SK6030
 300mA，High PSRR LDO Regulators

GENERAL DESCRIPTION

The SK6030 is a 300 mA ，low－dropout（LDO）linear regulator with fast transient response and high PSRR． It offers high output accuracy，low dropout voltage and low quiescent current as well as fast start－up time．This regulator is based on a CMOS process The SK6030 is designed to work with low－ESR ceramic capacitors，reducing the amount of the PCB area necessary for power applications．Only a $1 \mu \mathrm{~F}$ ceramic output capacitor can make the device stable over the whole load range cur rent（ 0 mA to 300 mA ）．
The output voltage of SK6030 can be set by an external resistors divider．When the FB pin is connected to an external resistors divider，its output can be adjusted from 1.2 V to 5 V ．As to fixed output voltage version，a ceramic cpacitor on BP pin could be used to improve output noise performance and PSRR performance．Other key features include over－ current protection and thermal shutdown．The SK6030 is packaged in DFN $1 \times 1-4$ L and SOT23－5 packages．

TYPICAL APPILCATION

Figure 1．SK6030 adjustable output Circuit

FEATURES

－ 2.5 V to 5.5 V Input Voltage Range
－ 320 mV ＠ 300 mA Dropout Voltage
－Excellent Transient Response
－Stable with $1 \mu \mathrm{~F}$ Ceramic Output Capacitor
－70dB PSRR at 1 kHz
－Low $37 \mu \mathrm{~A}$ Quiescent Current
－Low Shutdown Current：$<1 \mu \mathrm{~A}$
－Output Accuracy：$\pm 2 \%$
－Fixed Output Voltage： $1.2 \mathrm{~V}^{\sim} 3.3 \mathrm{~V}$
－Current Limit Protection
－Thermal Shutdown
－Output Auto－Discharge in Shutdown
－RoHS Compliant and 100\％Lead（Fb）－Free
－Halogen－Free

APPLICATIONS

－Cellular Phones
－Bluetooth portable radios and Accessories
－Battery－Powered Equipment
－Laptop，Palmtops，Notebook Computer
－Digital still Camera and Video Recorders

Figure 2．SK6030 fixed output Circuit

BLOCK DIAGRAM

Figure 3．SK6030 adjustable version function block

Figure 4．SK6030 fixed version function block

ABSOLUTE MAXIMUM RATINGS

Description	Value	Unit
VIN，EN Input Voltage Range	$-0.3^{\sim} 6$	V
All other pins Voltage Range	-0.3 to $\left(\mathrm{V}_{1 \mathrm{~N}}+0.3\right)$	V
Junction Temperature	160	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\sim} 150$	${ }^{\circ} \mathrm{C}$
Junction－to－ambient Thermal Resistance	$220(\mathrm{SOT23-5)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction－to－case（top）Thermal Resistance	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature Soldering，10Sec	260	${ }^{\circ} \mathrm{C}$

ESD RATINGS

Items	Description	Value	Unit
$\mathrm{V}_{\text {ESD＿HBM }}$	Human Body Model for all pins	± 2000	V
$\mathrm{~V}_{\text {ESD＿CDM }}$	Charged Device Model for all pins	± 2000	V

JEDEC specification JS－001

RECOMMEND OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.5	5.5	V
$\mathrm{~T}_{\mathrm{J}}$	Operation Junction Temperature	-40	125	${ }^{\circ} \mathrm{C}$
T_{A}	Operation Ambient Temperature	-40	85	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

Package Type	Pin Configurations	
SK6030／SOT23－5	（Adjustable Output Version）	（Fixed Output Version）
SK6030B／SOT23－5	（Adjustable Output Version）	（Fixed Output Version）
SK6030D／DFN 1x1－4		

PIN FUNCTIONS

SK6030	SK6030B	SK6030D	Name	Function
1	3	4	VIN	Input Supply of the LDO．
2	2	2	GND	Signal Ground．
3	1	3	EN	Enable Pin．Connect this pin to ground or less than 0.4 V to disable the device，connect EN to 1.5 V or above to enable the device．This pin should not be floated．
			FB	Feedback Pin for adjustable output version
4	5	NA	BP	Bypass pin for fixed output version．Bypass with a 10 nF ceramic capacitor to reduce output noise or keep this pin floating．
5	4	1	VOUT	Output of the LDO

ORDERING INFORMATION

Part Number	Package	Mark	Quantity／Reel
SK6030	SOT23－5	TAAxxx	3000
SK6030－12	SOT23－5	TABxxx	3000
SK6030－15	SOT23－5	TAHxxx	3000
SK6030－18	SOT23－5	TACxxx	3000
SK6030－25	SOT23－5	TADxxx	3000
SK6030－28	SOT23－5	TAExxx	3000
SK6030－30	SOT23－5	TAFxxx	3000
SK6030－33	SOT23－5	TAGxxx	3000
SK6030B	SOT23－5	TBAxxx	3000
SK6030B－12	SOT23－5	TBBxxx	3000
SK6030B－18	SOT23－5	TBCxxx	3000
SK6030B－25	SOT23－5	TBDxxx	3000
SK6030B－28	SOT23－5	TBExxx	3000
SK6030B－30	SOT23－5	TBGxxx	3000
SK6030B－33	DFN1x1－4L	TDBxxx	10000
SK6030D－12	DFN1x1－4L	TDHxxx	10000
SK6030D－15	DFN1x1－4L	TDCxxx	10000
SK6030D－18	DFN1x1－4L	TDDxxx	10000
SK6030D－25	DFN1x1－4L	TDExxx	10000
SK6030D－28	DFN1x1－4L	TDFxxx	10000
SK6030D－30	DFN1x1－4L	TDGxxx	10000
SK6030D－33			3000

Mark：TXXXXX（XXX：Inside code）

Note 1：SK6030，SK6030B are Adj

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$ ，or $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ for $\mathrm{V}_{\text {OUT }}<1.5 \mathrm{~V}$ unless otherwise specified．

Symbol	Parameter	conditions	Min	Typ	Max	Unit
Input Voltage						
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		2.5		5.5	V
I_{Q}	Quiescent Current	$\mathrm{V}_{\text {EN }}=2.5 \mathrm{~V}$ ， $\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	35		70	$\mu \mathrm{A}$
ISHDN	Shutdown Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
PSRR	Power Supply Ripple Rejection	$\begin{aligned} & \mathrm{V}_{I N}=V_{n o m}+1 V_{P-p,} f=1 \mathrm{kHz}, \\ & \mathrm{I}_{\mathrm{LOAD}}=10 \mathrm{~mA} \\ & \mathrm{BP} \text { is floating } \end{aligned}$		70		dB
Enable						
$\mathrm{V}_{\text {ENH }}$	Enable High Voltage	All temperature range	1.5			V
$\mathrm{V}_{\text {ENL }}$	Enable Low Voltage	All temperature range			0.4	V
$I_{\text {en }}$	EN Input Current	$\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=3.5 \mathrm{~V}$ or 0 V	－1	0.2	1	$\mu \mathrm{A}$
$\mathrm{T}_{\text {ST }}$	Start－up Time	$\mathrm{V}_{\text {IN }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$		40		$\mu \mathrm{s}$
Output Voltage						
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$ ， $\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$	－2		＋2	\％
Vout	Output Voltage Accuracy	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \text { I IOUT }=10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	－3		＋3	\％
$\mathrm{V}_{\text {FB }}$	FB Pin Voltage		1.176	1.2	1.224	V
VINR	Output Line Regulation	$\mathrm{V}_{\text {OUT }}+0.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$ ， $\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$		0.01	0.1	\％／V
$V_{\text {LDR }}$	Output Load Regulation	$\begin{aligned} & 1 \mathrm{~mA}<\mathrm{l}_{\mathrm{OUT}}<300 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{NOM}}+1.0 \mathrm{~V} \end{aligned}$		3	6	mV
$V_{\text {DROP }}$	Dropout Voltage（Note 1）	$\mathrm{I}_{\text {Out }}=300 \mathrm{~mA}$（Applied for $\mathrm{V}_{\text {out }} \geq 2.3 \mathrm{~V}$ ）		320	350	mV
loutmax	Maximum Output Current		300			mA
Protection						
$l_{\text {limit }}$	Current Limit		650			mA
$I_{\text {short }}$	Output Short Current Limit	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		100		mA
$\mathrm{R}_{\text {AD }}$	Resistance of Auto－Discharge			130		Ω
TSD	Thermal Shutdown Temperature（Note 2）	No Load， $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=5 \mathrm{~V}$		160		${ }^{\circ} \mathrm{C}$
TSDHYS	Thermal Shutdown Hysteresis （Note 2）	No Load， $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=5 \mathrm{~V}$		20		${ }^{\circ} \mathrm{C}$

Note 1：Dropout is defined as $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUt }}$ when $\mathrm{V}_{\text {OUt }}$ is 2% below the value of $\mathrm{V}_{\text {OUt }}$ for $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+0.5 \mathrm{~V}$ ．
Note 2：Thermal shutdown threshold and hysteresis are guaranteed by design．

TYPICAL PERFORMANCE CHARACTERISTICS

Load Transient
$\mathrm{Vin}=3.8 \mathrm{~V}, \mathrm{Vo}=2.8 \mathrm{~V}, \mathrm{Io}=10 \mathrm{~mA}$ to 300 mA

Line Transient
$\mathrm{Vo}=2.8 \mathrm{~V}$ ， $\mathrm{lo}=10 \mathrm{~mA}$ ， $\mathrm{Vin}=3.3 \mathrm{~V}$ to 4.3 V

Over Temperature Protection

PSRR vs Frequency
Vin $=2.5 \mathrm{~V}, \mathrm{Vo}=1.5 \mathrm{~V}, \mathrm{lo}=10 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Dropout vs．lout

PSRR vs Frequency
$\mathrm{Vin}=3.8 \mathrm{~V}, \mathrm{Vo}=2.8 \mathrm{~V}, \mathrm{lo}=10 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Detailed Function Description

The SK6030 is a high output current，low dropout linear regulator with fast transient response and high PSRR．It offers high output accuracy，low quiescent current and fast start－up time．It is designed to work with low－ESR ceramic capacitor，reducing the amount of the PCB area．Only a $1 \mu \mathrm{~F}$ ceramic output capacitor can make the device stable over the whole load range．

As shown in the function block diagram，the SK6030 is composed of the bandgap reference voltage，the error amplifier，P－channel MOSFET pass transistor，external resistor divider and some additional protection circuits．The reference voltage，connected to the cathode terminal of the error amplifier，compares with the feedback voltage to regulate the output voltage to make it constant over the whole load current range．If the feedback voltage is lower than the reference voltage，the pass transistor gate is pulled lower to increase its conductivity．This allows more current to flow to the output and increase the output voltage．If the feedback voltage is higher than the reference voltage，the pass transistor gate is pulled higher to decrease its conductivity．This allows less current to flow to the output and decrease the output voltage．The feedback point is the output of the external resistor divider connected to the Voutpin．

Enable／Shutdown

The SK6030 is disabled when the EN pin is connected to ground or the voltage less than 0.4 V ，and the quiescent current is less than $1 \mu \mathrm{~A}$ ．Connect EN pin to 1.5 V or higher voltage to enable the device．This pin cannot be floated．

Output Auto Discharge

When the regulator is disabled，an internal 130Ω resister is connected between VOUT and GND to discharge output capacitor Cout．

Current Limit

The SK6030 includes a current limit circuit to monitor the gate voltage of the pass transistor to limit the output current．When the output current is higher than the over－current limit，the circuit will clamp the gate voltage of the pass transistor to limit the output current．The typical output current limit is 450 mA ．

Adjustable Output Voltage

SK6030 has a wide output voltage range．The output voltage is programmed by an external resistor divider as shown in Figure 1．The output can be calculated be by the following equation：

$$
\begin{equation*}
V_{\text {OUT }}=\left(1+\frac{R_{1}}{R_{2}}\right) \times V_{\text {REF }} \tag{EQ.1}
\end{equation*}
$$

Where $\mathrm{V}_{\text {REF }}$ is the internal reference voltage，which is 1.2 V in SK6030．

Short Circuit Protection

When Vout pin is short－circuit to GND，short circuit protection will be triggered and clamp the output current to approximately 90 mA ．This feature protects the regulator from over current condition and damage due to overheating．

Thermal Shutdown

The SK6030 monitors internal temperature．When the junction temperature exceeds $160^{\circ} \mathrm{C}$ ，the over temperature protection（OTP）circuit turn off the pass transistor until the device is cooled down by $20^{\circ} \mathrm{C}$ ． Then the pass transistor resumes ．For continue operation ，do not exceed absolute maximum junction temperature．

Application Information

External capacitor

The SK6030 requires external capacitor for stability．It is specifically designed to work with low－ESR capacitors requiring minimum PCB area．Place the external capacitors as close as possible to the device．

Input capacitor

A $1 \mu \mathrm{~F}$ or higher capacitance value ceramic capacitor is required between the VIN pin and the GND pin． Place it as close as possible to the device．There are no requirements for the ESR on the input capacitor，but the tolerance and temperature coefficient must be capacitance is $1 \mu \mathrm{~F}$ over the whole operating temperature range．

Output capacitor

An output capacitor（Cout）is needed to improve transient response and maintain stability．The SK 6030 is stable with very small ceramic output capacitors．A $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor is suitable for the most SK 6030 applications．

Bypass capacitor

A ceramic bypass capacitor（ C_{BP} ）can be used to improve output noise performance and PSRR
Performance．If there is no bypass capacitor needed，please keep BP pin floating．

PACKAGE DIMENSIONS：SOT23－5

Unit：mm

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Millimeters	
	Min	Max		Min	Max
L	2.82	3.02	E1	0.85	1.05
B	1.50	1.70	a	0.35	0.50
C	0.90	1.30	c	0.10	0.20
L1	2.60	3.00	b	0.35	0.55
E	1.80	2.00	F	0	0.15

Note：

1）All dimensions are in millimeters．
2）Package length does not include mold flash，protrusion or gate burr．
3）Package width does not include inter lead flash or protrusion．
4）Lead popularity（bottom of leads after forming）shall be 0.10 millimeters max．
5）Pin 1 is lower left pin when reading top mark from left to right．

TAPE DIMENSIONS：SOT23－5

REEL DIMENSIONS：SOT23－5

Note：

1）All Dimensions are in Millimeter
2）Quantity of Units per Reel is 3000
3）MSL level is level 3 ．

PACKAGE DIMENSIONS：DFN1x1－4L

Unit：mm

Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters		
	MIN	TYP	MAX		MIN	TYP	MAX
A	0.950	1.000	1.050	F	0.140	0.190	0.240
B	0.320	0.370	0.420	G	0.510	0.560	0.610
C	0.950	1.000	1.050	H	0.510	0.561	0.610
D	0.600	0.650	0.700	I	0.130	0.180	0.230
E	0.140	0.190	0.240				

Note：

1）All dimensions are in millimeters．

TAPE DIMENSIONS：DFN1x1－4L

REEL DIMENSIONS：DFN1x1－4L

Note：

4）All Dimensions are in Millimeter
5）Quantity of Units per Reel is 10000
6）MSL level is level 3 ．

