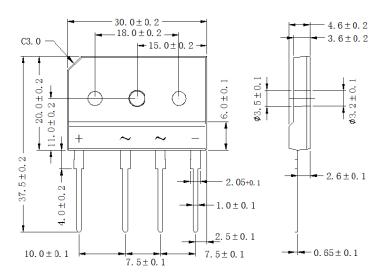


GBJ10005 thru **GBJ1010**

10.0 A Single-Phase Silicon Bridge Rectifier Rectifier Reverse Voltage 50 to 1000V

Features


- Ideal for printed circuit board mounting
- This series is UL listed under the Recognized Component Index, file number E484648
- The plastic material used carries Underwriters Laboratory flammability recognition 94V-0
- Built-in printed circuit board stand-offs
- High case dielectric strength
- High temperature soldering guaranteed 260 ℃/5 seconds at 5 lbs (2.3kg) tension

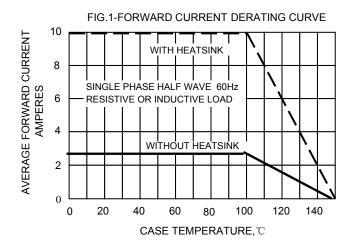
Mechanical Data

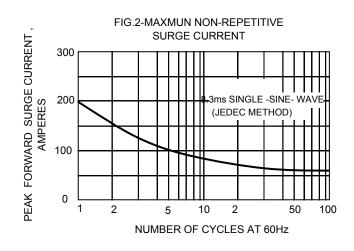
Case: Reliable low cost construction utilizing molded plastic technique

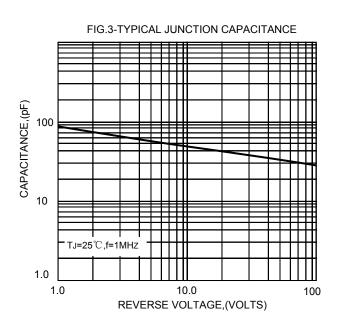
Terminals: Plated leads solderable per MIL-STD-202,

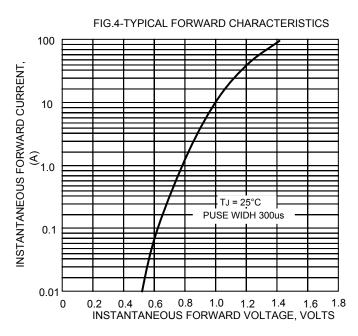
Method 208 Mounting Position: Any

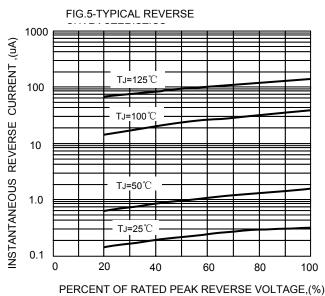
Dimensions in inches and (milimeters)


Maximum Ratings & Thermal CharacteristicsRating at 25 °C ambient temperature unless otherwise specified, Resistive or Inductive load, 60 Hz. For Capacitive load derate current by 20%.


SYMBOL	GBJ 10005	GBJ 1001	GBJ 1002	GBJ 1004	GBJ 1006	GBJ 1008	GBJ 1010	UNIT
VRRM	50	100	200	400	600	800	1000	V
VRMS	30	70	140	280	420	560	700	V
VDC	50	100	200	400	600	800	1000	V
Land	10.0 2.5							А
I(AV)								
IFSM 200								T
							Α	
VF	1.1							V
lo.	10							uA
IK	500							uA
Rejc	2.3							°C/W
TJ	-55 to +150							$^{\circ}\!\mathbb{C}$
Tstg	-55 to +150							$^{\circ}\!\mathbb{C}$
	VRRM VRMS VDC I(AV) IFSM V F IR Rejc TJ	10005 10005 VRRM 50 VRMS 30 VDC 50 I(AV) IFSM V F IR ReJC TJ TJ TJ TJ TJ TJ TJ	VRRM 50 1001 VRRM 50 100 VRMS 30 70 VDC 50 100 I(AV) IFSM V F IR Rejc TJ TJ TJ TJ TJ TJ TJ T	STMBOL 10005 1001 1002 VRRM 50 100 200 VRMS 30 70 140 VDC 50 100 200 I(AV) IFSM V F IR Rejic TJ	STMBOL 10005 1001 1002 1004	STMBOL 10005 1001 1002 1004 1006 VRRM 50 100 200 400 600 VRMS 30 70 140 280 420 VDC 50 100 200 400 600 I(AV) 2.5 IFSM 200 V F 1.1 IR 500 Rejic 2.3 TJ -55 to +150	Variable 10005 1001 1002 1004 1006 1008 Variable Variable 1000 200 400 600 800 Variable 30 70 140 280 420 560 Variable 50 100 200 400 600 800 I(AV)	STINDOL 10005 1001 1002 1004 1006 1008 1010 VRRM 50 100 200 400 600 800 1000 VRMS 30 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 I(AV) 2.5 IFSM 200 V F


NOTES: 1.Measured at 1.0MHz and applied reverse voltage of 4.0V DC.


2.Device mounted on 300mm*300mm*1.6mm cu plate heatsink.


Rating and Characteristic Curves (TA=25°C Unless otherwise noted) GBJ/KBJ10005 thru GBJ/KBJ1010

