

Type RA
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose

Product specifications in this catalog are as of Apr. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.


⚠ CAUTION

1. OPERATING VOLTAGE

- 1) Do not apply a voltage to a safety standard certified product that exceeds the rated voltage as called out in the specifications. Applied voltage between the terminals of a safety standard certified product shall be less than or equal to the rated voltage (+ 10%). When a safety standard certified product is used as a DC voltage product, the AC rated voltage value becomes the DC rated voltage value. (Example:AC250V (r.m.s.) rated product can be used as DC250V (+ 10%) rated product.) If both AC rated voltage and DC rated voltage are specified, apply the voltage lower than the respective rated voltage.
- 1-1) When a safety standard certified product is used in a circuit connected to a commercial power supply, ensure that the applied commercial power supply voltage including fluctuation should be less than 10% above its rated voltage.
- 1-2) When using a safety standard certified product as a DC rated product in circuits other than those connected to a commercial power supply.

When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

(E: Maximum possible applied voltage.)

2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

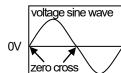
When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.


2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max. Soldering iron wattage : 50 W max. Soldering time : 3.5 s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 $^{\circ}$ C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

⚠ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08F

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RA used for General Electric equipment.

Type RA is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)	
UL/cUL	UL60384-14/CSA E60384-14	E37921		
ENEC (VDE)	EN60384-14	40043033	X1:440	
CQC	IEC60384-14	CQC16001138225	Y1:250	
KTC	KC60384-14	HU03008-17008		

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2	Ratino	,

2-1. Operating temperature range $-40 \sim +125^{\circ}C$

2-2. Rated Voltage X1:AC440V(r.m.s.) Y1:AC250V(r.m.s.)

DC1kV

2-3. Part number configuration

ex.) <u>DE1</u>	B3	<u>RA</u>	471	K	_A4_	B	<u>N01F</u>
Series	Temperature	Certified	Capacitance	Capacitance	Lead	Package	Individual
	Characteristics	Type		Tolerance	Style		Specification

Series

DE1 denotes X1,Y1 class.

• Temperature Characteristics

Code	Temperature Characteristics
1X	SL
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Certified Type

This denotes safety certified type name Type RA.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance Tolerance

Please refer to [Part number list].

• Lead Style

	Code	Lead Style			
	A*	Vertical crimp long type			
	J*	Vertical crimp short type			
N*		Vertical crimp taping type			

^{*} Please refer to [Part number list]

Package

490				
Code	Package			
В	Bulk type			
Α	Ammo pack taping type			

• Individual Specification

For part number that cannot be identified without "Individual Specification", it is added at the end of part number.

	•
Code	Individual Specification
	→ Rated voltage : X1:AC440V(r.m.s.)
	Y1:AC250V(r.m.s.)
	DC1kV
N01F	→ Halogen free
	(Br ≤ 900ppm, Cl ≤ 900ppm
	Br + Cl ≤ 1500ppm
	CP wire

Note) Murata part numbers might be changed depending on Lead Style or any other changes. Therefore, please specify only the Certified Type (RA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Certified type : RA

Capacitance : Actual value(under 100pF)

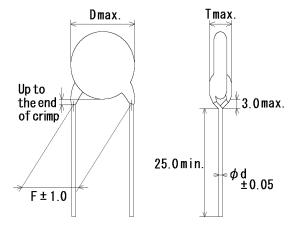
3 digit system(100pF and over)

Capacitance tolerance : Code Class code and Rated voltage mark : **X1 440~**

Y1 250~

Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

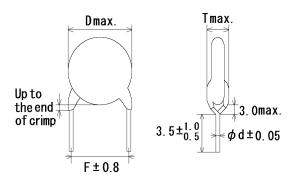

Company name code : (Made in Thailand)

(Example)

RA 471K X1 440~ Y1 250~ 2D (15

4. Part number list

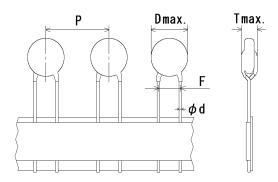
·Vertical crimp long type
(Lead Style: A*)



Note) The mark '*' of Lead Style differ from lead spacing(F) and lead diameter(d).

Please see the following list about details.

									Office.	111111
T.C.	Сар.	Сар.	Customer Part Number	Murata Part Number		Dimension (mn			Lead	" l atv
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	Style	qty. (pcs)
SL	10	±10%		DE11XRA100KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	15	±10%		DE11XRA150KA4BN01F	6.0	5.0	10.0	0.6	A4	500
SL	22	±10%		DE11XRA220KA4BN01F	6.0	4.0	10.0	0.6	A4	500
SL	33	±10%		DE11XRA330KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	47	±10%		DE11XRA470KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	68	±10%		DE11XRA680KA4BN01F	8.0	4.0	10.0	0.6	A4	250
В	100	±10%		DE1B3RA101KA4BN01F	6.0	4.0	10.0	0.6	A4	500
В	150	±10%		DE1B3RA151KA4BN01F	7.0	4.0	10.0	0.6	A4	250
В	220	±10%		DE1B3RA221KA4BN01F	6.0	5.0	10.0	0.6	A4	500
В	330	±10%		DE1B3RA331KA4BN01F	6.0	5.0	10.0	0.6	A4	500
В	470	±10%		DE1B3RA471KA4BN01F	7.0	5.0	10.0	0.6	A4	250
В	680	±10%		DE1B3RA681KA4BN01F	8.0	5.0	10.0	0.6	A4	250
Е	1000	±20%		DE1E3RA102MA4BN01F	7.0	4.0	10.0	0.6	A4	250
Е	1500	±20%		DE1E3RA152MA4BN01F	8.0	4.0	10.0	0.6	A4	250
Е	2200	±20%		DE1E3RA222MA4BN01F	9.0	4.0	10.0	0.6	A4	250
Е	3300	±20%		DE1E3RA332MA4BN01F	10.0	5.0	10.0	0.6	A4	250
Е	4700	±20%		DE1E3RA472MA4BN01F	12.0	5.0	10.0	0.6	A4	200


·Vertical crimp short type
(Lead Style: J*)

Note) The mark '*' of Lead Style differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

									Utill .	1111111
T.C.	Сар.	Сар.	Customer Part Number Murata Part Number		Dir	nensi	on (m	m)	Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Mulata Fait Nullibel	D	Т	F	d	Style	qty. (pcs)
SL	10	±10%		DE11XRA100KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
SL	15	±10%		DE11XRA150KJ4BN01F	6.0	5.0	10.0	0.6	J4	500
SL	22	±10%		DE11XRA220KJ4BN01F	6.0	4.0	10.0	0.6	J4	500
SL	33	±10%		DE11XRA330KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
SL	47	±10%		DE11XRA470KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
SL	68	±10%		DE11XRA680KJ4BN01F	8.0	4.0	10.0	0.6	J4	500
В	100	±10%		DE1B3RA101KJ4BN01F	6.0	4.0	10.0	0.6	J4	500
В	150	±10%		DE1B3RA151KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
В	220	±10%		DE1B3RA221KJ4BN01F	6.0	5.0	10.0	0.6	J4	500
В	330	$\pm 10\%$		DE1B3RA331KJ4BN01F	6.0	5.0	10.0	0.6	J4	500
В	470	±10%		DE1B3RA471KJ4BN01F	7.0	5.0	10.0	0.6	J4	500
В	680	$\pm 10\%$		DE1B3RA681KJ4BN01F	8.0	5.0	10.0	0.6	J4	500
Е	1000	±20%		DE1E3RA102MJ4BN01F	7.0	4.0	10.0	0.6	J4	500
Е	1500	±20%		DE1E3RA152MJ4BN01F	8.0	4.0	10.0	0.6	J4	500
Е	2200	±20%		DE1E3RA222MJ4BN01F	9.0	4.0	10.0	0.6	J4	500
Е	3300	±20%		DE1E3RA332MJ4BN01F	10.0	5.0	10.0	0.6	J4	500
Е	4700	±20%		DE1E3RA472MJ4BN01F	12.0	5.0	10.0	0.6	J4	250

·Vartical crimp taping type (Lead Style:N*)

Note) The mark '*' of Lead Style differ from lead spacing(F) and lead diameter(d) and pitch of component(P).
Please see the following list or taping specification about details.

Сар.	Сар.	Customer Part Number	Murata Dart Number		Dimension (mm)				Lead	Pack
(pF)	tol.	Customer Part Number	Wurata Part Number	D	Т	F	d	Р	Style	qty. (pcs)
10	±10%		DE11XRA100KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
15	\pm 10%		DE11XRA150KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
22	±10%		DE11XRA220KN4AN01F	6.0	4.0	10.0	0.6	25.4	N4	600
33	±10%		DE11XRA330KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
47	±10%		DE11XRA470KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
68	±10%		DE11XRA680KN4AN01F	8.0	4.0	10.0	0.6	25.4	N4	600
100	±10%		DE1B3RA101KN4AN01F	6.0	4.0	10.0	0.6	25.4	N4	600
150	±10%		DE1B3RA151KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
220	±10%		DE1B3RA221KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
330	±10%		DE1B3RA331KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
470	$\pm 10\%$		DE1B3RA471KN4AN01F	7.0	5.0	10.0	0.6	25.4	N4	600
680	±10%		DE1B3RA681KN4AN01F	8.0	5.0	10.0	0.6	25.4	N4	600
1000	±20%		DE1E3RA102MN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
1500	±20%		DE1E3RA152MN4AN01F	8.0	4.0	10.0	0.6	25.4	N4	600
2200	±20%		DE1E3RA222MN4AN01F	9.0	4.0	10.0	0.6	25.4	N4	600
3300	±20%		DE1E3RA332MN4AN01F	10.0	5.0	10.0	0.6	25.4	N4	600
4700	±20%		DE1E3RA472MN4AN01F	12.0	5.0	10.0	0.6	25.4	N4	600
	10 15 22 33 47 68 100 150 220 330 470 680 1000 1500 2200 3300	(pF) tol. 10 ±10% 15 ±10% 22 ±10% 33 ±10% 47 ±10% 68 ±10% 100 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fart Number 10 ±10% 15 ±10% 22 ±10% 33 ±10% 47 ±10% 68 ±10% 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fatt Number Initiata Fatt Number 10 ±10% DE11XRA100KN4AN01F 15 ±10% DE11XRA220KN4AN01F 22 ±10% DE11XRA330KN4AN01F 33 ±10% DE11XRA470KN4AN01F 68 ±10% DE11XRA680KN4AN01F 100 ±10% DE1B3RA101KN4AN01F 150 ±10% DE1B3RA221KN4AN01F 220 ±10% DE1B3RA331KN4AN01F 470 ±10% DE1B3RA681KN4AN01F 680 ±10% DE1B3RA681KN4AN01F 1000 ±20% DE1E3RA152MN4AN01F 2200 ±20% DE1E3RA222MN4AN01F 3300 ±20% DE1E3RA332MN4AN01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 10 ±10% DE11XRA100KN4AN01F 7.0 15 ±10% DE11XRA150KN4AN01F 6.0 22 ±10% DE11XRA220KN4AN01F 6.0 33 ±10% DE11XRA330KN4AN01F 7.0 47 ±10% DE11XRA680KN4AN01F 8.0 100 ±10% DE1B3RA101KN4AN01F 6.0 150 ±10% DE1B3RA221KN4AN01F 6.0 220 ±10% DE1B3RA331KN4AN01F 6.0 330 ±10% DE1B3RA681KN4AN01F 7.0 680 ±10% DE1B3RA681KN4AN01F 7.0 680 ±10% DE1B3RA681KN4AN01F 7.0 1500 ±20% DE1E3RA152MN4AN01F 7.0 1500 ±20% DE1E3RA322MN4AN01F 9.0 3300 ±20% DE1E3RA332MN4AN01F 10.0	Cap. (pF) Customer Part Number Murata Part Number D T 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 15 ±10% DE11XRA150KN4AN01F 6.0 5.0 22 ±10% DE11XRA220KN4AN01F 6.0 4.0 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 47 ±10% DE11XRA470KN4AN01F 7.0 4.0 68 ±10% DE183RA101KN4AN01F 6.0 4.0 100 ±10% DE1B3RA151KN4AN01F 7.0 4.0 220 ±10% DE1B3RA221KN4AN01F 6.0 5.0 330 ±10% DE1B3RA331KN4AN01F 6.0 5.0 470 ±10% DE1B3RA681KN4AN01F 7.0 5.0 680 ±10% DE1B3RA681KN4AN01F 7.0 4.0 1500 ±20% DE1E3RA152MN4AN01F 8.0 5.0 DE1E3RA222MN4AN01F 9.0 4.0 DE1E3RA322MN4AN01F 9.0 4.0	Cap. (pF) Customer Part Number Murata Part Number D T F 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 15 ±10% DE11XRA220KN4AN01F 6.0 5.0 10.0 22 ±10% DE11XRA220KN4AN01F 7.0 4.0 10.0 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 47 ±10% DE11XRA680KN4AN01F 7.0 4.0 10.0 68 ±10% DE1B3RA101KN4AN01F 6.0 4.0 10.0 150 ±10% DE1B3RA221KN4AN01F 6.0 5.0 10.0 220 ±10% DE1B3RA331KN4AN01F 6.0 5.0 10.0 330 ±10% DE1B3RA31KN4AN01F 6.0 5.0 10.0 470 ±10% DE1B3RA681KN4AN01F 7.0 5.0 10.0 680 ±10% DE1B3RA681KN4AN01F 7.0 4.0 10.0 1000 ±20% DE1E3RA122MN4AN01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F d 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 0.6 15 ±10% DE11XRA150KN4AN01F 6.0 5.0 10.0 0.6 22 ±10% DE11XRA220KN4AN01F 6.0 4.0 10.0 0.6 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 0.6 47 ±10% DE11XRA470KN4AN01F 7.0 4.0 10.0 0.6 68 ±10% DE1B3RA101KN4AN01F 8.0 4.0 10.0 0.6 150 ±10% DE1B3RA221KN4AN01F 7.0 4.0 10.0 0.6 220 ±10% DE1B3RA315KN4AN01F 6.0 5.0 10.0 0.6 330 ±10% DE1B3RA31KN4AN01F 7.0 5.0 10.0 0.6 470 ±10% DE1B3RA681KN4AN01F 8.0 5.0 10.0 0.6 <td>Cap. (pF) tol. Customer Part Number Murata Part Number D T F d P 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 0.6 25.4 15 ±10% DE11XRA220KN4AN01F 6.0 5.0 10.0 0.6 25.4 22 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 0.6 25.4 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 0.6 25.4 47 ±10% DE11XRA470KN4AN01F 7.0 4.0 10.0 0.6 25.4 68 ±10% DE11XRA680KN4AN01F 8.0 4.0 10.0 0.6 25.4 100 ±10% DE1B3RA101KN4AN01F 6.0 4.0 10.0 0.6 25.4 150 ±10% DE1B3RA221KN4AN01F 7.0 4.0 10.0 0.6 25.4 220 ±10% DE1B3RA331KN4AN01F 6.0 5.0 10.0 0.6 25.4 330 ±10% DE1B3RA331KN4AN01F 7.0 5.0 10.0 0.6 25.4 470 ±10% DE1B3RA471KN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±10% DE1B3RA681KN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±10% DE1B3RA471KN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±10% DE1B3RA471KN4AN01F 7.0 5.0 10.0 0.6 25.4 470 ±20% DE1B3RA681KN4AN01F 8.0 5.0 10.0 0.6 25.4 470 ±20% DE1E3RA152MN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±20% DE1E3RA152MN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±20% DE1E3RA332MN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±20% DE1E3RA332MN4AN01F 7.0 4.0 10.0 0.6 25.4</td> <td>Customer Part Number D T F d P Style </td>	Cap. (pF) tol. Customer Part Number Murata Part Number D T F d P 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 0.6 25.4 15 ±10% DE11XRA220KN4AN01F 6.0 5.0 10.0 0.6 25.4 22 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 0.6 25.4 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 0.6 25.4 47 ±10% DE11XRA470KN4AN01F 7.0 4.0 10.0 0.6 25.4 68 ±10% DE11XRA680KN4AN01F 8.0 4.0 10.0 0.6 25.4 100 ±10% DE1B3RA101KN4AN01F 6.0 4.0 10.0 0.6 25.4 150 ±10% DE1B3RA221KN4AN01F 7.0 4.0 10.0 0.6 25.4 220 ±10% DE1B3RA331KN4AN01F 6.0 5.0 10.0 0.6 25.4 330 ±10% DE1B3RA331KN4AN01F 7.0 5.0 10.0 0.6 25.4 470 ±10% DE1B3RA471KN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±10% DE1B3RA681KN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±10% DE1B3RA471KN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±10% DE1B3RA471KN4AN01F 7.0 5.0 10.0 0.6 25.4 470 ±20% DE1B3RA681KN4AN01F 8.0 5.0 10.0 0.6 25.4 470 ±20% DE1E3RA152MN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±20% DE1E3RA152MN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±20% DE1E3RA332MN4AN01F 7.0 4.0 10.0 0.6 25.4 470 ±20% DE1E3RA332MN4AN01F 7.0 4.0 10.0 0.6 25.4	Customer Part Number D T F d P Style

ο.	Itei	I test methods		cification	\neg	Test method
10.	Appearance and c			fect on appearanc	A Th	The capacitor should be inspected by naked eyes
'	Appearance and o	1111011310113	form and dime			or visible evidence of defect.
				ensions. o [Part number list]		or visible evidence of defect. Dimensions should be measured with slide caliper
2	Marking					
2 3	Marking Dielectric	Datwoon load	To be easily le No failure.	gible.		The capacitor should be inspected by naked eyes
3		Between lead	No failure.			he capacitor should not be damaged when
	strength	wires				C4000V(r.m.s.)<50/60Hz> is applied between the ad wires for 60 s.
		Dady	No failure.			
		Body insulation	No failure.			First, the terminals of the capacitor should be
		insulation				onnected together. Then, a metal foil should be
						losely wrapped around
						ne body of the capacitor Of the distance of Metal About foil 3 to 6
						00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
						lbout 3 to 6mm
						Then, the capacitor should be inserted into a
						ontainer filled with metal balls of about 1mm
						iameter.
						inally, AC4000V (r.m.s.)<50/60Hz> is applied for
						0 s between the capacitor lead wires and metal
						alls.
4	Insulation Resista	nce (LP.)	10 000MΩ min	1		ਕਗs. he insulation resistance should be measured wit
+	moulation Resista	1106 (1.13.)	10 0000IVIS 2 ININ	ı .		The insulation resistance should be measured with DC500±50V within 60±5 s of charging.
						0 0
						The voltage should be applied to the capacitor
_	Conocitana		\\/(i+b.iic)	d talansis s		nrough a resistor of $1M\Omega$.
5	Capacitance		Within specifie	eu toierance.		The capacitance should be measured at 20°C with
	5	(5.5)	0.50/			±0.1kHz and AC1±0.2V(r.m.s.) max
6	Dissipation Factor	· (D.F.)) 2.5% max.			The dissipation factor should be measured
					at 2	It 20°C with 1 ± 0.1 kHz and AC1 ±0.2 V(r.m.s.) max
_						
7	Temperature characteristic Char. SL: +350 to -1000 ppm/°C				he capacitance measurement should be made a	
				: +20 to +85°C)	ead	ach step specified in Table.
			Char. B: With	hin ±10 %		
			Char. E: With	hin +20/-55%		
			(Temp. range :	: -25 to +85°C)		
	Step 1					
				Temp.(°C)	20±2	2 -25±2 20±2 85±2 20±2
8	Active flammability	У		oth should not be		he capacitors should be individually wrapped in a
			on fire.			east one but more than two complete layers of
					che	heese-cloth. The capacitor should be subjected
						o 20 discharges. The interval between successive
						lischarges should be 5 s. The UAc should be
					ma	naintained for 2min after the last discharge.
						F L1 L2 R
					- S	
						\sim
					-	
						"
						- 4
						Osciloscope
						C1,2 : 1μF±10%, C3 : 0.033μF±5% 10kV
					L1	1 to L4: 1.5mH±20% 16A Rod core choke
					R	R : 100Ω±2%, Ct : 3μ F±5% 10kV
					UA	JAc : UR ±5% UR : Rated voltage
					Cx	
					F	•
					Üt	
					-	• .,
						Ux
						5ĸ v ↑
						\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
						time
			1		1	
					L	

No.	Item	1	Specification	Test method
9	Robustness of	Tensile	Lead wire should not cut off.	Fix the body of capacitor, a tensile weight
	terminations	10110110	Capacitor should not be broken.	gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s.
		Bending		With the termination in its normal position, the
		Bonung		capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the
				end of the termination.
				The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period
				of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
10	Vibration	Annogrange	No marked defect.	in the opposite direction. The capacitor should be firmly soldered to the
10	resistance	Appearance Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
	roolotarioo	D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in
				total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
11	Solderability of lead	10	Lead wire should be soldered	3 mutually perpendicular directions.
''	Solderability of lead	15	With uniformly coated on the	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the	molten solder for 2±0.5 s. In both cases the depth of
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder:
4.0	0.11.1.00	Τ.		245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance change	Within ±10%	Immersion time : 3.5±0.5 s
		I.R.	1000MΩ min.	(In case of 260±5°C : 10±1 s) The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		0
				Thermal insulating Capacitor
				1.5
				1 to 2.0mm
				_ Molten solder
				374451
				Pre-treatment: Capacitor should be stored at
				125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed at
				*1room condition for 24±2 h before initial measurements.
				(Do not apply to Char. SL)
				Post-treatment : Capacitor should be stored for 1 to
				2 h at *1room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.
		change	4.000140	Then, as in figure, the lead wires should be immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		I.R.	1000MΩ min. Per item 3	from the root of terminal for 7.5+0/-1 s.
		Dielectric strength	Fel Itelli 3	
		Sucrigui		Thermal Capacitor
				1.5
				10 2.0mm
				Molten
				solder
				Pre-treatment: Capacitor should be stored at
				125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed at
				*1room condition for 24±2 h
				before initial measurements.
				(Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to
				2 h at *1 room condition.
*1 "roc	om condition" Tempe	rature: 15 to 35°0	C, Relative humidity: 45 to 75%, Atm	
			_ ,	, b

ESRA02E

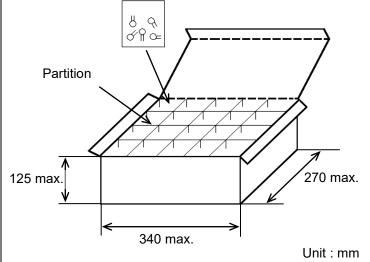
No.	Item		Specification	Test method				
14	Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.				
15	Passive flammabilit	ry	The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm Gas burner About 10mm thick board				
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.				
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. 3000M Ω min. Per item 3	Apply AC440V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.				

No.	Item	1	Specification		Test method						
18	Life	Appearance	No marked defect.	1	mpulse	e volta					
		Capacitance	Within +20%		Each individual capacitor should be subjected to a 8kV impulses for three times. Then the capacitors are applied to life test.						
		change	Within ±2070								
		I.R.	3000 Μ Ω min.								
		Dielectric	Per item 3		are applied to life test.						
		strength	rentento		10	o <u>(%)</u>	F	ront time (T1) =	17 // s=167T		
					Front time (T1) = 1.7μ s= $1.67T$ Time to half-value (T2) = 50μ s						
					30						
					T2						
						•	'				
				7	The capacitors are placed in a circulating air oven						
					for a period of 1 000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC550V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 s Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the						
				7							
				(
				7							
				(
				F							
					AC4000V(r.m.s.) 60s then placed a *1room condition for 24±2 h before initial measurements.						
							(Do not	apply to Ch	ıar. SL)		
				F	Post-treatment: Capacitor should be stored for 24±2 h at *1room condition.						
19	Temperature and	Appearance	No marked defect.		The capacitor should be subjected to 5 temperature						
	immersion cycle	Capacitance	Char. SL : Within ±5%	(cycles,	then c	onsecutively	to 2 immer	sion cycles.		
	-	change	Char. B: Within ±10%		-				-		
		D.F.	Char. E: Within ±20%	<	<temperature cycle=""></temperature>						
			Char. SL : 2.5% max. Char. B, E : 5.0% max.		Step		Tempera	iture(°C)	Time		
						1	-40+		30 min		
		1.5	·			2	Room		3 min		
		I.R. Dielectric strength	3000MΩ min.			3	+125		30 min		
			Per item 3		-	4 Roor			3 min		
							ROOM	· ·	'		
								Cycle tim	e:5 cycles		
				<	<lmme< td=""><td>rsion c</td><td>ycle></td><td></td><td></td></lmme<>	rsion c	ycle>				
					Step	Tom	perature(°C)	Time	Immersion		
					Step	16111	berature(C)	Tillie	water		
					1	- 4	65+5/-0	15 min	Clean		
					1	-	00+0/-0	15 111111	water		
					2		0.2	1E min	Salt		
					2		0 <u>+</u> 3	15 min	water		
								Cycle tim	e:2 cycles		
				F	Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed a *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for						
				F							
							24±2 h a	at *1room co	ondition.		
¹ "ro	om condition" Tempe	rature: 15 to 35°	C, Relative humidity: 45 to 75%	Atmos	pheric	pressu	re: 86 to 106	kPa			
	•		- · · · · · · · · · · · · · · · · · · ·	,		•					

ESRA02E

6.Packing specification

•Bulk type (Package : B)

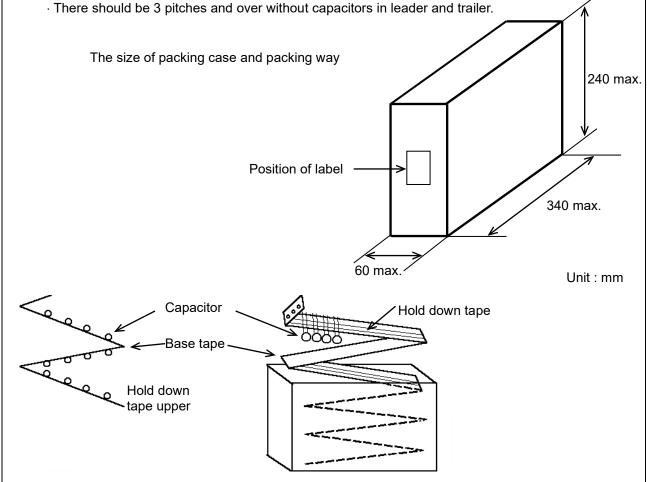

*1 *2 The number of packing = Packing quantity \times n

The size of packing case and packing way

Polyethylene bag

*1 : Please refer to [Part number list].

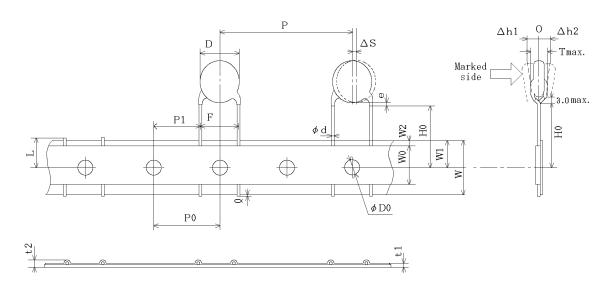
*2 : Standard n = 20 (bag)



Note)

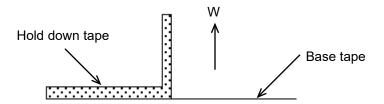
The outer package and the number of outer packing be changed by the order getting amount.

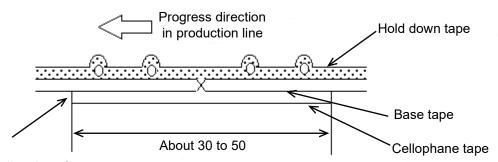
•Ammo pack taping type (Package : A)


- · The tape with capacitors is packed zigzag into a case.
- \cdot When body of the capacitor is piled on other body under it.

7. Taping specification

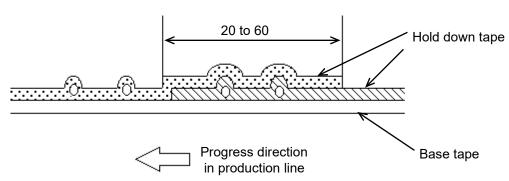
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead Style : N4 > Pitch of component 25.4mm / Lead spacing 10.0mm


Item	Code	Dimensions	Remarks		
Pitch of component	Р	25.4±2.0			
Pitch of sprocket hole	P0	12.7±0.3			
Lead spacing	F	10.0±1.0			
Length from hole center to lead	P1	7.7±1.5			
Body diameter	D	Please refer to [Part number list].			
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .		
Carrier tape width	W	18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction		
Lead distance between reference and bottom planes	H0	18.0± ₀ ^{2.0}			
Protrusion length	Q	+0.5~-1.0			
Diameter of sprocket hole	φD0	4.0±0.1			
Lead diameter	φd	0.60±0.05			
Total tape thickness	t1	0.6±0.3			
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.		
Deviation across tape, front	∆h1	2.0 max.			
Deviation across tape, rear	∆h2				
Portion to cut in case of defect	L	11.0± _{1.0}			
Hold down tape width	W0	11.5 min.			
Hold down tape position	W2	1.5±1.5			
Coating extension on lead e		Up to the end of crimp			
Body thickness	Т	Please refer to [Part number list].			

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.