                                                                                                                              |                                                                                                                 |                        |  |  |
| Please contact us before using our products for the applications listed below which require especially high reliability for                                                                  |                                                                                                                 |                        |  |  |
| the prevention of defects which might directly cause damage to the third party's life, body or property.                                                                                     |                                                                                                                 |                        |  |  |
| Aircraft equipment                                                                                                                                                                           |                                                                                                                 |                        |  |  |
| Aerospace equipment                                                                                                                                                                          |                                                                                                                 |                        |  |  |
| Undersea equipment                                                                                                                                                                           |                                                                                                                 |                        |  |  |
| Power plant control equipment                                                                                                                                                                |                                                                                                                 |                        |  |  |
| Medical equipment                                                                                                                                                                            |                                                                                                                 |                        |  |  |
| Iransportation equipment (vehicles, trains, ships, etc.)                                                                                                                                     |                                                                                                                 |                        |  |  |
| ■ Iraffic signal equipment                                                                                                                                                                   |                                                                                                                 |                        |  |  |
| Disaster prevention / crime prevention equipment                                                                                                                                             |                                                                                                                 |                        |  |  |
| Data-processing equipment exerting influence on public                                                                                                                                       |                                                                                                                 |                        |  |  |
| Application of similar complexity and/or reliability requirements to the application                                                                                                         | s listed in th                                                                                                  | ie above.              |  |  |
|                                                                                                                                                                                              |                                                                                                                 |                        |  |  |
| 8.1. CLEANING (ULI KASUNIC CLEANING)                                                                                                                                                         |                                                                                                                 |                        |  |  |
| To perform ultrasonic cleaning, observe the following conditions.                                                                                                                            |                                                                                                                 |                        |  |  |
| Rinse bath capacity : Output of 20 waits per liter of less.                                                                                                                                  |                                                                                                                 |                        |  |  |
| Rillsling unite : 5 milli maximum.                                                                                                                                                           |                                                                                                                 |                        |  |  |
| Du liui vibiate tile FGD/FWD ullectiy.                                                                                                                                                       |                                                                                                                 |                        |  |  |
| excessive unrasonic cleaning may lead to rangue destruction of the lead whes.                                                                                                                |                                                                                                                 |                        |  |  |
| Insertion of the Load Wire                                                                                                                                                                   |                                                                                                                 |                        |  |  |
| When soldering insert the load wire into the PCR without mechanically stressing                                                                                                              | the lead wir                                                                                                    | 0                      |  |  |
| <ul> <li>When soluting, insert the lead when hit the FOD without mechanically successing</li> <li>Insert the lead wire into the PCB with a distance appropriate to the lead space</li> </ul> |                                                                                                                 | σ.                     |  |  |
| 8 3 CAPACITANCE CHANCE OF CAPACITORS                                                                                                                                                         |                                                                                                                 |                        |  |  |
| $\blacksquare  \text{Class 2 canacitors (Temp. Char. , X7R)}$                                                                                                                                |                                                                                                                 |                        |  |  |
| Class 2 capacitors an aging characteristic whereby the capacitor continually dec                                                                                                             | reases its ca                                                                                                   | anacitance slightly if |  |  |
| the capacitor leaves for a long time. Moreover, capacitance might change greatly                                                                                                             | denending o                                                                                                     | n a surrounding        |  |  |
| temperature or an applied voltage. So it is not likely to be able to use for the time                                                                                                        | constant ci                                                                                                     | rcuit                  |  |  |
| Please contact us if you need a detail information.                                                                                                                                          |                                                                                                                 |                        |  |  |
|                                                                                                                                                                                              |                                                                                                                 |                        |  |  |
| 9. NOTE                                                                                                                                                                                      |                                                                                                                 |                        |  |  |

# 1) Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2) You are requested not to use our product deviating from this specification.