High-Bandwidth, $\pm 15 k V$ ESD Protection LVDS Switch

Abstract

General Description

The MAX14979E is optimized for high-speed differential switching applications. The device is ideal for low-voltage differential signal (LVDS) and low-voltage positive emitter-coupled logic (LVPECL) switching applications. The MAX14979E provides enhanced electrostatic discharge (ESD) protection up to $\pm 15 \mathrm{kV}$ and excellent highfrequency response, making this device especially useful for interfaces that must go to an outside connection.
The MAX14979E provides extremely low capacitance (CON) as well as low resistance (RON) for low-insertion loss and bandwidth up to 650 MHz (1.3Gbps). In addition to the four pairs of double-pole/double-throw (DPDT) switches, the MAX14979E provides low-frequency (up to 50 MHz) and AUX switching that can be used for LED lighting or other applications.

The MAX14979E is available in a space-saving 36-pin TQFN package and operates over the standard $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Notebook Computers
Switch LVDS to Graphics Panels
LVDS and LVPECL Switching
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14979EETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

- $\pm 15 k V$ ESD Protected per MIL-STD-883, Method 3015
- Single +3.0V to +3.6V Power-Supply Voltage
- Low On-Resistance (Ron): 4Ω (typ), 6.5Ω (max)
- Low On-Capacitance (Con): 8pF (typ)
- -23dB Return Loss (100MHz)
- -3dB Bandwidth: 650MHz
- Built-In AUX Switches for Switching Indicators
- Low 450رA (max) Quiescent Current
- Bidirectional 8 to 16 Multiplexer/Demultiplexer
- Space-Saving, Lead-Free, 36-Pin, 6mm x 6mm TQFN Package

Eye Diagram

Typical Operating Circuit appears at end of data sheet.

High-Bandwidth, $\mathbf{\pm 1 5 k V}$ ESD Protection LVDS Switch

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 36-Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2.85 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $8^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$) $1^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLIES							
Operating Power-Supply Range	V+			+3.0		+3.6	V
ANALOG SWITCH							
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{ICOM}_{--}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{2}, \mathrm{COM}_{--}=0 \mathrm{~V}, 1.5 \mathrm{~V}, 3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4	5.5	Ω
			TMIN to TMAX			6.5	
On-Resistance AUX Switches	Ronaux	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\text {AUXO_ }}=-40 \mathrm{~mA}, \mathrm{~V}_{\text {AUXO_ }}=0 \mathrm{~V}, \\ & 1.5 \mathrm{~V}, 3 \mathrm{~V} \end{aligned}$				40	Ω
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{ICOM}_{-}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {com }}^{--}= \\ & =0 \mathrm{~V}, 3 \mathrm{~V}(\text { Note 3) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1.5	Ω
			TMIN to TMAX			2	
On-Resistance Flatness	RFlat(on)	$\begin{aligned} & \mathrm{V}_{+}=3 \mathrm{~V}, \mathrm{ICOM}_{--}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}^{--} \\ & =0 \mathrm{~V}, 1.5 \mathrm{~V} \end{aligned}$		0.01			Ω
Off-Leakage Current	ILCOM_ _(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{--}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NC}_{--}} \text {or } \mathrm{V}_{\mathrm{NO}_{--}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \\ & \hline \end{aligned}$		-1		+1	$\mu \mathrm{A}$
On-Leakage Current	$\begin{aligned} & \text { ILCOM_ } \\ & \text { (ON) } \end{aligned}$	$\begin{array}{\|l} \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{--} \\ =0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{NC}}^{-} \end{array}$		-1		+1	$\mu \mathrm{A}$

SWITCH AC PERFORMANCE

Insertion Loss	ILOS	$R S=R L=50 \Omega$, unbalanced, $f=1 \mathrm{MHz}$, (Note 3)		0.6	dB
Return Loss	RLOS	$\mathrm{f}=100 \mathrm{MHz}$		-23	dB
Crosstalk	VCT1	Any switch to any switch; $R S=R L=50 \Omega$, unbalanced, Figure 1	$\mathrm{f}=25 \mathrm{MHz}$	-50	dB
	$\mathrm{V}_{\text {CT2 }}$		$\mathrm{f}=125 \mathrm{MHz}$	-26	
SWITCH AC CHARACTERISTICS					
-3dB Bandwidth	BW	RS $=$ RL $=50 \Omega$, unbalanced		650	MHz
Off-Capacitance	COFF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{COM}_{-}$		3.5	pF
On-Capacitance	Con	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{COM}_{-}$		8	pF

High-Bandwidth, $\pm 15 k V$ ESD Protection LVDS Switch

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Note 2: Specifications at $\mathrm{TA}=-40^{\circ} \mathrm{C}$ are guaranteed by design.
Note 3: Guaranteed by design.

Figure 1. Single-Ended Bandwidth, Crosstalk, and Off-Isolation

High-Bandwidth, $\mathbf{\pm 1 5 k V}$ ESD Protection LVDS Switch

Figure 2. Turn-On and Turn-Off Times

Figure 3. Propagation Delay Times

Figure 4. Output Skew

High-Bandwidth, $\pm 15 k V$ ESD Protection LVDS Switch

 Typical Operating Characteristics($\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Bandwidth, $\mathbf{\pm 1 5 k V}$ ESD Protection LVDS Switch

*CONNECT EP TO GND.

Pin Description

PIN	NAME	
1	COMO-	Common LVDS Differential Terminal for Switch 0
2	COM1+	Common LVDS Differential Terminal for Switch 1
3	COM1-	Common LVDS Differential Terminal for Switch 1
4	AUX0A	AUXOA Input
5	AUX1A	AUX1A Output. Drive SEL low (SEL = 0) to connect AUX0A to AUX1A.
6	AUX2A	AUX2A Output. Drive SEL high (SEL = 1) to connect AUXOA to AUX2A.
7	COM2+	Common LVDS Differential Terminal for Switch 2
8	COM2-	Common LVDS Differential Terminal for Switch 2
9	COM3+	Common LVDS Differential Terminal for Switch 3
10	COM3-	Common LVDS Differential Terminal for Switch 3
11	GND	Ground
12	AUX0B	AUX0B Input
13	AUX1B	AUX1B Output. Drive SEL low (SEL = 0) to connect AUX0B to AUX1B.
14	AUX2B	AUX2B Output. Drive SEL high (SEL = 1) to connect AUX0B to AUX2B.
15	NO3-	Normally Open LVDS Differential Terminal for Switch 3
16	NO3+	Normally Open LVDS Differential Terminal for Switch 3
17	NC3-	Normally Closed LVDS Differential Terminal for Switch 3
18	NC3+	Normally Closed LVDS Differential Terminal for Switch 3
19	NO2-	Normally Open LVDS Differential Terminal for Switch 2
20	NO2+	Normally Open LVDS Differential Terminal for Switch 2
21	NC2-	Normally Closed LVDS Differential Terminal for Switch 2

High-Bandwidth, $\pm 15 k V$ ESD Protection LVDS Switch

Pin Description (continued)

PIN	NAME	
22	NC2+	Normally Closed LVDS Differential Terminal for Switch 2
23	NO1-	Normally Open LVDS Differential Terminal for Switch 1
24	NO1+	Normally Open LVDS Differential Terminal for Switch 1
25	NC1-	Normally Closed LVDS Differential Terminal for Switch 1
26	NC1+	Normally Closed LVDS Differential Terminal for Switch 1
27	SEL	Select Input. SEL selects switch connection. See Table1.
28	NO0-	Normally Open LVDS Differential Terminal for Switch 0
29	NO0+	Normally Open LVDS Differential Terminal for Switch 0
30	NC0-	Normally Closed LVDS Differential Terminal for Switch 0
31	NC0+	Normally Closed LVDS Differential Terminal for Switch 0
32	AUX2	AUX2 Output. Drive SEL high (SEL = 1) to connect AUX0 to AUX2.
33	AUX1	AUX1 Output. Drive SEL low (SEL = 0) to connect AUX0 to AUX1.
34	AUX0	AUX0 Input
35	V+	Positive-Supply Voltage Input. Bypass V+ to GND with a 0.14F ceramic capacitor.
36	COM0+	Common LVDS Differential Terminal for Switch 0
-	EP	Exposed Pad. Connect exposed pad to GND or leave it unconnected.

Detailed Description

The MAX14979E is a high-speed analog switch targeted at LVDS and other low-voltage switching up to 600 MHz . In a typical application, the MAX14979E switches two sets of LVDS sources to a laptop LVDS panel. For extra security, the MAX14979E is protected against $\pm 15 \mathrm{kV}$ ESD shocks. See the Functional Diagram.
With its low resistance and capacitance, as well as highESD protection, the MAX14979E can be used to switch most low-voltage differential signals, such as LVDS and LVPECL, as long as the signals do not exceed the maximum ratings of the device.
The MAX14979E switches provide low capacitance and on-resistance to meet low insertion loss and return-loss specifications. The MAX14979E has three additional AUX switches.

Digital Control Inputs

The MAX14979E provides a single digital control SEL. SEL controls the switches as well as the AUX switches, as shown in Table 1.

Analog-Signal Levels

The on-resistance of the MAX14979E is very low and stable as the analog input signals are swept from ground to V+ (see the Typical Operating Characteristics). The
switches are bidirectional, allowing COM _ _ and NC_ $ل$ NO_{-}_ to be configured as either inputs or outputs.

ESD Protection

The MAX14979E is characterized using the HBM for $\pm 15 \mathrm{kV}$ of ESD protection. Figure 5 shows the HBM. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor. All signal and control pins are ESD protected to $\pm 15 \mathrm{kV}$ HBM.

Figure 5. Human Body ESD Test Model (MIL-STD-883, Method 3015)

High-Bandwidth, $\pm 15 k V$ ESD Protection LVDS Switch

Functional Diagram

Table 1. Truth Table

SEL	CONNECTION
0	COM_{--}to $\mathrm{NC}_{--}, \mathrm{AUXO}_{-}$to $\mathrm{AUX1}_{-}$
1	COM_{--}to $\mathrm{NO}_{--}, \mathrm{AUXO}_{-}$to $\mathrm{AUX2}$

Typical Operating Circuit
The Typical Operating Circuit shows the MAX14979E in a dual graphics application.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep design-controlled-impedance PCB traces as short as possible. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.

Chip Information

PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
36 TQFN-EP	$T 3666+3$	$\underline{21-0141}$	$\underline{90-0050}$

High-Bandwidth, $\pm 15 k V$ ESD Protection LVDS Switch

Typical Operating Circuit

High-Bandwidth, $\mathbf{\pm 1 5 k V}$ ESD Protection LVDS Switch

11
MAX14979

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 10$	Initial release	-
1	$6 / 11$	Updated Package Thermal Characteristics style; corrected Pin Configuration and Pin Description for AUX1_ and AUX2_ pins	2,6

