

250MHZ CMOS Rail-to-Rail Output Opamps

Features

• Single-Supply Operation from +2.5V ~ +5.5V

Rail-to-Rail Output

• -3dB Bandwidth(G=+1): 250MHz (Typ)

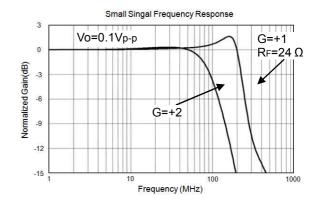
Low Input Bias Current: 1pA (Typ)

Quiescent Current: 2.8mA/Amplifier (Typ)
Operating Temperature: -40°C ~ +125°C

• Small Package:

HGV8051 Available in SOT23-5 and SC70-5 Packages HGV8052 Available in SOP-8,MSOP-8 and DFN-8 Packages

HGV8054 Available in SOP-14 and TSSOP-14 Packages


General Description

The HGV8051(single), HGV8052(dual), HGV8054(quad) are rail-to-rail output voltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input common-mode voltage range and output voltage swing, making them easy to use on single supplies as low as 2.5V. Despite being low cost, the HGV805X series provide excellent overall performance. They offer wide bandwidth to 250MHz (G = +1) along with 0.1dB flatness out to 52MHz (G = +2) and offer a typical low power of 2.8mA/amplifier.

The HGV805X series is low distortion and fast settling make it ideal for buffering high speed A/D or D/A converters. The HGV8051 has a power-down disable feature that reduces the supply current to 50μ A. These features make the HGV8051/2 ideal for portable and battery-powered applications where size and power are critical. All are specified over the extended -40 °C to +125 °C temperature range.

Applications

- Imaging
- Photodiode Preamp
- DVD/CD
- Filters
- Professional Video and Cameras
- Hand Sets
- Base Stations
- A-to-D Driver

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
HGV8051M5/TR	SOT23-5	8051	REEL	3000pcs/reel
HGV8051M7/TR	SC70-5	8051	REEL	3000pcs/reel
HGV8052M/TR	SOP-8L	V8052	REEL	2500pcs/reel
HGV8052MM/TR	MSOP-8L	8052	REEL	3000pcs/reel
HGV8052DQ/TR	DFN-8L	V8052	REEL	3000pcs/reel
HGV8054M/TR	SOP-14L	V8054	REEL	2500pcs/reel
HGV8084MT/TR	TSSOP-14L	V8054	REEL	2500pcs/reel

Pin Configuration

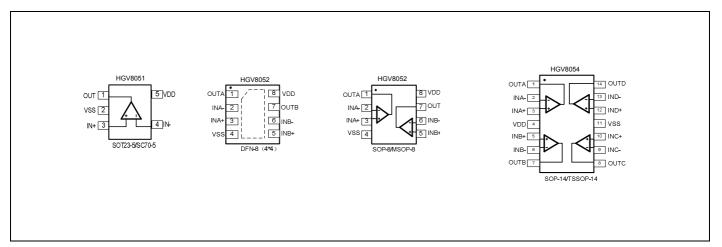


Figure 1. Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max			
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V			
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V			
PDB Input Voltage	Vss-0.5V	+7V			
Operating Temperature Range	-40°C	+125°C			
Junction Temperature	+160	D°C			
Storage Temperature Range	-55°C	+150°C			
Lead Temperature (soldering, 10sec)	+260	D°C			
Package Thermal Resistance (T _A =+25℃)					
SOP-8, θ _{JA}	125°0	C/W			
MSOP-8, θ _{JA}	216°0	C/W			
SOT23-5, θ _{JA}	190°0	C/W			
SC70-5, θ _{JA}	333°C/W				
ESD Susceptibility	•				
НВМ	6KV				
MM	400V				

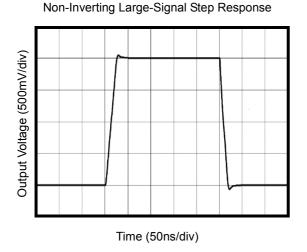
Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Performance Characteristics

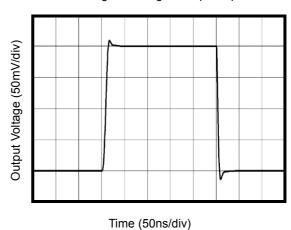
 $(G=+2, R_F=887\Omega, R_G=887\Omega, and R_L=150\Omega)$ connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

		HGV8051/52/54						
PARAMETER	CONDITIONS	TYP MIN/MAX OVER TEMPERATURE						
				0℃	-40°C to	-40℃		MIN
		+25℃	+25℃	to70℃	85℃	to125℃	UNITS	MAX
DYNAMIC PERFORMANCE								
-3dB Small Signal Bandwidth	G = +1, Vo = 0.1V p-p, R_F = 24 Ω, R_L = 150Ω	180					MHz	TYF
	G = +1, Vo = 0.1V p-p, R_F = 24 Ω , R_L = 1k Ω	250					MHz	TYP
	G = +2, Vo = $0.1V$ p-p, R_L = 50Ω	55					MHz	TYP
	$G = +2$, $Vo = 0.1V$ p-p, $R_L = 150\Omega$	93					MHz	TYF
	$G = +2$, Vo = 0.1V p-p, $R_L = 1$ kΩ	122					MHz	TYP
	$G = +2$, $Vo = 0.1V p-p$, $R_L = 10k\Omega$	130					MHz	TYF
Gain-Bandwidth Product	$G = +10, R_L = 150\Omega$	115					MHz	TYF
	$G = +10$, $R_L = 1k\Omega$	150					MHz	TYP
Bandwidth for 0.1dB Flatness	G = +2, Vo = 0.1V $_{p-p}$, R_L = 150 Ω , R_F =887 Ω	52					MHz	TYP
Slew Rate	G = +1, 2V Output Step	77/-151					V/ μ s	TYP
	G = +2, 2V Output Step	88/-119					V/ μ s	TYF
	G = +2, 4V Output Step	93/-131					V/ μ s	TYF
Rise-and-Fall Time	G = +2, Vo = $0.2V_{p-p}$, 10% to 90%	4.5					ns	TYP
	G = +2, Vo = 2V _{p-p} , 10% to 90%	18					ns	TYP
Settling Time to 0.1%	G = +2, 2V Output Step	50					ns	TYF
Overload Recovery Time	V _{IN} • G = +VS	18					ns	TYF
NOISE/DISTORTION PERFORMANCE								
Input Voltage Noise	f = 1MHz	4.9					nV/ Hz	TYP
Differential Gain Error (NTSC)	$G = +2, R_L = 150\Omega$	0.03					%	TYF
Differential Phase Error (NTSC)	$G = +2, R_L = 150\Omega$	0.08					degree	TYF
DC PERFORMANCE								
Input Offset Voltage (V _{OS})		±2	±8	±8.9	±9.5	±9.8	mV	MAX
Input Offset Voltage Drift		2					μ V/ °C	TYF
Input Bias Current (I _B)		1					PA	TYF
Input offset Current (I _{os})		2					PA	TYP
Open-Loop Gain (A _{OL})	$V_0 = 0.3V$ to 4.7V, $R_L = 150\Omega$	80	75	74	74	73	dB	MIN
	$V_0 = 0.2V \text{ to } 4.8V, R_L = 1k\Omega$	104	92	91	91	80	dB	MIN
INPUT CHARACTERISTICS								
Input Common-Mode Voltage Range (V_{CM})		-0.2 to +3.8					V	TYP
Common-Mode Rejection Ratio (CMRR)	V _{CM} = -0.1V to +3.5V	80	66	65	65	62	dB	MIN

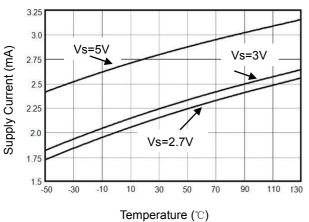
Electrical Performance Characteristics

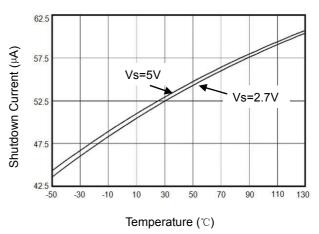

 $(G=+2, R_F=887\Omega, R_G=887\Omega, and R_L=150\Omega)$ connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A=+25$ °C.)

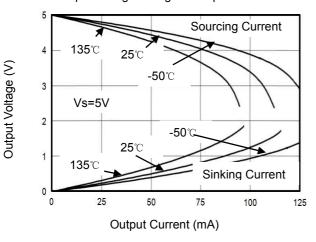
		HGV8051/52/54						
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
				0℃	-40℃to	-40℃		MIN/
		+25℃	+25℃	to70℃	85℃	to125℃	UNITS	MAX
OUTPUT CHARACTERISTICS								
Output Voltage Swing from Rail	$R_L = 150\Omega$	0.12					٧	TYP
	$R_L = 1k\Omega$	0.03					٧	TYP
Output Current		80	60				mA	MIN
Closed-Loop Output Impedance	f<100kHz	0.08					Ω	TYP
POWER-DOWN DISABLE								
(HGV8051/2 only)								
Turn-On Time		236					ns	TYP
Turn-Off Time		52					ns	TYP
DISABLE Voltage-Off			0.8				V	MAX
DISABLE Voltage-On			2				٧	MIN
POWER SUPPLY								
Operating Voltage Range			2.5	2.7	2.7	2.7	V	MIN
			5.5	5.5	5.5	5.5	V	MAX
Quiescent Current (per amplifier)		2.8	3.65				mA	MAX
Supply Current when Disabled per		50	70	85	100	137	μА	MAX
amplifier(HGV8051/2 only)								
Power Supply Rejection Ratio (PSRR)	ΔV_{S} = +2.7V to +5.5V, V_{CM} = (-V _S) +0.5	80	67	67	65	62	dB	MIN

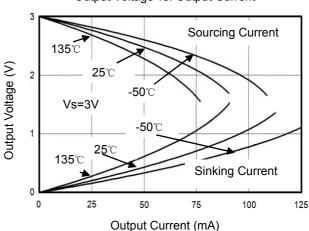


Typical Performance characteristics


 $(Vs=+5V,G=+2,R_F=887\Omega,RG=887\Omega,andR_L=150\Omega connected to Vs/2, unless otherwise noted. Typical values are at T_A =+25°C.)$

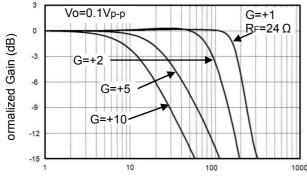

Non-Inverting Small-Signal Step Response

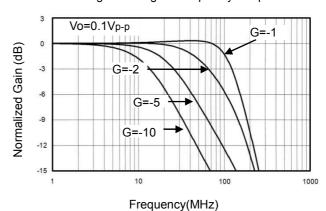

Supply Current vs. Temperature


Sutdown Current vs. Temperature

Output Voltage Swing vs. Output Current

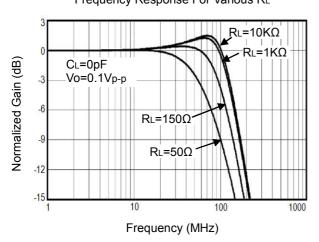
Output Voltage vs. Output Current



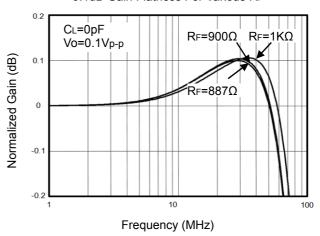

Typical Performance characteristics

 $((Vs=+5V,G=+2,R_F=887\Omega,R_G=887\Omega,and\ R_L=150\Omega connected\ to\ Vs/2,\ unless\ otherwise\ noted.\ Typical\ values\ are\ at\ T_A=+25^{\circ}C.)$

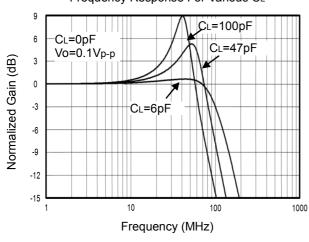
Non-Inverting Small Signal Frequency Response

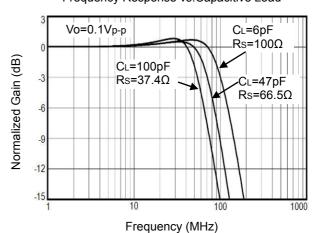


Inverting Small Signal Frequency Response



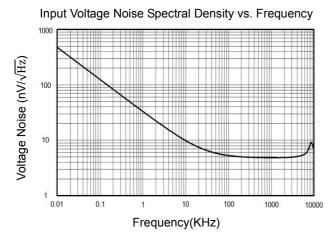
Frequency Response For Various RL

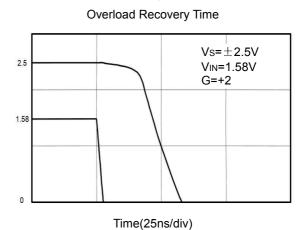

Frequency(MHz)


0.1dB Gain Flatness For Various RF

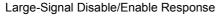
Frequency Response For Various CL

Frequency Response vs.Capacitive Load


Typical Performance characteristics


 $(Vs=+5V,G=+2,R_F=887\Omega,RG=887\Omega,and\ R_L=150\Omega connected\ to\ Vs/2,\ unless\ otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.)$

100


10

0.01

Closed-Loop Output Impedance vs Frequency

Output Voltage (1V/div)

Output Impedance (ohm) 0.1 0.01

Frequency (MHz)

10

100

0.1

Time (500n/div)

Application Note

Driving Capacitive Loads

HGV805X series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the HGV805X series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

HGV805X series operates from a single 2.5V to 5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 2.8mA per channel) of HGV805X series will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

HGV805X series operate under wide input supply voltage (2.5V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of HGV805X series can typically swing to less than 8mV from supply rail in light resistive loads (>1k Ω), and 30mV of supply rail in moderate resistive loads (150 Ω).

Capacitive Load Tolerance

The HGV805X family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

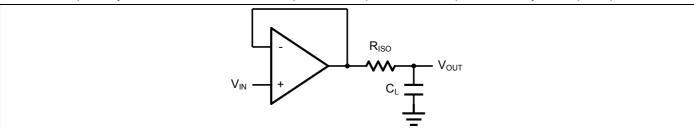


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the RISO resistor value, the more stable VOUT will be. However, if there is a resistive load RL in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

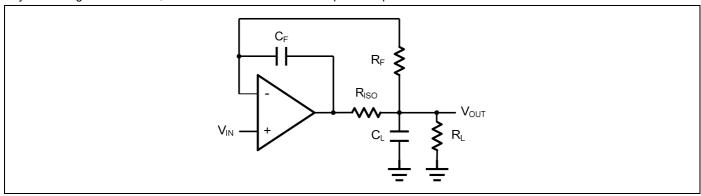


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using HGV805X.

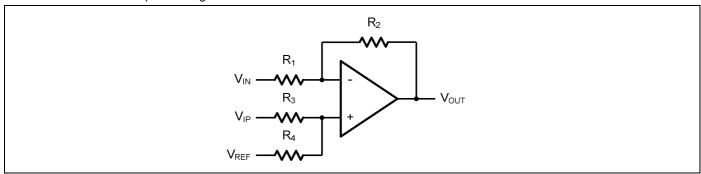


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_2 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_2 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3 C_1)$.

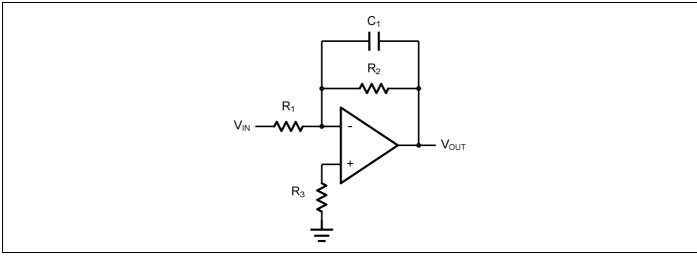


Figure 5. Low Pass Active Filter

Driving Video

The HGV805X can be used in video applications like in Figure 6.

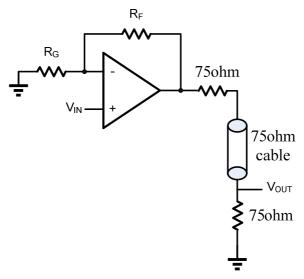
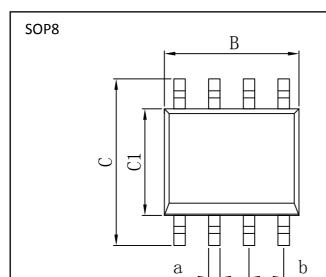
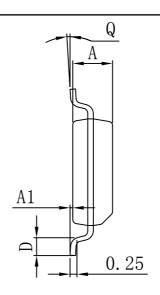
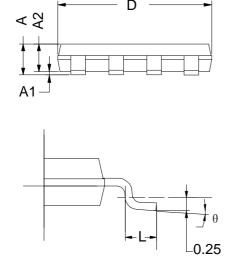
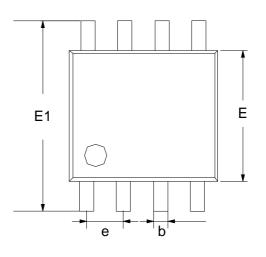
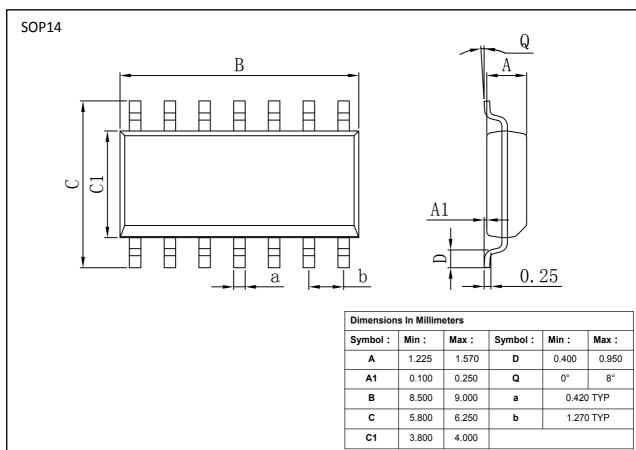




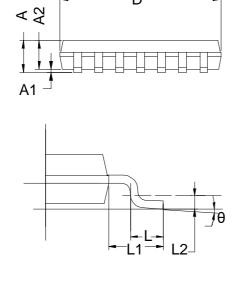
Figure 6. Typical video driving

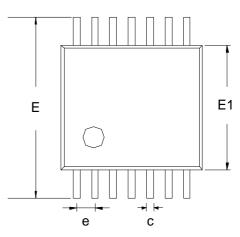


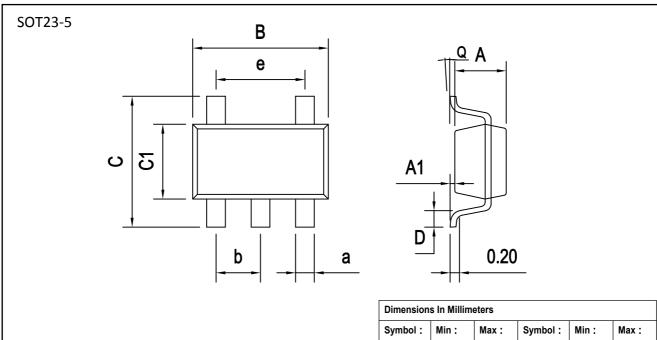


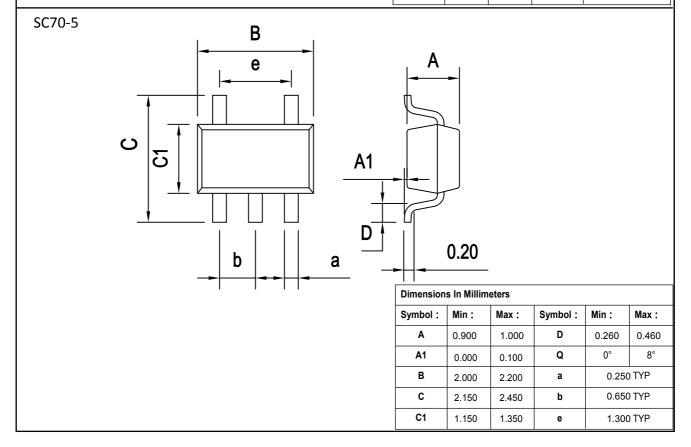
Dimensions In Millimeters							
Symbol:	Min:	Max:	Symbol:	Min:	Max:		
Α	1.225	1.570	D	0.400	0.950		
A1	0.100	0.250	Q	0°	8°		
В	4.800	5.100	а	0.420	TYP		
С	5.800	6.250	b	1.270) TYP		
C1	3.800	4.000		•			



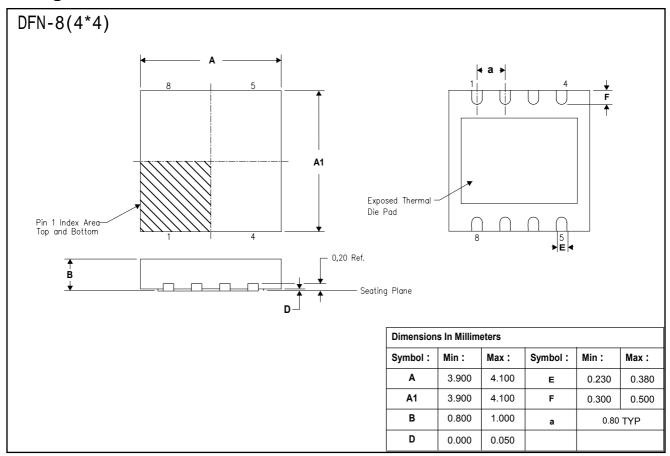



Dimensions In Millimeters							
Symbol:	Min:	Max:	Symbol :	Min :	Max:		
Α	0.800	1.200	E1	4.700	5.100		
A1	0	0.200	L	0.410	0.650		
A2	0.760	0.970	θ	0°	6°		
D	2.900	3.100	b	0.300 TYP			
E	2.900	3.100	е	0.650 TYP			





Dimensions In Millimeters							
Symbol :	Min:	Max:	Symbol:	Min:	Max:		
Α	0.950	1.200	E1	4.300	4.500		
A1	0.050	0.150	L	0.450	0.750		
A2	0.800	1.000	θ	0°	8°		
В	0.200	0.280	е	0.650	BSC		
С	0.100	0.190	L1	1.000	REF		
D	4.860	5.060	L2	1.250	BSC		
Е	6.200	6.600					



Dimensions In Millimeters								
Symbol:	Min :	Max:	Symbol:	Min:	Max:			
Α	1.050	1.150	D	0.300	0.600			
A1	0.000	0.100	Q	0°	8°			
В	2.820	3.020	а	0.400 TYP				
С	2.650	2.950	b	0.950 TYP				
C1	1.500	1.700	е	1.900 TYP				

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Huaguan Semiconductor Co,Ltd. the performance of the semi conductor products produced by the company can reach the performance indicators that can be applied at the time of sales. the use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan semicondu ctor. Not all parameters of each device need to be tested. The above documents are for reference only, and all are subject to the physical parameters.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

http://www.hgsemi.com.cn 16 2022 MAR