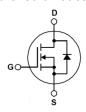


TSP50N20M 200V N-Channel MOSFET

General Description


This Power MOSFET is produced using Truesemi's advanced planar stripe DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 50A,200V,Max.R_{DS(on)}=0.046 Ω @ V_{GS} =10V
- · Low gate charge
- · High ruggedness
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings

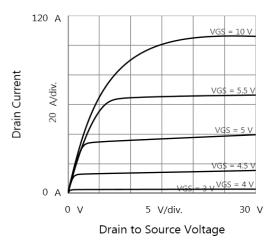
T_J=25°C unless otherwise specified

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted							
Parameter	Symbol	Value	Unit				
Drain-Source Voltage (note1)	V _{DSS}	200	V				
Continuous Drain Current	I _D	50	- А				
Pulsed Drain Current (note2)	I _{DM}	200					
Gate-Source Voltage	V_{GSS}	±20	V				
Single Pulse Avalanche Energy (note2)	E _{AS}	1700	mJ				
Power Dissipation	D	250	W				
Derating Factor above 25°C	P_{D}	2.4	W/ºC				
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55~+150	°C				

Thermal Resistance Characteristics

Thermal Resistance					
Parameter	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Case	R _{thJC}	0.5	00.004		
Thermal Resistance, Junction-to-Ambient	R _{thJA}	62.5	· °C/W		

Electrical Characteristics T_=25°C unless otherwise specified


Specifications $T_J = 25^{\circ}C$, unless other	erwise noted					
Parameter	Symbol	Total Completions	Value			
		Test Conditions	Min.	Тур.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V(BR)DSS	V _{GS} = 0V, I _D = 250μA	200			V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 200V, V _{GS} = 0V, T _J = 25°C			1	μΑ
Gate-Source Leakage	IGSS	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2		4	V
Drain-Source On-Resistance (Note4)	R _{DS(on)}	V _{GS} = 10V, I _D = 25A		0.041	0.046	Ω
Dynamic						
Input Capacitance	C _{iss}			4010		pF
Output Capacitance	C _{oss}	$V_{GS} = 0V,$ $V_{DS} = 25V,$		437		
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz		280		
Total Gate Charge	Qg	V _{DD} = 160V, I _D = 50A, V _{GS} 0 to 10V		244		nC
Gate-Source Charge	Qgs			16		
Gate-Drain Charge	Q _{gd}			144		
Turn-on Delay Time	^t d(on)	V _{DD} = 100V, I _D = 50A, VGS =10V.RG = 25Ω		53		
Turn-on Rise Time	t _r			65		ns
Turn-off Delay Time	^t d(off)			429		
Turn-off Fall Time	tf			230		
Drain-Source Body Diode Characte	ristics			•		
Continuous Source Current	I _{SD}	Integral PN-diode in MOSFET			50	۸
Pulsed Source Current	ISM				200	A
Body Forward Voltage	V _{SD}	I _S = 20A, V _{GS} = 0V			1.5	V
Reverse Recovery Time	t _{rr}	V _{GS} = 0V,I _F = 10A, di _F /dt =100A /μs		261		ns
Reverse Recovery Charge	Q _{rr}			2.04		μC

NOTES

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 10mH, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 3. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 1%

Typical Characteristics $T_J = 25^{\circ}$ C, unless otherwise noted

Figure 1. Output Characteristics (T_J = 25°C)

Figure 2. Transfer Characteristics

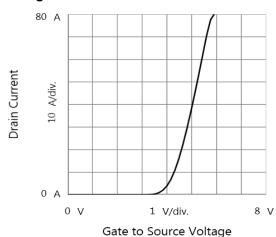
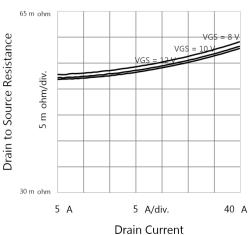



Figure 3. Drain to Source Resistance vs. Drain Current Figure 4. Drain to Source Resistance vs. Gate to Source Voltage

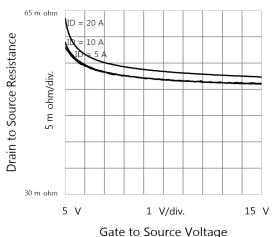


Figure 5. Drain to Source Voltage vs. Gate to Source Voltage

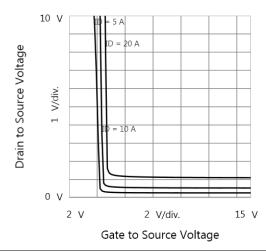
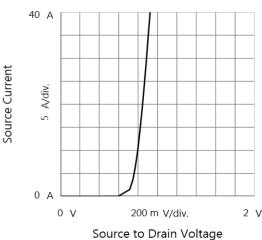
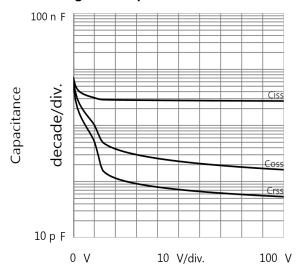




Figure 6. Body Diode Forward Characteristics

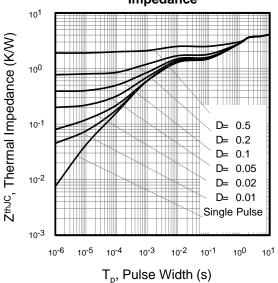
Typical Characteristics $T_J = 25^{\circ}$ C, unless otherwise noted

Figure 7. Capacitance

Gate to Source Voltage

1 V/div.

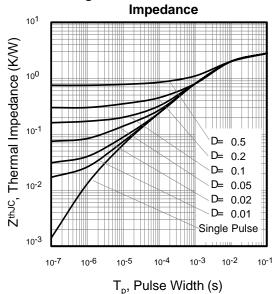
Figure 8. Gate Charge

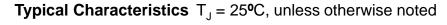

10 V

0 V

0 C

Drain to Source Voltage


Figure 9. Transient Thermal Impedance



Gate Charge
Figure 10. Transient Thermal

20 n C/div.

120 n C

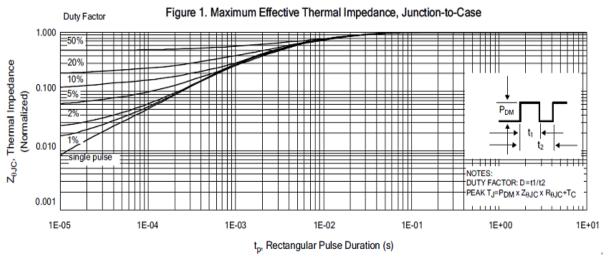


Figure 2. Maximum Power Dissipation vs Case Temperature

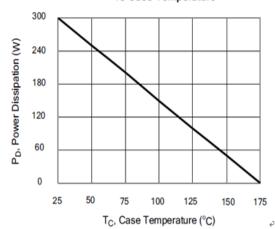


Figure 4. Typical Output Characteristics

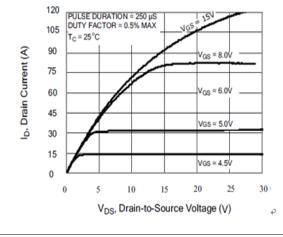


Figure 3. Maximum Continuous Drain Current vs Case Temperature

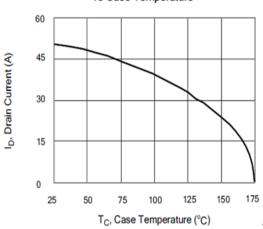
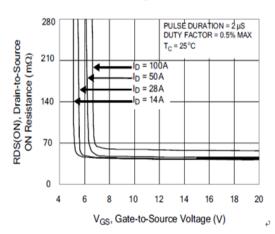
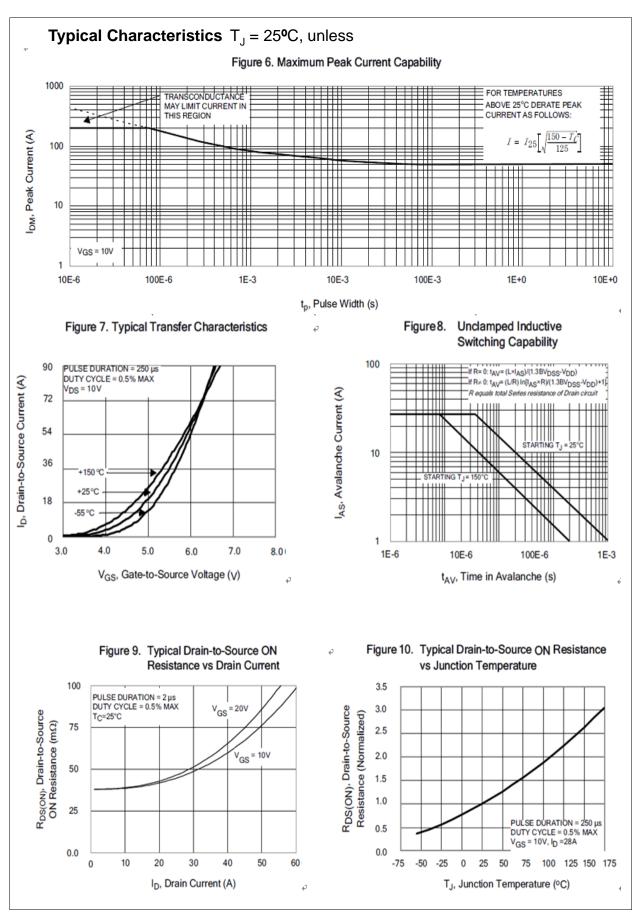




Figure 5. Typical Drain-to-Source ON Resistance vs Gate Voltage and Drain Current

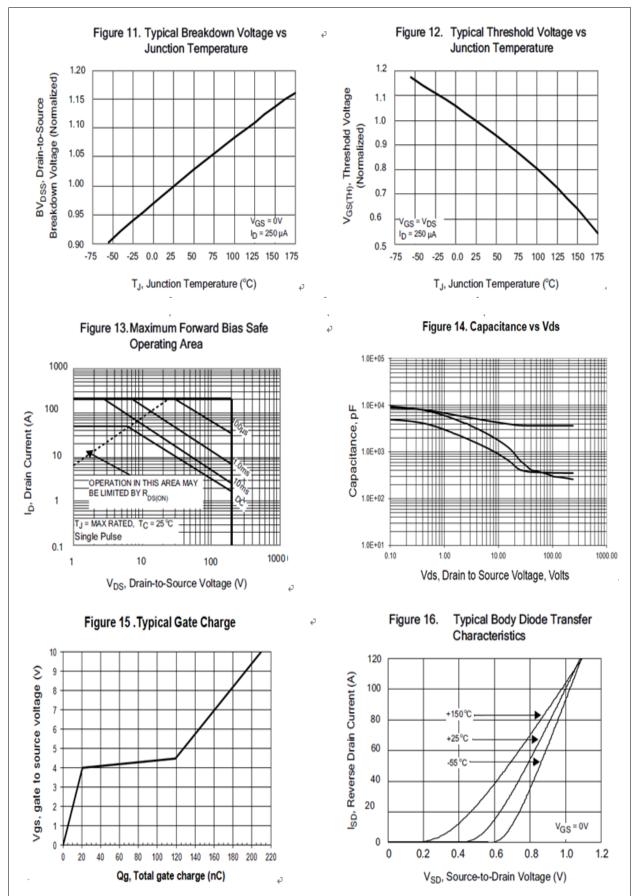


Figure A: Gate Charge Test Circuit and

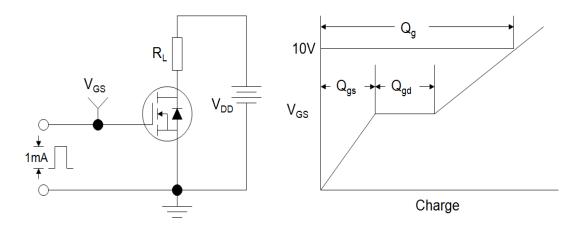


Figure B: Resistive Switching Test Circuit and Waveform

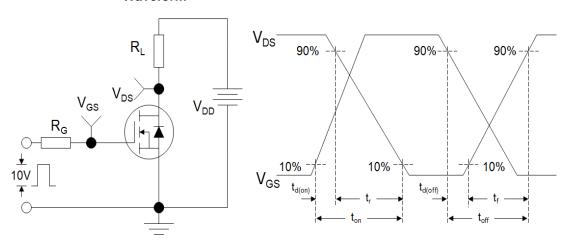
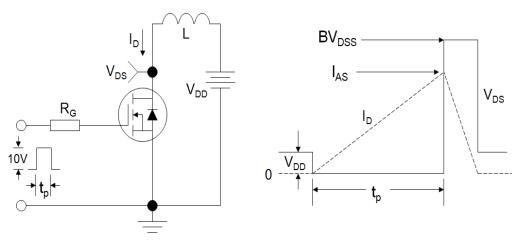



Figure C: Unclamped Inductive Switching Test Circuit and Waveform

Disclaimer

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Truesemi Semiconductor does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Truesemi Semiconductor.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Truesemi Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Truesemi Semiconductor for any damages arising or resulting from such use or sale.

Truesemi Semiconductor disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Truesemi Semiconductor terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Truesemi Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Truesemi Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Truesemi Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.