

獨石電容器承認書

APPROVAL SPECIFICATIONS FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)

客戶 CUSTOMER	立創商城				
客戶料號 CUSTOMER P/N	C3293118				
規格描述 DESCRIPTION	100V/223K/F5.08/L24/X7R/0805/AEC-Q200				
產品品號 PART NUMBER	CD2A223KC9IER1EZAE				
日期 DATE	2022-07-08	文件編號 DOC.NO.	DEC-SA-WI010		

AF PROVED BY DERSONIC	客戶承認欄 APPROVED BY CUSTOMER		
批準》 審核 制訂 APPROVED BX CHECK BY SORI ULATE BY	批 準 APPROVED BY	審核 CHECK BY	
彭少如			

東莞市德爾創電子有限公司 DONGGUAN CITY DERSONIC ELECTRONICS CO., LTD. 廣東省東莞市長安鎮錦廈河南工業區錦平路 5 號 No.5, JINGPING ROAD, JINXIA HENAN INDUSTRIAL ZONE, CHANGAN TOWN DONGGUAN CITY, PRC TEL: 86-769-8155 5686 FAX: 86-0769-8155 5989 WEBSITE: <u>HTTP://WWW.DERSONIC.COM</u> E-MAIL: <u>SALES@DERSONIC.COM</u>

7	rsonia	R							OC NO.:	DEC-SA-WI010
		SPECIFIC	ATIONS						REV.: DATE:	A/0 2022-07-07
	-	DLITHIC CA		(AFC-0200	O RFV.)			PAGE:	2022-07-07
	PLICATION			()		.,			TAGE	2 / 10
This aut ZAE	s specification comotive electric series monoli Complies AE Miniature siz Epoxy coatin Standard siz	onic equipmer ithic capacitor C-Q200 requi ze, large capa g creates exce ze, various lea	nt. has the follow rements citance, tape a ellent performa d configuration	ving characte and reel pack ance in humi ns.	eristics : aging si dity resi	uitable fo	or auto-pl	acemer	ıt.	
PAF	RT NUMBER (R	RoHS 2.0, rea	acn, naiogen-t	ree available	ł.					
CD		223	K	<u>C</u>	<u>9</u>	I	E		R1 E	e zae
<u>ор</u> Туре		Nominal capacitance	Capacitance tolerance	Lead spacing	Lead style	Lead len or tapin	gth Coati	ng -		nip Series
	Туре		CD: Mono	lithic capacitor	S					
 Rated voltage 			1H: DC50	2A: DC100V 3A: DC1KV				2E: DC250V		
	Rated voltage		2J: DC630	JV		DA: DOIN				
•	Rated voltage Nominal capac	itance	The first t	two digits denot) In case of 223 22×10 ³ =	te signific	ant figures	s; the last d	igit denot	tes the multipli	ier of 10 in pF.
•			The first t	two digits denot In case of <mark>223</mark>	te significa 22000pF	ant figures	s; the last d F	igit denot	tes the multipli	
• • •	Nominal capac	lerance	The first t ex.)	two digits denot 1 In case of <mark>223</mark> 22×10 ³ =	te significa 22000pF	ant figures = 0.022µ	s; the last d F 6	igit denot		
• • • •	Nominal capac Capacitance to	lerance	The first t ex.) J: ±5%	two digits denot 1 In case of <mark>223</mark> 22×10 ³ =	te significa 22000pF	ant figures =0.022µ K: ±109	s; the last d F 6	igit denot		
• • •	Nominal capac Capacitance to Lead spacing (lerance	The first t ex.) J: ±5% A: 2.54m 1: Eac 4: 8: A: 2.54m	two digits denot 1 In case of <mark>223</mark> 22×10 ³ =	te significa 22000pF } } (ant figures =0.022µ K: ±109 C: 5.08mm	s; the last d F 6 1 0: Tapi T: Re		M: ±20%	,
• • • •	Nominal capac Capacitance to Lead spacing (lerance F)	The first t ex.) J: ±5% A: 2.54m 1: Eac 4: 8: A: 2.54m	two digits denot 1 In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm	e significa 22000pF 9: 9: 6: 4mm 9: 6mm B: 10mm	ant figures =0.022µ K: ±109 C: 5.08mm	s; the last d F 6 1 0: Tapi T: Re	ng eel packi	M: ±20%	,
	Nominal capac Capacitance to Lead spacing (Lead style (L)	lerance F)	The first t ex.) J: ±5% A: 2.54m 1: ■ 1: ■ Lean 4: 8: A: 1: ↓	two digits denot 1 In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm	e significa 22000pF 9: 9: 6: 4mm 9: 6mm B: 10mm	ant figures =0.022µ K: ±109 C: 5.08mm	s; the last d F 6 1 0: Tapi T: Re	ng eel packi	M: ±20%	,
	Nominal capac Capacitance to Lead spacing (Lead style (L) Lead length or	lerance F)	The first t ex.) J: ±5% A: 2.54m 1: ■ 1: ■ Lean 4: 8: A: 1: ↓	two digits denot) In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm 24mm	e signific; 22000pF 9: 9: 6: 4mm 9: 6mm B: 10mm M: 32mm M: 32mm c Tem; c Tem; c Tem;	ant figures =0.022µ K: ±109 C: 5.08mm	s; the last d F 6 0: Tapi T: Re P: Al Tempera coeffici	ng pel packi nmo pac	M: ±20%	,
	Nominal capac Capacitance to Lead spacing (Lead style (L) Lead length or	lerance F)	The first t ex.) J: ±5% A: 2.54m 1: ■ 1: ■ 4: 4: 8: 4: 8: 4: 1: 1 E: Epoxy (two digits denot) In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm 24mm coating (Blue) Temperature	e significa 22000pF 9: 9: 0: 9: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0	ant figures =0.022µ K: ±109 C: 5.08mm	s; the last d F 6 1 0: Tapi T: Re P: Ai	ng eel packin mmo pac	M: ±20%	Operating temp
	Nominal capac Capacitance to Lead spacing (Lead style (L) Lead length or	lerance F)	The first t ex.) J: ±5% A: 2.54m 1: Lear 4: 8: A: 1: E: Epoxy (Code	two digits denot In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm 24mm coating (Blue) Temperature characteristic	e significa 22000pF 22000pF (9: 9: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0	ant figures =0.022 μ K: ±109 C: 5.08mm C: 5.08mm n n n perature ange ~25°C -125°C n perature range	s; the last d F 6 0: 0: 0: Tapi T: Re P: Al Coeffici 0+30/-72j 0±30pp Capaci char	ng eel packin nmo pac ature ent opm/°C m/°C tance ige	M: ±20%	Operating temp range
	Nominal capac Capacitance to Lead spacing (Lead style (L) Lead length or	lerance F) taping	The first t ex.) J: ±5% A: 2.54m 1: Lear 4: 8: A: 1: E: Epoxy (Code CH	two digits denot In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm 24mm coating (Blue) Temperature characteristic COG Temperature	e significa 22000pF 22000pF (9: 9: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0	ant figures $= 0.022 \mu$ K: $\pm 10^{\circ}$ C: 5.08mm D: 5.08mm C: 5.08mm C: 5.08mm D: 5.08mm C: 5.08mm C: 5.08mm D: 5.0	s; the last d F 6 0: • Tapi T: Re P: Ai P: Ai Coeffici 0+30/-72 0±30pp Capaci	ng eel packin nmo pac ature ent opm/°C m/°C tance ige	M: ±20%	Operating temp range -55~125°C Operating temp
	Nominal capac Capacitance to Lead spacing (Lead style (L) Lead length or Coating	lerance F) taping	The first t ex.) J: ±5% A: 2.54m 1: Lean 4: 8: 4: 8: 4: 1: E: Epoxy (Code CH Code	two digits denot In case of 223 22×10 ³ = m d length (Bulk) 3.5mm 5mm 8mm 24mm coating (Blue) Temperature characteristic COG Temperature characteristic	e significa 22000pF 9: 9: 6: 4mm 9: 6mm B: 10mm M: 32mm M: 32mm 0: -55- 25~ 25~ 25~ 0: 10mm 10	ant figures =0.022 μ K: ±109 C: 5.08mm C: 5.08mm n n n perature ange ~25°C -125°C n perature range	s; the last d F 6 0: 0: 0: Tapi T: Re P: Al Coeffici 0+30/-72j 0±30pp Capaci char	ng eel packin nmo pac ature ent opm/°C m/°C tance ige	M: ±20%	Operating temp range -55~125°C Operating temp range

2	AP		PECIFICATIONS THIC CAPACITO		0200 RF	-1/)		DA	0.: V.: TE: GE:	DEC-SA-WI010 A/0 2022-07-07 3 / 10
3.	MARKING		Temperature characteristic R: X7R C: COG Nominal capacitance 3 digit numbers ex.) 104=10×10	R1	ZNR 04K2A Capacita tolerance J: ±5 K: ±1	ince e %	Dersonic trac Rated vol 2A: 10 2E: 25 2J: 630 3A: 1K (50V, n	lemark tage OV OV DV		., 10
4.	Specific	ATIONS LIST					H+2:5			
		Lead style	code: O	1		А		9		
	Chip	Temperature characteristic	Capacitance Tole	Tolerance	W	Di H	Dimensions (mm) I T F Ød		– Lead style	
		COG	range 50V: 100-103 100V: 100-682 250V: 100-222 620V: 100-201	±5% ±10%	max	max	max	±0.8	±0.1	1
	0805	X7R	630V: 100-391 50V: 101-224 100V: 101-104 250V: 101-223 630V: 101-103	±10%	4.5	3.8	3.5	2.54 5.08	0.47	9 0
	1206	COG	50V: 100-103 100V: 100-103 250V: 100-472 630V: 100-222 1KV: 100-102	±5% ±10%	5.5	4.5	4.0	5.08	0.47	9
		X7R	50V: 151-475 100V: 151-105 250V: 101-104 630V: 101-103	±10%						0
	1010	COG	50V: 100-473 100V: 100-473 250V: 100-153 630V: 100-103 1KV: 100-102	±5% ±10%	5 5	6 6	A E	E 00	0 // 7	9
	1210	X7R	50V: 102-105 100V: 102-105 250V: 101-474 630V: 101-223 1KV: 101-103	±10%	5.5	6.5	4.5	5.08	0.47	0

$)_{\epsilon}$	erson	ic®		DOC NO. : DEC-SA-WI REV. : A/O	1010
			FICATIONS	REV. : A/0 DATE: 2022–07-	-07
	-		CAPACITORS (AEC-Q200		-
					.0
Te at Ur cu	est and meas mosphere pr nless otherwi	urement sha essure 86 to se specified citors shall t	106kPa). herein, If doubt occurred on the va be measured at the reference cond	temperature 15 to 35°C, relative humidity 45 to 759 alue of measurement, and measurement was reque ition (temperature 25±2°C, relative humidity 60 to	ste
No		Item	Specification	Test Method	
NO		ost-Stress			
1		cal Test			
		Appearance	No defects or abnormalities.		
2	High Temperature	∆C/C	COG: Within ±3% or ±0.3pF (Whichever is larger) X7R: within ±12.5%	Sit the capacitor for 1000±12h at 150±3℃. Let sit for 24 at, room condition then measure.	±2
Ζ	Exposure (Storage)	DF or Q	COG: ≥30pF, Q>350 <30pF, Q>275+5C/2 X7R: 0.04 max.	Perform the heat treatment at $150+0/-10^{\circ}$ C for 60 ± 5 and then let sit for 24 ± 2 h at room condition.	i mi
		IR	More than 10% initial specified value.		
		Appearance	No defects or abnormalities.	Perform the 1000 cycles according to the four heat treatm	
	, Temperature	∆C/C	COG: Within ±5% or ±0.5pF (Whichever is larger) X7R: within ±12.5%	listed in the following table. Let sit for $24\pm 2h$ at room cond then measure. Step 1 2 3 4 -55 Room 125 Room	
3	Cycling	DF	C0G: ≥30pF, Q>350 <30pF, Q>275+5C/2 X7R: 0.05 max.	Temp (°C) -303 Houm 123 Houm $+0/-3$ temp. $+3/-0$ temp.Time (min.) 15 ± 3 1 15 ± 3 1PretreatmentPerform the heat treatment at $150+0/-10^{\circ}$ C for 60 ± 5	
		IR	More than 10% initial specified value.	and then let sit for $24\pm 2h$ at room condition.) 1111
		Appearance	No defects or abnormalities.	Apply the 24h heat (25 to 65 °C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for $24\pm2h$ at room condition, then measure.)8%
4	Moisture	∆C/C	COG: Within ±5% or ±0.5pF (Whichever is larger) X7R: within ±12.5%	(2) 10 10 10 10 10 10 10 10 10 10 10 10 10	
-	Resistance	DF	COG: ≥30pF, Q>200 <30pF, Q>100+10C/3 X7R: 0.05 max.	30 20 10 0 0 0 0 2 4 6 8 10 10 10 10 10 10 10 10 10 10	24
		IR	More than 10% initial specified value.	Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 mi and then let sit for 24±2h at room condition.	Hou in
		Appearance	No defects or abnormalities.		_
5	Biased	∆C/C	COG: Within ±5% or ±0.5pF (Whichever is larger) X7R: within ±12.5%	Apply the rated voltage and DC1.3+0.2/-0V (add 100k Ω rest at 85±3°C and 80 to 85% humidity for 1000±12h. Remove and let sit for 24±2 h at *room condition, then mea The charge/discharge current is less than 50mA.	
J	Humidity	DF	COG: \geq 30pF, Q>200 <30pF, Q>100+10C/3 X7R: 0.05 max.	Pretreatment Perform the heat treatment at $150+0/-10^{\circ}$ C for 60 ± 5 min then let sit for 24 ± 2 h at *room condition.	ı an
		IR	More than 10% initial specified value.		

	DOC NO.:	DEC-SA-WI010
Dersonic	REV.:	A/0
APPROVAL SPECIFICATIONS	DATE:	2022-07-07
FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)	PAGE:	5 / 10

No	Test	Item	Specification	Test Method Apply voltage in Table for $1000 \pm 12h$ at 125 ± 3 °C					
		Appearance	No defects or abnormalities.	Apply voltage in Table for 1000±12h at 125±3°C. Let sit 24±2h at room condition, then measure. The charge/disch current is less than 50mA.					
6	Operational	∆C/C	COG: Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger) X7R: within $\pm 12.5\%$	■ Pret App	±5 min at test temperature. Remove room condition.				
U	Life	DF	COG: \geq 30pF, Q>350 < 30pF, Q>275+5C/2 X7R: 0.04 max.		Rated voltage DC50V/DC100V DC250V	Test voltage 200% of the rated voltage 150% of the rated voltage			
		IR	More than 10% initial specified value.		DC630V DC1000V	120% of the rated voltage 110% of the rated voltage			
7	Externa	l Visual	No defects or abnormalities.	Visual	inspection.				
8	Physical [Dimension	Within the specified dimensions.	Using	calipers and microme	ters.			
9	Mar	king	To be easily legible.	Visual	inspection.				
		Appearance	No defects or abnormalities.	Por MI	-STD-202 Method 21	15			
		Capacitance	Within the specified tolerance.		t 1 : 1 part (by volume	e) of isopropyl alcohol			
10	Resistance to Solvents	DF	COG: ≥30pF, Q>1000 <30pF, Q>400+20C X7R: 0.025 max.	Solven Solven	ne) of mineral spirits me) of water e) of propylene glycol monomethyl ether				
		IR	More than 10,000M Ω or 500M $\Omega\mu$ F (Whichever is smaller)	1 part (by volume) of monoethanolamine					
		Appearance	No defects or abnormalities.						
11	Mechanical	Capacitance	Within the specified tolerance.		Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks).				
11	Shock	DF	COG: \geq 30pF, Q>1000 < 30pF, Q>400+20C X7R: 0.025 max.	The sp	The specified test pulse should be Half-sine and should have a duration 0.5ms, peak value 1500G and velocity change 4.7m/s.				
		Appearance	No defects or abnormalities.		The capacitor should be subjected to a simple harmonic motion				
10	\//hti.ee	Capacitance	Within the specified tolerance.	uniform	 having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 2,000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should b traversed in approximately 20 min. This motion should be applied for 12 items in each 3 mutually perpendicular directions (total of 36 times). 				
12	Vibration	DF	COG: ≥30pF, Q>1000 <30pF, Q>400+20C X7R: 0.025 max.	travers This m					
		Appearance	No defects or abnormalities.			mersed in the melted solder 1.5 to			
13-1	Resistance to Soldering Heat	∆C/C	COG: Within ±2.5% or ±0.25pF (Whichever is larger) X7R: within ±7.5%	Pre-tre Capaci	2.0mm from the root of terminal at $260\pm5^{\circ}$ C for 10 ± 1 seconds. Pre-treatment Capacitor should be stored at $150+0/-10^{\circ}$ C for 1h, then place at room condition for 24 ± 2 h before initial measurement.				
	(Non-Preheat)	TV (Lead to lead)	No defects	Pos	t-treatment	ed for $24\pm2h$ at room condition.			
		Appearance	No defects or abnormalities.	First the capacitor should be stored at $120 + 0/-5$ °C for $60 + 0/-5$ seconds. Then, the lead wires should be immersed in the melted					
13-2	Resistance to Soldering Heat (On-Preheat)	∆C/C	COG: Within ±2.5% or ±0.25pF (Whichever is larger) X7R: within ±7.5%	7.5+0 ■ Pre- Cap	/-1 seconds. •treatment acitor should be store	e root of terminal at $260 \pm 5 ^{\circ}C$ for ed at $150 + 0/-10^{\circ}C$ for 1h, then place			
		TV (Lead to lead)	No defects	Pos	 at room condition for 24±2h before initial measurement. Post-treatment Capacitor should be stored for 24±2h at room condition. 				

	DOC NO.:	DEC-SA-WI010
Dersonic	REV.:	A/0
APPROVAL SPECIFICATIONS	DATE:	2022-07-07
FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)	PAGE:	6 / 10

No	Test	Item	Specification	Test Method
13-3	Resistance to Soldering Heat	Appearance ∆C/C	No defects or abnormalities. COG: Within ±2.5% or ±0.25pF (Whichever is larger)	Temperature of iron-tip : 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal Crimp Lead: 1.5 to 2.0mm from the end of lead bend ■ Pre-treatment
	(soldering iron method)	TV	X7R: within \pm 7.5%	Capacitor should be stored at 150+0/-10°C for 1h, then place at room condition for 24±2h before initial measurement. ■ Post-treatment
		(Lead to lead)		Capacitor should be stored for 24±2h at room condition.
		Appearance	No defects or abnormalities.	Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.).
14	Thermal	∆C/C	COG: Within $\pm 5\%$ or $\pm 0.5 \text{pF}$ (Whichever is larger) X7R: within $\pm 12.5\%$	Let sit for $24\pm 2h$ at room condition, then measure. Step 1 2 Temp. (°C) -55+3/-0 125+3/-0
14	Shock	DF	COG: ≥30pF, Q>350 <30pF, Q>275+5C/2 X7R: 0.05 max.	Pretreatment Perform the heat treatment at $150+0/-10^{\circ}$ C for 60 ± 5 min
		IR	More than 10% initial specified value.	and then let sit for 24 \pm 2h at room condition.
		Appearance	No defects or abnormalities.	
		Capacitance	Within the specified tolerance	-
15	ESD	DF	COG: \geq 30pF, Q \geq 1000 $<$ 30pF, Q \geq 400+20C X7R: 0.025 max.	Per AEC-Q200-002
		IR	More than 10,000M Ω or 100M $\Omega\mu\text{F}$ (Whichever is smaller)	
16	Solder	ability	Lead wire should be soldered with uniform coating on the axial direction over 95% of the circumferential direction.	Should be placed into steam aging for $8h \pm 15$ min. The terminal of capacitor is dipped into a solution of ethanol and rosin (25% rosin in weight proportion). Immerse in solder solution for 2 ± 0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body. Temp. of solder : $245\pm5^{\circ}$ C Lead Free Solder (Sn-3.0Ag-0.5Cu) $235\pm5^{\circ}$ C H60A or H63A Eutectic Solder
		Appearance	No defects or abnormalities.	Visual inspection.
		Capacitance	Within the specified tolerance	The capacitance/DF should be measured at 25°C at the frequency and voltage shown in the table.
		DF	COG: \geq 30pF, Q $>$ 1000 < 30pF, Q $>$ 400+20C X7R: 0.025 max.	Frequency Voltage COG ≤1000pF, 1±0.1MHz 1±0.2Vrms ×1000pF, 1±0.1kHz 1±0.2Vrms 1±0.2Vrms
		IR	More than 10,000M Ω or 100M $\Omega\mu$ F (Whichever is smaller)	The insulation resistance should be measured with rated voltage or DC500V (Whichever is smaller) at 25° C within 2 min. of charging.
Electrical 17 Characteriza tion		TV (Lead to lead)	No defects or abnormalities	The capacitor should not be damaged when voltage in Table is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC50V/ DC100V 250% of the rated voltage DC250V 200% of the rated voltage DC630V 150% of the rated voltage DC1000V 120% of the rated voltage
		TV (Body Insulation)	No defects or abnormalities	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 200% of the rated DC voltage (DC1300V in case of rated voltage: DC630V, DC1000V) is impressed for 1 to 5 seconds between capacitor terminals and metal balls.

	DOC NO.:	DEC-SA-WI010
Dersonic	REV.:	A/0
APPROVAL SPECIFICATIONS	DATE:	2022-07-07
FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)	PAGE:	7 / 10

No	Test	Item	Specification	Test Method						
Tensile Strength			Termination not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10 ± 1 seconds.						
18	8 Terminal Strength Bending Strength		Termination not to be broken or loosened.	bent 90° at the p returned to the o	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.					
				The ∆C/C should temperature step				ach specif		
				Step	1	2	3	4	5	
				Temp. (±2℃)	25	-55	25	125	25	
19		Temperature teristics	COG: 25~125°C: 0±30ppm/°C -55~25°C: 0+30/-72ppm/°C X7R: Within ±15%	and then I	step 3 as a sequentially apacitance rature coef ince drift is maximum a 5 by the ca $\Delta C/C$ con- ure ranges ges.	reference y from step should be ficient and calculated and minim apacitance apared wit shown in t thment at 1 $\pm 2h$ at reference	When cy p 1 throug within th d capacita l by dividi um meas e value in h the abov the table s 150 + 0/-2 coom cond	rcling the $h 5 (-55^{\circ})$ e specified ince chan; ng the diff ured value step 3. ve 25 °C should be 10°C for	C to d tolerance ge as table erences as in the value over within the	

6. PACKING AND STORAGE

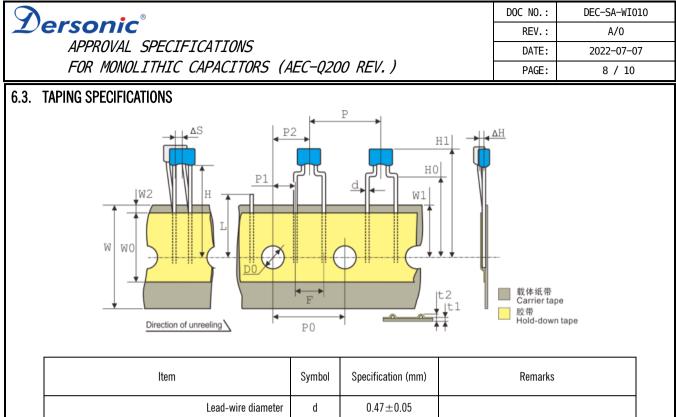
6.1. STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment.

Store the capacitors where the temperature and relative humidity do not exceed $5 \sim 40^{\circ}$ C and $20 \sim 70\%$. Use capacitors within 6 months. For more than 6 months, confirm the solderability and capacitance before use.

6.2. MINIMUM PACKAGE QUANTITY

Bulk type

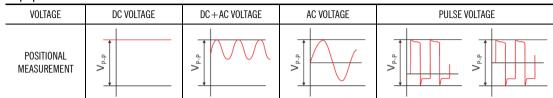


Minimum package quantity: 1000pcs/bag

Taping

Minimum package quantity: 1000pcs/box

	Lead-wire diameter	d	0.47 ± 0.05	
	Р	12.7 ± 1.0		
	Feed hole pitch			Cumulative pitch error: 1.0mm/20 pitch
F	eed hole center to lead	P1	5.10 ± 0.7 3.85 ± 0.7	
Hole cent	er to component center	P2	6.35±1.3	
	Lead-to-lead distance			
	Component alignment	Δh	≤2.0	
Deviation	along tape, Left or right	ΔS	≤1.3	
	Tape width	W	18.0+1.0/-0.5	
	Hold-down tape width	W0	≥7.0	
	Hole position	W1	9.0+0.75/-0.5	
Н	ole-down tape position	W2	≤3.0	
Height of component from tape	Straight lead	Н	18.0+2/-0	
center	Kinked lead	HO	16.0±0.5	
	Component height	H1	≤32.25	
	Feed hole diameter			
	t1	≤0.9	Ground paper: 0.5 ± 0.1 mm	
Total thickn	ess, tape and lead wire	t2	≤1.5	
	Length of snipped	L	≤11.0	


7. CAUTION

7.1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing this irregular voltage.

	DOC NO.:	DEC-SA-WI010
Dersonic	REV.:	A/0
APPROVAL SPECIFICATIONS	DATE:	2022-07-07
FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)	PAGE:	9 / 10

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

7.2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp. Char. : X7R), applied voltage should be the load such as self-generated heat is within 20° C on the condition of atmosphere temperature 25° C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp. Char. : COG). When measuring, use a thermocouple of small thermal capacity-K of \emptyset 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

7.3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

7.4. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

7.5. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

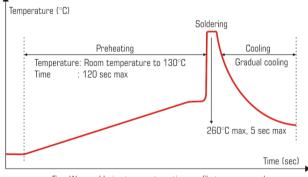


Fig.: Wave-soldering temperature-time profile to recommend

When soldering capacitor with a soldering iron, it should be performed in the following conditions. Temperature of iron-tip: 350° C Max.

Soldering iron wattage: 40W max.

Soldering time: 3.0s Max.

7.6. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing

Dersonic	DOC NO.:	DEC-SA-WI010
APPROVAL SPECIFICATIONS	REV. : DATE:	A/0 2022-07-07
FOR MONOLITHIC CAPACITORS (AEC-Q200 REV.)	PAGE:	10 / 10
 organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuital is damaged by the organic solvents and it may result, worst case, in a short of The variation in thickness of adhesive or molding resin may cause a outer coal element cracking of a capacitor in a temperature cycling. 7.7. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT When the outer coating is hot (over 100 °C) after soldering, it becomes soft a So please be careful not to give it mechanical stress. 	circuit. ating resin cracking and	
Failure to follow the above cautions may result, worst case, in a short circuit when the product is used.	and cause fuming or pa	artial dispersion
7.8. LIMITATION OF APPLICATIONS		
 Please contact us before using our products for the applications listed below the prevention of defects which might directly cause damage to the third part Aircraft equipment 		
 Undersea equipment Power plant control equipment 		
 Power plant control equipment Medical equipment 		
 Transportation equipment (vehicles, trains, ships, etc.) 		
 Traffic signal equipment 		
 Disaster prevention / crime prevention equipment 		
 Disaster prevention / crime prevention equipment Data-processing equipment exerting influence on public 		
 Application of similar complexity and/or reliability requirements to the a 	nnlications listed in the	ahovo
B. NOTICE		
3.1. CLEANING (ULTRASONIC CLEANING)		
To perform ultrasonic cleaning, observe the following conditions.		
Rinse bath capacity : Output of 20 watts per liter or less.		
Rinsing time : 5 min maximum.		
Do not vibrate the PCB/PWB directly.		
Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wire	s	
3.2. SOLDERING AND MOUNTING		
Insertion of the Lead Wire		
When soldering, insert the lead wire into the PCB without mechanically	stressing the lead wire.	
Insert the lead wire into the PCB with a distance appropriate to the lead	-	
3.3. CAPACITANCE CHANGE OF CAPACITORS		
 Class 2 capacitors (Temp. Char. : X7R) 		
Class 2 capacitors an aging characteristic, whereby the capacitor contir	ually decreases its car	acitance slightly i
the capacitor leaves for a long time. Moreover, capacitance might chang		
temperature or an applied voltage. So, it is not likely to be able to use fo		
Please contact us if you need a detail information.		

1) Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2) You are requested not to use our product deviating from this specification.