






#### **Description**

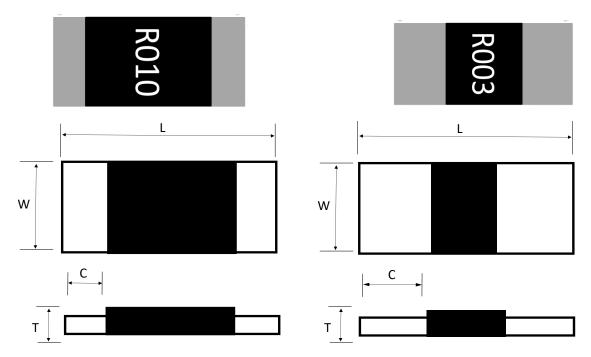
- Proprietary processing technique produces extremely low resistance values
- Very low inductance
- Low thermal EMF
- Metallic Material
- AEC-Q101 qualified available



#### **Part Numbering System**



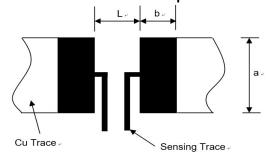
| Parameter                               | Standard                      |  |  |
|-----------------------------------------|-------------------------------|--|--|
| Power Rating                            | $1m\Omega\sim10m\Omega$ : 2 W |  |  |
| Resistance Value                        | 1~10mΩ                        |  |  |
| Operating Temperature Range             | -55 to +170°C                 |  |  |
| Component Temperature Coefficient (TCR) | ± 50 ppm/°C                   |  |  |
| Maximum Working Voltage (V)             | $(P \times R)^{1/2}$          |  |  |
| Rating Current (A)                      | $(P / R)^{1/2}$               |  |  |
|                                         |                               |  |  |


P=Power Rating; R=Resistance Value

### **Standard Electrical Specifications**

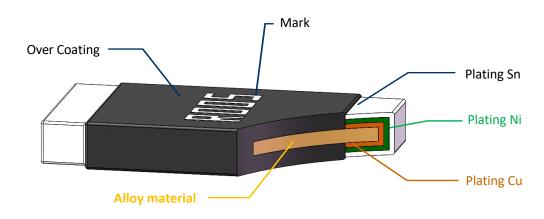
| Туре  | Rating<br>Power at<br>70℃ | T.C.R.<br>(ppm/°ℂ) | Resistance Range(mΩ  0.5% (D)  1.0% (F)  2.0% (G)  5.0% (J) | Meterial                         | Electrode                         | Operating<br>Temperature(℃) |
|-------|---------------------------|--------------------|-------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------|
| LMJ25 | 2W                        | 50                 | 1-10                                                        | R001-R010:MnCu<br>R001-R010:NiCu | R001-R003:Wide<br>R004-R10:Narrow | -55~+170°C                  |




#### Construction



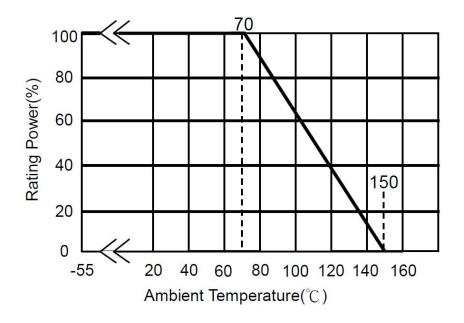
Unit: Millimeters


| Туре      | Power | L               | W C     |                  | t       |
|-----------|-------|-----------------|---------|------------------|---------|
| LMJ 25 2W | 0147  | 6.4+0.2 3.2+0.2 |         | 1.0±0.2 (Narrow) | 0.7±0.2 |
|           | 2W 6  | 6.4±0.2         | 3.2±0.2 | 2.2±0.2 (Wide)   | 0.7±0.2 |

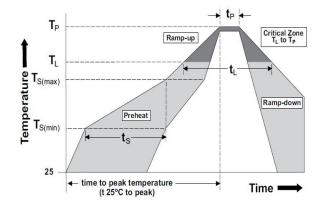
### Recommended land pattern



| Unit: Millimeter            |         |         |         |  |  |  |
|-----------------------------|---------|---------|---------|--|--|--|
| Resistance Range $(\Omega)$ | а       | b       | L       |  |  |  |
| 0.001-0.003(Wide)           | 4.0±0.1 | 3.1±0.1 | 1.3±0.1 |  |  |  |
| 0.004~0.010(Narrow)         | 4.0±0.1 | 2.1±0.1 | 4.1±0.1 |  |  |  |


### **Product structure diagram**






## **Power Derating Curve**

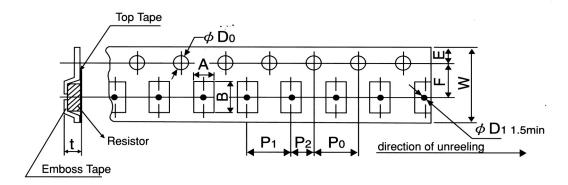
For resistors operated in ambient temperatures 70°C, power rating shall be derated inaccording with the curve below:



### **Recommended Solder Curve**

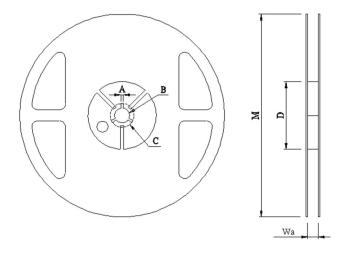


| Reflow Cond   | lition                                          | Pb – Free assembly     |  |
|---------------|-------------------------------------------------|------------------------|--|
|               | - Temperature Min (Ts(min))                     | 150°C                  |  |
| Pre heat      | - Temperature Max (Ts(max))                     | 200°C                  |  |
|               | - Time (Min to Max) (ts)                        | 60 – 120 secs          |  |
|               | Average ramp up rate<br>uidus Temp (TL) to peak | 5°C/second max         |  |
| TS(r          | max) to TL - Ramp-up Rate                       | 5°C/second max         |  |
| Reflow        | - Temperature (TL) (Liquidus)                   | 217°C                  |  |
|               | - Temperature (tL)                              | 60 – 150 seconds       |  |
| ı             | Peak Temperature (TP)                           | 260°C                  |  |
| Time within 5 | °C of actual peak Temperature (tp)              | 20 - 40 seconds        |  |
|               | Ramp-down Rate                                  | 5°C/second max         |  |
| Time 2        | 5°C to peak Temperature (TP)                    | 8 minutes Max.         |  |
|               | Wave Soldering                                  | 260°C, 10 seconds max. |  |
|               | Hand Soldering                                  | 350°C, 5 seconds max.  |  |




# **Product Characteristics**

| Item                                  | Test condition/ Methods                                                                                                                                                                                            | Limited       | Standard                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|
| Resistance                            | Measuring resistance value at room temperature 25℃±5℃                                                                                                                                                              | Refer to Spec | IEC60115-1 4.5            |
| Temperature coefficient of resistance | TCR =(R-R <sub>0</sub> )/R <sub>0</sub> (T2-T1)X $10^6$ T1 T2<br>R <sub>0</sub> : resistance of room temperature<br>R: resistance of $125^{\circ}$ C<br>T1: Room temperature<br>T2: Temperature at $125^{\circ}$ C | Refer to Spec | MIL-STD-202<br>Method 304 |
| Short time Overload                   | Apply overload for 5 seconds and measure the resistance change rate after standing for 24 hours. 4 times the rated power for 5 seconds                                                                             | ≤±0.5%        | MIL-R-26E                 |
| Resistance to<br>Soldering Heat       | 260°C±5°C time: 12sec± 0.5sec                                                                                                                                                                                      | ≤±0.5%        | MIL-STD-202<br>Method 210 |
| Temperature Cycling                   | -55℃ (15min)/+125℃(15min), 1000 cycles                                                                                                                                                                             | ≤±1%          | MIL-STD-202<br>Method107G |
| Low temperature<br>Storage            | -55℃ for 1000hours, No power                                                                                                                                                                                       | ≤±0.5%        | MIL-STD-26E               |
| High Temperature<br>Storage           | 125℃ for 1000hours, No power                                                                                                                                                                                       | ≤±1%          | IEC6011501-4.25           |
| Bias Humidity                         | +85℃,85% RH,10%bias, 1000hours                                                                                                                                                                                     | ≤±0.5%        | MIL-STD-202<br>Method103  |
| Mechanical shock                      | Condition C ,100 g's ,6 msec, 3 mutually perpendicular axes, in 6 directions, three impacts each for a total of 18 times 18 shocks.                                                                                | ≤±0.5%        | MIL-STD-202<br>Method 213 |
| Vibration                             | The frequency varies from 10HZ to 55HZ and return to 10HZ, shall be transferred in 1 min. Amplitude : 1.5mm, 3 directions, and 12 hours                                                                            |               | MIL-STD-202<br>Method 201 |
| Operational life                      | 70℃± 2℃, 1000 hours, at rated power 1.5 hours "ON", 0.5 hours "OFF"                                                                                                                                                | ≤±1%          | MIL-STD-202<br>Method 108 |
| Moisture resistance                   | MIL-STD-202,method106,<br>No power, 7b not required                                                                                                                                                                | ≤±1%          | MIL-STD-202<br>Method 106 |



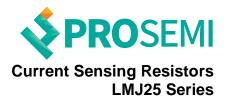

### **Tapping & Package**



| Туре | Pack   | <b>A</b><br>±0.2 | <b>B</b><br>±0.2 | <b>D0</b> +0.5-0 | <b>E</b><br>±0.1 | <b>F</b><br>±0.05 |      | <b>P1</b> ±0.1 |      | <b>W</b><br>±0.2 | <b>D1</b> ±0.05 | <b>T</b><br>±0.15 |
|------|--------|------------------|------------------|------------------|------------------|-------------------|------|----------------|------|------------------|-----------------|-------------------|
| 2512 | Emboss | 3.60             | 6.90             | 1.50             | 1.75             | 5.50              | 4.00 | 4.00           | 2.00 | 12.00            | 1.50            | 1.20              |

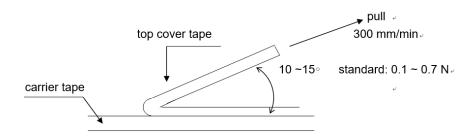
# **Reel Specification**




| Туре | A        | В         | С         | D         | М          | w         |
|------|----------|-----------|-----------|-----------|------------|-----------|
| 2512 | 2.00±0.5 | 13.50±0.5 | 21.00±0.5 | 80.00±1.0 | 178.00±2.0 | 13.80±0.5 |

# **Packaging**

Quantity: 4, 000pcs


8mm wide tape on 178mm(7 inch) diameter reel -specification EIA

Standard 481.



# Peel strength of upper belt

Stripping speed: 300 mm / min; The peel force is between 0.1N and 0.7n.



# Storage conditions & shelf life

It can be stored for 2 years under closed conditions with temperature of 5  $^{\circ}$  C  $\sim$  35  $^{\circ}$  C and relative humidity of 40  $\sim$  75

Please avoid the following harsh environment during storage to avoid affecting the product performance and solder connectivity: the places with corrosive gases such as sea breeze, Cl2, H2S, NH3, SO2 and NO2 shall be stored without direct sunlight.

# Precautions for product use

When measuring the resistance value before welding, a special resistance meter with high precision shall be used. When measuring, a 4-wire probe or fixture must be used. 4. When measuring parts with a wire measuring needle, the 4 measuring needles must indeed contact the parts.

Avoid damaging the protective layer during manual welding or clamping with tweezers.

When the PCB is divided or fixed on the support, be careful to avoid excessive bending causing mechanical stress to the resistor.

It shall be used within the rated power range within the specification, especially when the power exceeds the rated value, which may affect the reliability of the product