

MD3901

Dual Full Bridge Low Voltage Motor Driver

Features and Benefits

- Low R_{DS(on)} MOSFET output drivers
 Full- and half-stepping capability
- Low DC current
- Forward, reverse, and brake modes for dc motors
- Sleep mode with zero current drain
- PWM control up to 50 kHz
- Crossover-current protection
- Thermal shutdown (TSD)
- ESD protected: 3KV (HBM)

Description

The MD3901 is a dual full-bridge motor driver, designed for low voltage portable applications involving bipolar stepper or brush dc motors. The outputs have been optimized for low voltage drop, and an operating voltage range of 2V to 9.6V with currents up to ±1A (±2A with outputs paralleled).

The four inputs (IN1 to IN4) can control a bipolar stepper motor in full- or half-step mode, or dc motors in forward, reverse, or brake mode. The inputs can be at frequencies up to 50 kHz for PWM current or speed control.

Internal protection circuitry includes thermal shut down

(TSD) and crossover (shoot-through) protection.

Typical Application

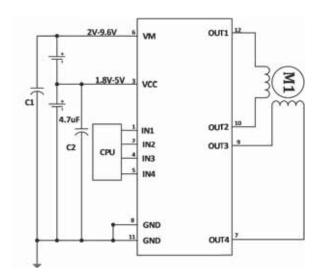


Figure 1. Typical stepper motor control

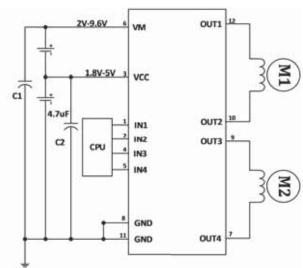


Figure 2. Typical dual dc motor control

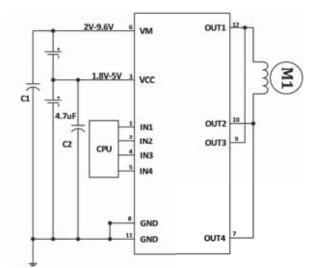
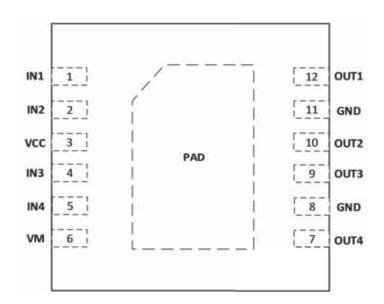
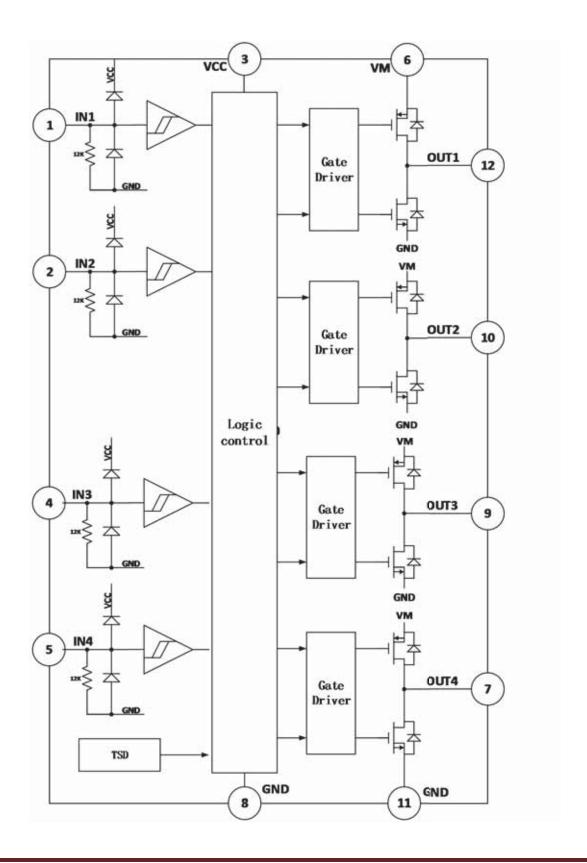



Figure 3. Typical single dc motor control (paralleled outputs)

Selection Guide

Order Number	Operating Temperature Range	Package	Marking Information	Transport Media, Quantity
MD3901	-20 to 85℃	DFN12	MD3901	Tape and Reel,3000

Package Diagram



Number	Name	I/O	Description
1	IN1	I	Line1 Logic input 1
2	IN2	I	Line1 Logic input 2
3	VCC	Р	Logic power supply, not near connect with VM
4	IN3	I	Line2 Logic input 3
5	IN4	I	Line2 Logic input 4
6	VM	Р	Load supply terminal
7	OUT4	0	Line 2 Bridge H output
8	GND	-	Ground terminal
9	OUT3	0	Line 2 Bridge H output
10	OUT2	0	Line 1 Bridge H output
11	GND	-	Ground terminal
12	OUT1	0	Line 1 Bridge H output

Remark: Logic power supply VCC can not be approached directly into the VM as VCC weak in Motor peak voltage resistance. Recommended by PCB line connected to the control IC power supply.

Functional Block Diagram

Motor Operation Truth Table

INx			OUT1	OUT2	OUT3	OUT4	Function		
Stepp	er Moto	r							
IN1	IN2	IN3	IN4					Full Half Stepping Steppi	
0	0	0	0	OFF	OFF	OFF	OFF	Sleep Mode	Sleep Mode
1	0	1	0	Н	L	Н	L	Step1	Step1
0	0	1	0	OFF	OFF	Н	L	-	Step2
0	1	1	0	L	Н	Н	L	Step2	Step3
0	1	0	0	L	Н	OFF	OFF	-	Step4
0	1	0	1	L	Н	L	Н	Step3	Step5
0	0	0	1	OFF	OFF	L	Н	-	Step6
1	0	0	1	Н	L	L	Н	Step4	Step7
1	0	0	0	Н	L	OFF	OFF	-	Step8
DC M	otor (Du	al)							
IN1 c	or IN3	IN2 c	r IN4						
(0	()	OFF	OFF	OFF	OFF	Hi-Z (Sleep Mode)/Coast	
	1	()	Н	L	Н	L	Forward	
0			1	L	Н	L	Н	Reverse	
	1		1	L	L	L	L	Brake	
DC Mo	otor (Sir	ngle, Pa	ralleled	d)					
IN1 c	or IN3	IN2 c	r IN4						
(0	()	OFF	OFF	OFF	OFF	Hi-Z (Sleep N	lode)/Coast
	1	()	Н	L	Н	L	For	ward
(0	_	1	L	Н	L	Н	Rev	erse
	1	,	1	L	L	L	L	Bra	ake
DC Mo	otor (Ex	ternal P	PWM)						
IN1 c	or IN3	IN2 c	r IN4						
	1	()	Н	L	Н	L	Forward	
0		()	OFF	OFF	OFF	OFF	Fast Decay	
0			1	L	Н	L	Н	Reverse	
0		()	OFF	OFF	OFF	OFF	Fast Decay	
	1	()	Н	L	Н	L	For	ward
	1	-	1	L	L	L	L	Slow	Decay
(0	,	1	L	Н	L	Н	Rev	erse
	1	-	1	L	L	L	L	Slow	Decay

Absolute Maximum Ratings at TA = 25°C

Charac	teristics	Symbol	Тур.	Unit		
Logic supply control Voltage		VCC(MAX)	7			
Motor Driver Voltage	Motor Driver Voltage		tor Driver Voltage		10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Output Current per C	hannel	VOUT(MAX)	VM	V		
Logic Input Voltage F	Range	VIN(MAX)	VCC			
Peak Current output	Line 1	IOUT(PEAK)	1.5	А		
reak Current output	Line 2	IOUT(PEAK)	1.5			
Maximum Power Disp	oation	P _D	-	W		
Package Thermal	DFN12 Package	θ_{JAD}		°C/W		
Resistance	DI N12 Fackage	OJAD		C/VV		
Operating Temperati	perating Temperature Range		-20~+85	$^{\circ}\mathbb{C}$		
Junction Temperature	Junction Temperature		150	$^{\circ}\mathbb{C}$		
Storage Temperature Range		Tstg	-55~+150	$^{\circ}\mathbb{C}$		
Soldering Temperature		T _{LED}	260°C, 10 seconds			
ESD(*3)			3000	V		

Remark: (1), Line1 represent as OUT1&OUT2, and line2 asOUT3&OUT4;

Suggest Operation Condition(T_A=25℃)

Characte	Symbol	Min	Typ.(VM=6.5V)	Max	Unit	
Logic supply control Vo	tage	VCC	1.8		5	V
Load Supply Voltage		VM	2		9.6	V
Line2 Sleep mode	Line1 continuous current	I _{OUT1}		1		
Line1 Sleep mode	Line2 continuous current	I _{OUT2}		1		А
Line1 continuous current=0.8A	Line2 continuous current	I _{OUT2}		0.8		

Remark: (1), Line1 represent as OUT1&OUT2, and line2 asOUT3&OUT4;

Heart and create Electronics Co. Ltd.

^{(2).} Maximum Power Dispation is $P_D=(150\,^{\circ}\text{C}-T_A)/\theta_{JA}$ for different temperature.

 T_A is instead of Operating Temperature, θ_{JA} is thermal resistance in package, 150 $^{\circ}$ C is highest junction temperature.

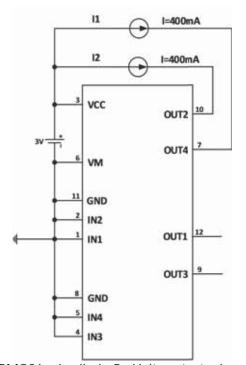
^{(3).} The Current Power Dispation: $P = I^2xR$

And P is Power Dispation, I is continuous output current, R is on-state resistance. P<PD

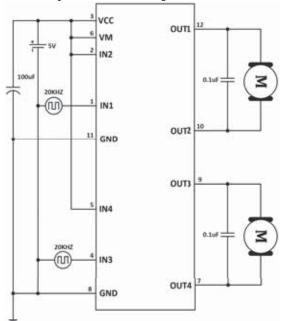
^{(4)、} HM, 100 pf capacitor discharge by 1.5 K Ω resistance.

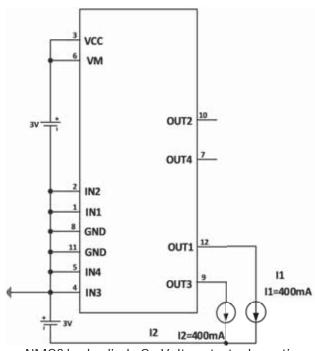
^{(2),} VCC and VM inside circuit independent completely, and supply respectively. the circuit will be standby if VCC off line.

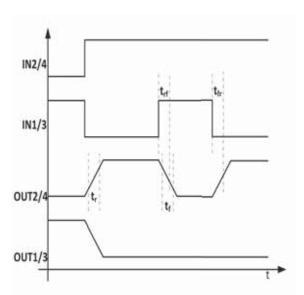
^{(3),} continuous output current test condition: Mount and PCB test.


ELECTRICAL CHARACTERISTICS at TA =25°C, and V_{CC} = 3V,VM=6V, unless noted otherwise

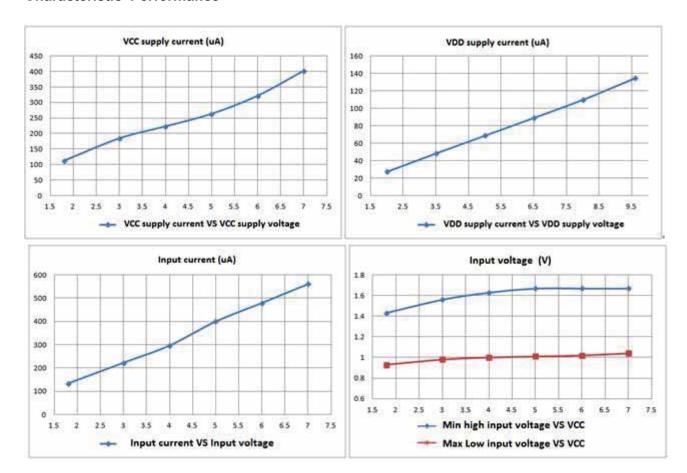
Wotor Supply Parameters VCC standby current I _{VCCST} INT=IN2=IN3=IN4=L/VCC=7V; 0 10 uA VMC standby current I _{VMS} T VM=10V:output floating 0 10 uA VCC DC Current I _{VM} INx=H; output floating 83 uA Logic Input Voltage I _{VM} INX=H; output floating 83 uA Logic Input Voltage V _{INM} INX=H; output floating 0.8 V Input Voltage V _{INM} 0.8 V V O.6. V V V Input High Voltage V _{INM} 0.6 O.6 V Input High Voltage I _I M V _{INM} 0.6 N Input High Voltage I _I M V _{INM} 0.6 0.6 Input High Voltage I _I M V _I M Input High Voltage I _I M	Characteristics	Symb ol	Test Conditions	Min.	Тур.	Max.	Unit s		
VM standby current I _{VMST} VM=10V; output floating 0 10 VA VCC DC Current I _{VCC} INX=H; output floating 182 UA VM DC Current I _{VM} INX=H; output floating 83 UA VM DC Current I _{VM} INX=H; output floating 83 UA Logic InputVoltage I _{NM} INX=H; output floating 83 Input Low lotage V _{INM} INX=H; output floating INX=H; output floating	Motor Supply Parame	eters							
VM standby current I _{NxST} VM=10V; output floating 0 10 VCC DC Current I _{VCC} INx=H; output floating 182 uA VM DC Current I _{VM} INx=H; output floating 83 uA Logic Input Voltage V _{INM} 0.6 Input High Voltage V _{INM} 0.8 V Input High Voltage I _{INM} V _{INM} =2.5V;VCC=3V 191 UA Input High Voltage Input High Voltage 191 UA Input High Voltage Input High Voltage Input High Voltage 191 UA Input High Voltage Input High Voltage Input High Voltage 191 UA Input High Voltage	3		IN1=IN2= IN3= IN4=L;VCC=7V;		0	10			
VM DC Current I _{MM} INx=H; output floating			VM=10V;output floating		0	10	u A		
VM DC CUrrent VM INX=H; output floating ··· 83	VCC DC Current	I _{VCC}	INx=H; output floating		182				
Input High Voltage	VM DC Current	I _{VM}	INx=H; output floating		83		uA		
Input Low Voltage Vi Vi Vi Vi Vi Vi Vi V	Logic Input Voltage								
Input Voltage Delay V_HYS U_NH = 2.5V; VCC = 3V 191 UA				2			_		
Input High Voltage InNH VINH=2.5V; VCC=3V 191 UA UA						0.8	V		
Current IINH VINH=2.5V;VCC=3V 191 UA Input On Resistance R _{IN} VINH=3V;VCC=3V 12 KΩ Power Transistor On Resistance R _{ON1} IO=±200mA VM=6V TA=25°C 0.49 0.53 Line2 On Resistance R _{ON2} IO=±200mA VM=6V TA=25°C 0.49 0.49 Protect function TSD IO=±800mA VM=6V TA=25°C 0.49 0.49 0.76 Thermal Shut Down Temperature TSD ISD ISD ISD ISD Power MOSFET Body Diode Characteritics-1 line IE-400mA, VCC=3V, VM=IN1=IN2=0V 0.76 VMINT=IN2=0V 0.76 VMINT=IN2=0V Power MOSFET Body Diode Characteritics-2 line IE-400mA, VCC=3V, VM=IN3=IN4=0V 0.75 VMINT=IN3=IN4=0V 0.76 VMINT=IN3=IN4=0V PMOS Body Diode V _{ND} II-400mA, VCC=3V, VM=IN3=IN4=0V 0.75 VMINT=IN3=IN4=0V NMOS Body Diode V _{ND} II-400mA, VCC=VM=3V, IN3=IN4=0V 0.75 VMINT=IN3=IN4=0V Motor Drive time parameters-1 Line In 10 10		V_{HYS}			0.6				
Power Transistor On Resistance		I _{INH}	V _{INH} =2.5V;VCC=3V		191		uA		
Line1 On Resistance R _{ON1} IO=±200mA VM=6V TA=25°C 0.49 IO=±800mA VM=6V TA=25°C 0.53 O.49 IO=±800mA VM=6V TA=25°C 0.49 IO=±800mA VM=6V TA=25°C 0.49 IO=±800mA VM=6V TA=25°C 0.49 IO=±800mA VM=6V TA=25°C 0.49 IO=±800mA VM=6V TA=25°C 0.53 O.53 O.53 O.53 O.53 O.53 O.54 O.55 O.5	Input On Resistance	R _{IN}	V _{INH} =3V;VCC=3V		12		ΚΩ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power Transistor On	Resisitance							
Line2 On Resistance RoN2 IO=±800mA VM=6V TA=25 °C 0.53 0.49 IO=±200mA VM=6V TA=25 °C 0.49 IO=±800mA VM=6V TA=25 °C 0.53 0.53 IO=±800mA VM=6V TA=25 °C 0.53 0.53 IO=±800mA VM=6V TA=25 °C IO=±8	Line 4. On Decistance	D	IO=±200mA VM=6V TA=25 ℃		0.49				
Content Con	Line1 On Resistance	K _{ON1}	IO=±800mA VM=6V TA=25°C		0.53		1		
IO=±800mA VM=6V TA=25°C 0.53		_	IO=±200mA VM=6V TA=25°C		0.49		Ω		
Protect function	Line2 On Resistance	R _{ON2}					1		
TSD	Protect function						<u> </u>		
TSDH		TSD			150				
Power MOSFET Body Diode V _{PD}							℃		
PMOS Body Diode V _{PD} I=400mA, VCC=3V, VM=IN1=IN2=0V 0.76 V NMOS Body Diode V _{ND} I=-400mA, VCC=VM=3V, IN1=IN2=0V 0.75 0.75 PMOS Body Diode V _{PD} I=400mA, VCC=3V, VM=IN3=IN4=0V 0.76 V NMOS Body Diode V _{ND} I=-400mA, VCC=VM=3V, IN3=IN4=0V 0.75 0.75 Motor Drive time parameters-1 Line IN2=H,IN1 plus input 50% 300 0.75 Output Rise Time t _f 10 10 Output delay (r-f) t _{ff} 10ad driver R=1.3Ω, 240 Motor Drive time parameters-2 Line IN4=H,IN3 plus input50% 300 Output Rise Time t _f IN4=H,IN3 plus input50% 300 Output Fall Time t _f 10 10 Output Fall Time t _f 10 10 Output Gelay (r-f) t _{ff} 10 10 Output Gelay (r-f) t _{ff} 40 10		TSDH			20				
PMIOS Body Diode V _{PD} VM=IN1=IN2=0V 0.76 V NMOS Body Diode V _{ND} I=-400mA, VCC=VM=3V, IN1=IN2=0V 0.75 0.75 Power MOSFET Body Diode Characteritics-2 line PMOS Body Diode V _{PD} I=400mA, VCC=3V, VM=IN3=IN4=0V 0.76 V NMOS Body Diode V _{ND} I=-400mA, VCC=VM=3V, IN3=IN4=0V 0.75 0.75 Motor Drive time parameters-1 Line 0utput Rise Time t _r IN2=H,IN1 plus input 50% 300 0 Output Rise Time t _f 10 10 10 10 Output delay (r-r) t _{fr} load driver R=1.3Ω, 240 240 10 Motor Drive time parameters-2 Line IN4=H,IN3 plus input50% 300 300 10 Output Rise Time t _r IN4=H,IN3 plus input50% 300 10 Output Fall Time t _f 10 10 10 Output delay (r-f) t _f 10 10 10 10 Output Glean (r-f) t _f 10 10 10 <t< td=""><td>Power MOSFET Body</td><td>Diode Chara</td><td>teritics-1 line</td><td></td><td></td><td></td><td></td></t<>	Power MOSFET Body	Diode Chara	teritics-1 line						
NMOS Body Diode V _{ND} I=-400mA, VCC=VM=3V, IN1=IN2=0V NMOS Body Diode V _{PD} I=400mA, VCC=3V, VM=IN3=IN4=0V NMOS Body Diode V _{PD} I=400mA, VCC=3V, VM=IN3=IN4=0V V I=-400mA, VCC=VM=3V, IN3=IN4=0V O.75 IN3=IN4=0V O.75 IN3=IN4=0V O.75 IN3=IN4=0V O.75 IN3=IN4=0V O.75 IN3=IN4=0V O.75 Output Rise Time t _r IN2=H,IN1 plus input 50% 300 Output delay (r-f) t _{rf} f=20KHz 40 Output delay (f-r) t _{rf} Ioad driver R=1.3Ω, 240 Output Rise Time t _r IN4=H,IN3 plus input 50% 300 Output Rise Time t _r IN4=H,IN3 plus input 50% 300 Output Rise Time t _r IN4=H,IN3 plus input 50% 300 Output Rise Time t _r IN4=H,IN3 plus input 50% 300 Output Rise Time t _r IN4=H,IN3 plus input 50% 300 Output Rise Time t _r In4=H,IN3 plus input 50% 100 In5 In5	PMOS Body Diode	V_{PD}	· · · · · · · · · · · · · · · · · · ·		0.76				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,						V		
Power MOSFET Body Diode Characteritics-2 line	NMOS Body Diode	V _{ND}			0.75				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power MOSFET Body	Diode Chara	1		1	1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PMOS Body Diode	V_{PD}			0.76		.,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NMOS Body Diode	V_{ND}			0.75		V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Motor Drive time para	meters-1 Lii	16						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•				300				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , , ,				1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·		f=20KHz				ns		
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $							1		
	, ,			1	1	1	1		
	,				300				
Output delay (r-f) t_{rf} f=20KHz 40							1		
	•		f=20KHz				– ns		
	Output delay (f-r)	t _{fr}			240		1		

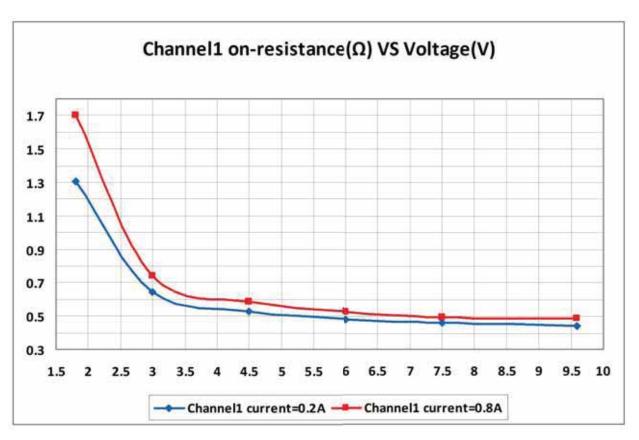

Remark: x respond 1, 2, 3 or 4.


Test Schematic Program


PMOS body diode On Voltage test schematic

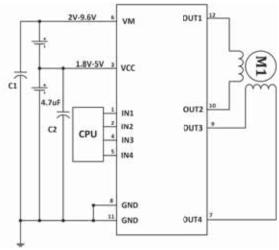
Time parameters test schematic

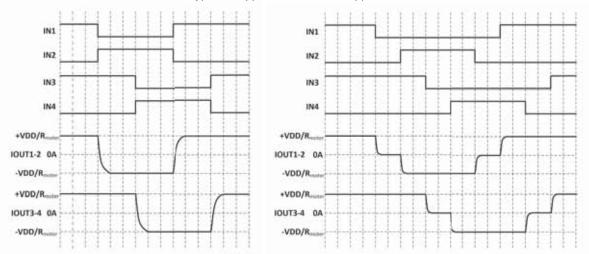

NMOS body diode On Voltage test schematic



Time parameters definition

Characteristic Performance

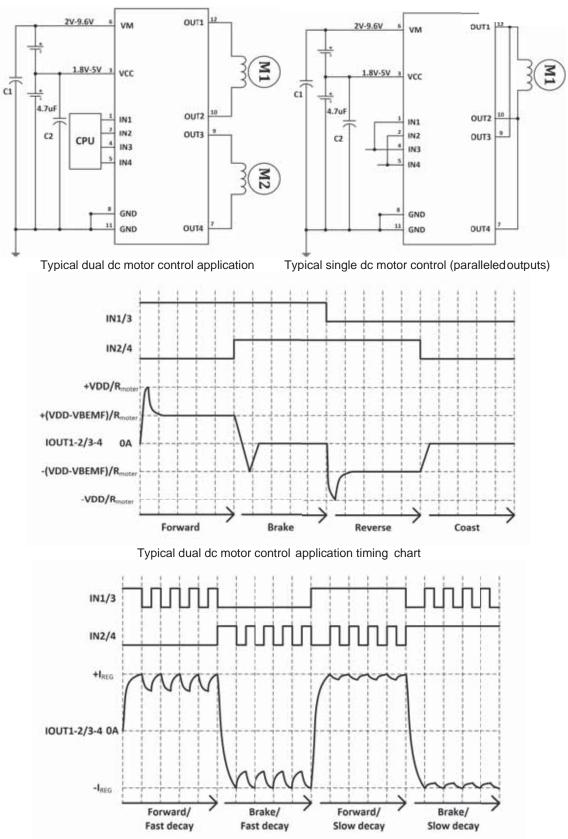




Application Information

1. Typical stepper motor control application

Typical stepper motor control application


Full step mode timing chart

Half step mode timing chart

2 dc motor control application

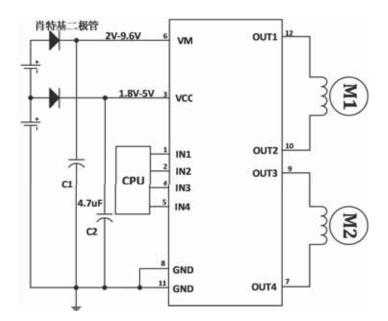
Heart and create Electronics Co. Ltd.

External PWM current control in fast and slow delay modes

Notice:

the decoupling C1 funtion is connected between power and ground, the C1 value is as various as actual application, details as below:

A, the C1 can be removed if the VM voltage is less than 7.2V and the peak current is less than 2A B, if the VM votage is between 7.2 and 9.6V, peak current over 2A, the C1 must added and the

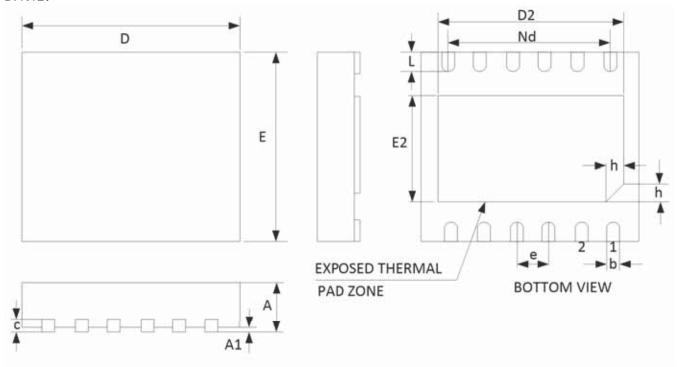

value should be from 47uF to 100uF.

C, ceramic or electrolytic capacitor are fit for C1.

the C2 that connect the logic suplly to ground is 4.7uF at least, it is not necessary to add one more capacitor that close the IC,C2 can share the capacitor with RX2,MCU. if there are not capacitor between VCC and ground, if occur OTP, will cut in lock function, changing the singal input to recover, no lock stutas occur if the capacitor is over 4.7uF.

Pls mind:

1, the circuit can be damaged if reverse connection between supply and ground.adding 2 schottky diodes can prevent damage


- 2, decouple capacitor C1 has two function:1,absorb more motor energy to enable the voltage constant,avoid the over voltage damage.2,can spply high peak current for motor starting,the value of decople capacitor can be 4.7uF to 100Uf
 - 3, ESD protection: PLS note the ESD protection at any status, specially in production line.
 - 4, PLS make sure that do not short the output
 - 5, PLS make sure that do not short the Low output to the power supply
 - 6, PLS prevent the motor working abnormally.
 - 7, PLS make sure that the peak current do not over the rated current.

Heart and create Electronics Co. Ltd.

Package

DFN12:

SYMBOL	MILLMETER					
SIMBOL	MIN	NOM	MAX			
A	0.70	0.75	0.80			
A1	-	0.02	0.05			
b	0.16	0.23	0.28			
С	0.18	0.20	0.25			
D	2.90	3.00	3.10			
D2	2.40	2.50	2.60			
e	0.45BSC					
Nd		2.25BSC				
E	2.90	2.90 3.00				
E2	1.45	1.55	1.65			
L	0.30	0.40	0.50			
h	0.20	0.25	0.30			
L/F Base (mil)	106*75					

- **Version Log** V1.0 The primary version;
- V1.1 Revise some mistakes in the electric characteristic test condition.