LTP3559

General Description

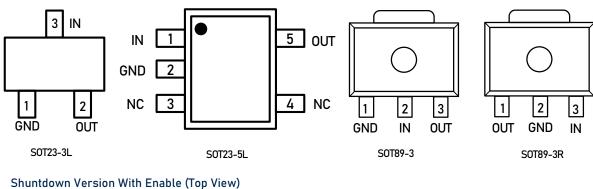
The LTP3559 is a high voltage, low power consumption and high performance LDO. The family uses an advanced CMOS process and a P-MOSFET pass device to achieve fast start-up, with high output voltage accuracy. The LTP3559 is stable with a 1.0µF~10µF ceramic output capacitor, and uses a precision voltage reference and feedback loop to achieve a worst-case accuracy of 2% over all load, line, process, and temperature variations.

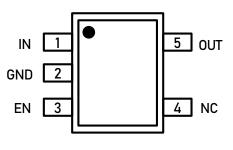
Features

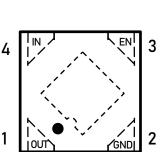
- Wide Input Voltage Range : up to 45V
- Output Current : 350mA
- Standard Fixed Output Voltage Options : 1.8V, 2.5V, 3.0V, 3.3V, 3.6V, and 5.0V
- More Output Voltage Options Available on Request
- Low IQ : 2.5µA Typically
- Low Dropout Voltage
- Short current protection:150mA
- Excellent Load and Line Transient Response
- Line Regulation : 0.01%/V Typically
- Normal Version Available in SOT23-3L, SOT23-5L and SOT89 Packages
- Shutdown Version Available in S0T23-5L and Tiny DFN1×1-4L Packages

Model	Package	Ordering Number Note1	Packing Option		
	SOT23-3L	LTP3559-xxXT3	Tape and Reel, 3000		
	SOT23-5L	LTP3559-xxNXT5	Tape and Reel, 3000		
	SOT23-5L	LTP3559-xxXT5	Tape and Reel, 3000		
LTP3559	SOT89-3	LTP3559-xxXT4	Tape and Reel, 1000		
	S0T89-3R	LTP3559-xxRXT4	Tape and Reel, 1000		
	DFN1×1-4L	LTP3559-xxNXF4	Tape and Reel, 10000		

Order Information


Note1: xx stands for output voltage, e.g. if xx = 18, the output voltage is 1.8V; if xx = 30, the output voltage is 3.0V. The device with suffix "N" is shutdown version with enable control input.

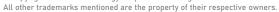



Pin Description

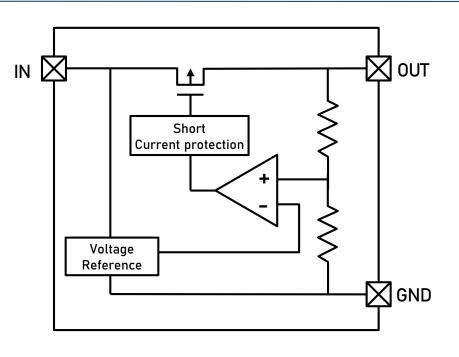
Normal Version Without Enable (Top View)

S0T23-5L

FN1620-28.2 — Data Sheet


 $DFN1 \times 1-4L$

İNEARIN


Pin Function

Pin No.								
S0T23-3L	SOT23-5L	S0T89-3	S0T89-3R	S0T23-5L	DFN1×1-4L	Pin Name	Pin Function	
LTP3559- xxXT3	LTP3559- xxXT5	LTP3559 -xxXT4	LTP3559- xxRXT4	LTP3559- xxNXT5	LTP3559- xxNXF4			
1	2	1	2	2	2	GND	Ground.	
2	1	2	3	1	4	IN	Supply input pin.	
3	5	3	1	5	1	OUT	Output pin.	
				3	3	EN	Enable control input, active high.	
	3,4			4		NC	No connection.	

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

Block Diagram

Functional Description

Input Capacitor

A 1µF-10µF ceramic capacitor is recommended to connect between V_{IN} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND.

04

P-4

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 1 μ F to 10 μ F, Equivalent Series Resistance (ESR) is from 5m Ω to 100m Ω , and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

Low Quiescent Current

The LTP3559, consuming only around 2.5 μ A for all input range and output loading, provides great power saving in portable and low power applications.

Short Current Limit Protection

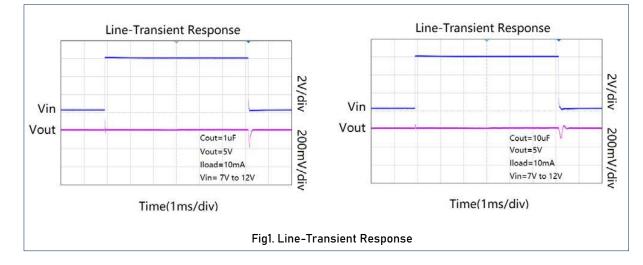
When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuit to GND, the short current limit protection will be triggered and clamp the output current to approximately 150mA to prevent over-current and to protect the regulator from damage due to overheating.

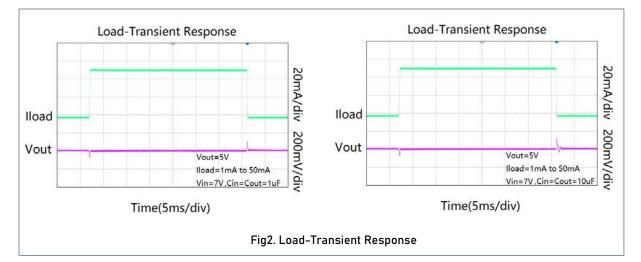
Absolute Maximum Ratings

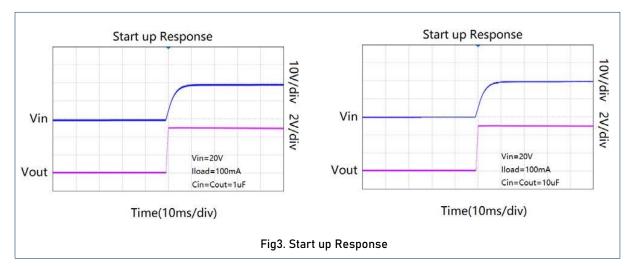
Parameter	Rating		Unit		
IN pin to GND pin	-0.3 to 48		V		
OUT pin to GND pin	-0.3 to 6		V		
	SOT-89	135			
	S0T23-5L	250	°C / M		
Thermal Resistance (Junction to Ambient)	SOT23-3L	360	°C/W		
	DFN1×1-4L	250			
Operating Junction Temperature	-40 to 125		°C		
Storage Temperature	-65 to 150		°C		
Lead Temperature (Soldering, 10 sec)	300		°C		
ESD (HBM mode)	ESDA/JEDEC JS-001-2017		\pm 2000V		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Electrical Characteristics


 $(V_{IN} = V_{OUT} + 2V; I_{OUT} = 10 \text{ mA}, C_{IN} = C_{OUT} = 1.0 \mu\text{F}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN}	Operating Input Voltage				45	v
Line _{REG}	Line Regulation	2.5V ≤ VIN ≤36V, I _{out} = 10mA		0.01	0.04	%/V
V _{DROP}	Dropout Voltage	V _{OUT} = 3.0V, I _{OUT} = 100mA		330		
		V _{0UT} = 3.0V, I _{0UT} = 200mA		690		– mV
Load _{REG}	Load Regulation	$1mA \le I_{OUT} \le 300mA$, $V_{IN} = V_{OUT} + 2V$			40	mV
I _{OUT}	Maximum Output Current	V _{IN} = V _{OUT} +1V	350			mA
Ι _Q	Quiescent Current	I _{out} = 0mA		2.5	4	μA
$I_{Q_{OFF}}$	Standby Current	V _{EN} = 0V, TA = 25°C		0.1	1	μA
$V_{\rm ENH}$	EN Pin Threshold Voltage	EN Input Voltage "H"	1.2			V
V _{ENL}	EN Pin Threshold Voltage	EN Input Voltage "L"			0.4	V
I _{EN}	EN Pin Current	V _{en} =0-36V		1		μA
PSRR	Power Supply Rejection Ratio V _{IN} = V _{OUT} +1V I _{OUT} = 20mA	f = 1 kHz		60		dB
e _N	Output Noise Voltage	V _{IN} = V _{OUT} +2V, I _{OUT} = 1mA, f = 10Hz to 100KHz, (V _{OUT} =3V) C _{OUT} = 1μF		100		μVrms
T _{SD}	Thermal Shutdown Temperature	Temperature Increasing from T_A =+25°C		155		°C
T _{SDH}	Thermal Shutdown Hysteresis	Temperature Falling From TSD		20		°C


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

TYPICAL PERFORMANCE CHARACTERISTICS

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

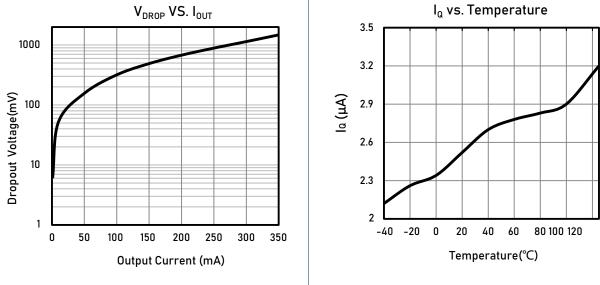
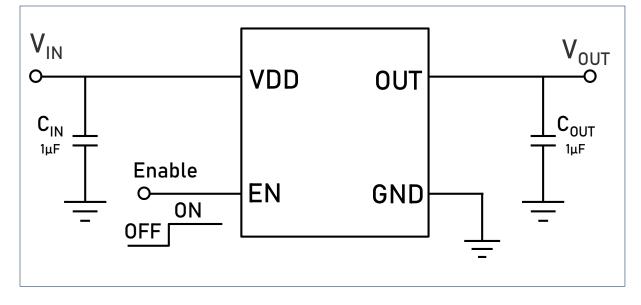
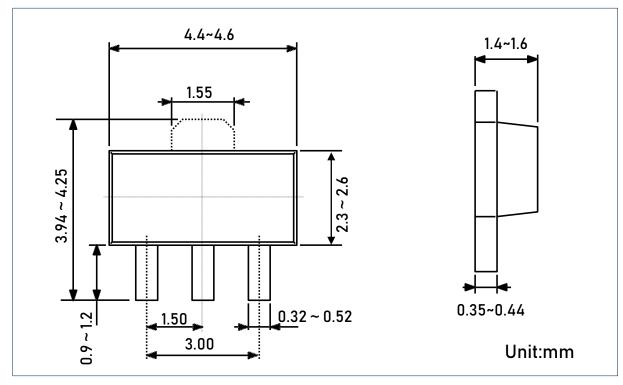
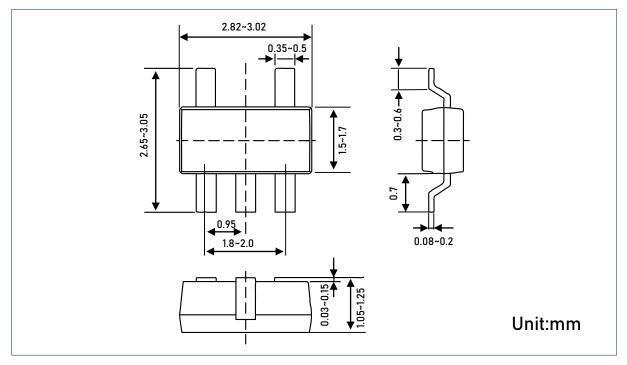



Fig4. Dropout Voltage VS Output Current

Application Circuits



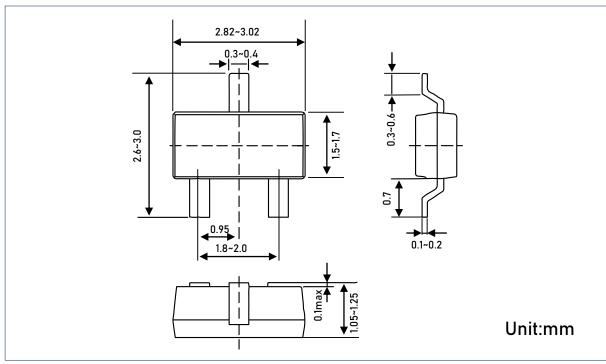
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.



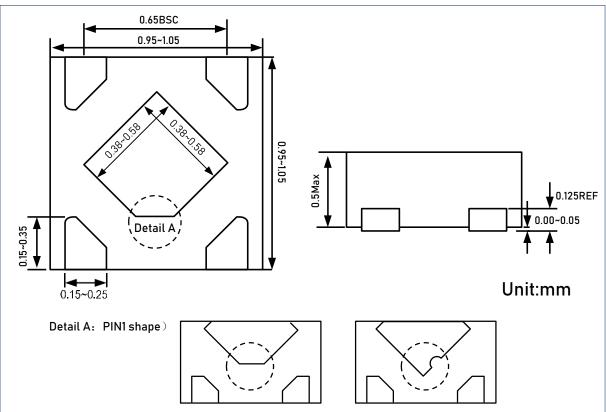
Package Dimension

SOT-89

S0T23-5L



CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. 08



LTP3559 350-mA, 45-V, Ultra-Low I_Q , Low Dropout LDOs

S0T23-3L

DFN1×1-4

P-9

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.