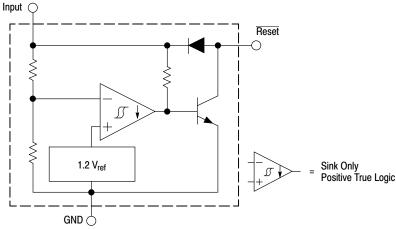


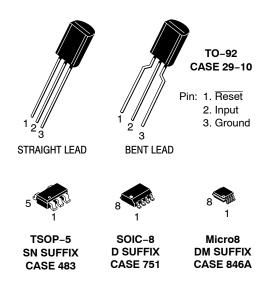
Micropower Undervoltage Sensing Circuits


MC34164, MC33164, NCV33164

The MC34164 series are undervoltage sensing circuits specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is required. These devices offer the designer an economical solution for low voltage detection with a single external resistor. The MC34164 series features a bandgap reference, a comparator with precise thresholds and built–in hysteresis to prevent erratic reset operation, an open collector reset output capable of sinking in excess of 6.0 mA, and guaranteed operation down to 1.0 V input with extremely low standby current. The MC devices are packaged in 3–pin TO–92 (TO–226AA), micro size TSOP–5, 8–pin SOIC–8 and Micro8 surface mount packages. The NCV device is packaged in SOIC–8.

Applications include direct monitoring of the 3.0 V or 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment.

Features


- Temperature Compensated Reference
- Monitors 3.0 V (MC34164–3) or 5.0 V (MC34164–5) Power Supplies
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 6.0 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation With 1.0 V Input
- Extremely Low Standby Current: As Low as 9.0 μA
- Economical TO-92 (TO-226AA), TSOP-5, SOIC-8 and Micro8 Surface Mount Packages
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- These Devices are Pb-Free and are RoHS Compliant

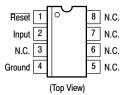

1

Figure 1. Representative Block Diagram

This device contains 28 active transistors.

PIN CONNECTIONS

TSOP-5

Pin 1. Ground

2. Input

- 3. Reset
- 4. NC
- 5. NC

TO-92

- Pin 1. Reset
 - Input
 Ground

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 8 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Input Supply Voltage	V _{in}	-1.0 to 12	V
Reset Output Voltage	Vo	-1.0 to 12	V
Reset Output Sink Current	I _{Sink}	Internally Limited	mA
Clamp Diode Forward Current, Reset to Input Pin (Note 1)	IF	100	mA
Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air D Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air DM Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air Operating Junction Temperature	P _D R _{θJA} P _D R _{θJA} P _D R _{θJA}	700 178 700 178 520 240 +150	mW °C/W mW °C/W mW °C/W
Operating Ambient Temperature Range MC34164 Series MC33164 Series, NCV33164	T _A	0 to +70 - 40 to +125	°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM)	ESD	4000 200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MC34164-3, MC33164-3 SERIES, NCV33164-3

ELECTRICAL CHARACTERISTICS (For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies [Notes 2 & 3], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
COMPARATOR					
Threshold Voltage High State Output (V _{in} Increasing) Low State Output (V _{in} Decreasing) Hysteresis (I _{Sink} = 100 μA)	V _{IH} V _{IL} V _H	2.55 2.55 0.03	2.71 2.65 0.06	2.80 2.80 –	V
RESET OUTPUT	- 1			ı	
Output Sink Saturation $ \begin{aligned} &(V_{in}=2.4 \text{ V, } I_{Sink}=1.0 \text{ mA}) \\ &(V_{in}=1.0 \text{ V, } I_{Sink}=0.25 \text{ mA}) \end{aligned} $	V _{OL}	-	0.14 0.1	0.4 0.3	V
Output Sink Current (V _{in} , Reset = 2.4 V)	I _{Sink}	6.0	12	30	mA
Output Off-State Leakage (V _{in} , Reset = 3.0 V) (V _{in} , Reset = 10 V)	^l R(leak)	- -	0.02 0.02	0.5 1.0	μА
Clamp Diode Forward Voltage, Reset to Input Pin (I _F = 5.0 mA)	V _F	0.6	0.9	1.2	V
TOTAL DEVICE					
Operating Input Voltage Range	V _{in}	1.0 to 10	-	_	V
Quiescent Input Current $ V_{in} = 3.0 \text{ V} $ $ V_{in} = 6.0 \text{ V} $	I _{in}	- -	9.0 24	15 40	μΑ

MC34164-5, MC33164-5 SERIES, NCV33164-5

ELECTRICAL CHARACTERISTICS (For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies [Notes 5 & 6], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
COMPARATOR					
Threshold Voltage High State Output (V _{in} Increasing) Low State Output (V _{in} Decreasing) Hysteresis (I _{Sink} = 100 μA)	V _{IH} V _{IL} V _H	4.15 4.15 0.02	4.33 4.27 0.09	4.45 4.45 –	V
RESET OUTPUT	•	•		•	
Output Sink Saturation $ \begin{aligned} &(V_{in}=4.0 \text{ V}, I_{Sink}=1.0 \text{ mA}) \\ &(V_{in}=1.0 \text{ V}, I_{Sink}=0.25 \text{ mA}) \end{aligned} $	V _{OL}	- -	0.14 0.1	0.4 0.3	V
Output Sink Current (V _{in} , Reset = 4.0 V)	I _{Sink}	7.0	20	50	mA
Output Off-State Leakage (V _{in} , Reset = 5.0 V) (V _{in} , Reset = 10 V)	^I R(leak)		0.02 0.02	0.5 2.0	μΑ
Clamp Diode Forward Voltage, Reset to Input Pin (I _F = 5.0 mA)	V _F	0.6	0.9	1.2	V
TOTAL DEVICE	•	•		•	
Operating Input Voltage Range	V _{in}	1.0 to 10	-		V
Quiescent Input Current V _{in} = 5.0 V V _{in} = 10 V	l _{in}	- -	12 32	20 50	μΑ

^{4.} Maximum package power dissipation limits must be observed.

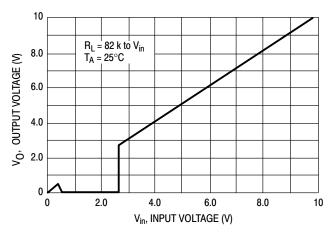


Figure 2. MC3X164-3 Reset Output Voltage versus Input Voltage

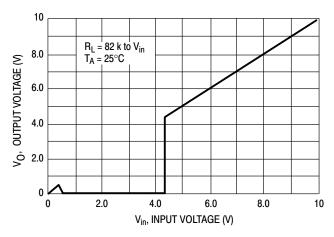


Figure 3. MC3X164-5 Reset Output Voltage versus Input Voltage

^{5.} Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

^{6.} $T_{low} = 0$ °C for MC34164 $T_{high} = +70$ °C for MC34164

^{= -40°}C for MC33164, NCV33164 = +125°C for MC33164, NCV33164

^{7.} NCV prefix is for automotive and other applications requiring site and change control.

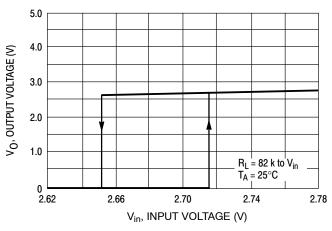


Figure 4. MC3X164-3 Reset Output Voltage versus Input Voltage



Figure 5. MC3X164-5 Reset Output Voltage versus Input Voltage

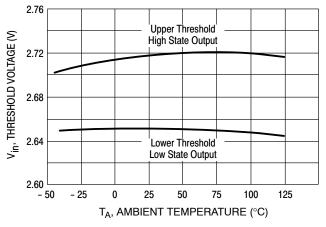


Figure 6. MC3X164-3 Comparator Threshold Voltage versus Temperature

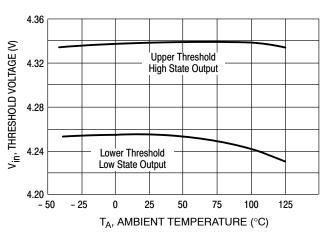


Figure 7. MC3X164-5 Comparator Threshold Voltage versus Temperature

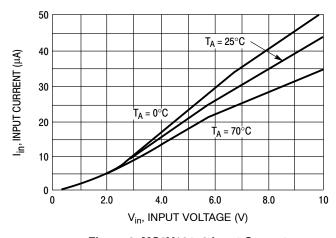


Figure 8. MC3X164-3 Input Current versus Input Voltage

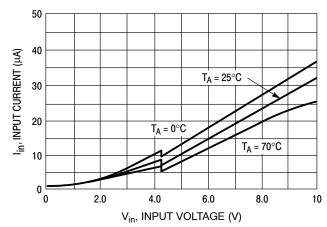


Figure 9. MC3X164-5 Input Current versus Input Voltage

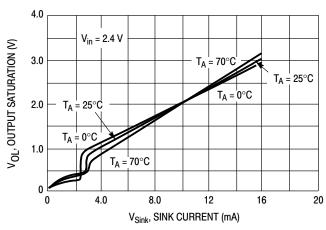


Figure 10. MC3X164-3 Reset Output Saturation versus Sink Current

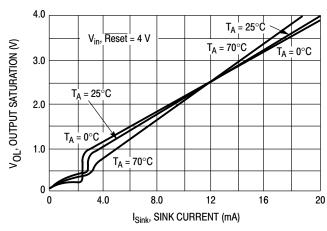


Figure 11. MC3X164-5 Reset Output Saturation versus Sink Current

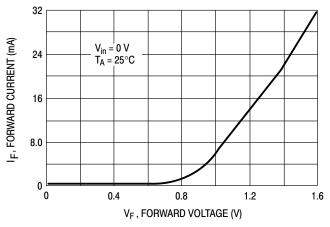


Figure 12. Clamp Diode Forward Current versus Voltage

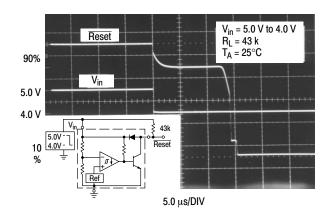
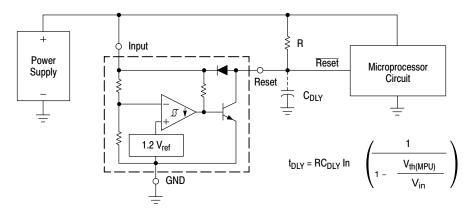
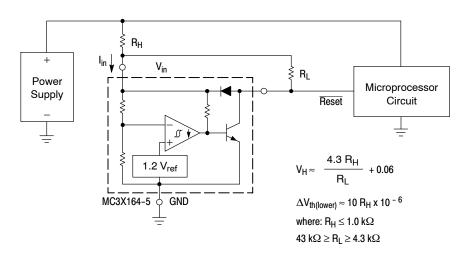
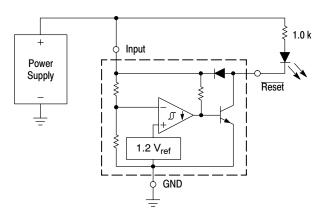




Figure 13. Reset Delay Time (MC3X164-5 Shown)

A time delayed reset can be accomplished with the addition of C_{DLY} . For systems with extremely fast power supply rise times (< 500 ns) it is recommended that the RC_{DLY} time constant be greater than 5.0 μ s. $V_{th(MPU)}$ is the microprocessor reset input threshold.


Figure 14. Low Voltage Microprocessor Reset

	Test Data					
V _H (mV)	ΔV_{th} (mV)	R _H (Ω)	R _L (kΩ)			
60	0	0	43			
103	1.0	100	10			
123	1.0	100	6.8			
160	1.0	100	4.3			
155	2.2	220	10			
199	2.2	220	6.8			
280	2.2	220	4.3			
262	4.7	470	10			
306	4.7	470	8.2			
357	4.7	470	6.8			
421	4.7	470	5.6			
530	4.7	470	4.3			

Comparator hysteresis can be increased with the addition of resistor R_H . The hysteresis equation has been simplified and does not account for the change of input current I_{in} as V_{in} crosses the comparator threshold (Figure 8). An increase of the lower threshold $\Delta V_{th(lower)}$ will be observed due to I_{in} which is typically 10 μ A at 4.3 V. The equations are accurate to $\pm 10\%$ with R_H less than 1.0 k Ω and R_L between 4.3 k Ω and 43 k Ω .

Figure 15. Low Voltage Microprocessor Reset With Additional Hysteresis (MC3X164-5 Shown)

Reset Solar Cells

1.2 V_{ref}

Figure 16. Voltage Monitor

Figure 17. Solar Powered Battery Charger

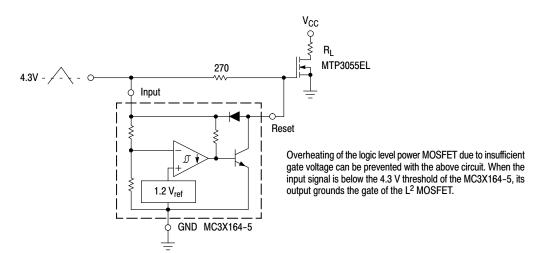


Figure 18. MOSFET Low Voltage Gate Drive Protection Using the MC3X164-5

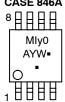
ORDERING INFORMATION

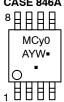
Device	Package	Shipping [†]
MC33164D-3G	SOIC-8 (Pb-Free)	98 Units / Rail
MC33164D-3R2G	SOIC-8 (Pb-Free)	OFOO Units / Tana 9 Dash
NCV33164D-3R2G*	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
MC33164DM-3R2G	Micro8 (Pb-Free)	4000 Units / Tape & Reel
MC33164P-3G	TO-92 (Pb-Free)	2000 Units / Box
MC33164P-3RAG	TO-92 (Pb-Free)	2000 Units / Tape & Reel
MC33164P-3RPG	TO-92 (Pb-Free)	2000 Units / Pack
MC33164D-5G	SOIC-8 (Pb-Free)	98 Units / Rail
MC33164D-5R2G	SOIC-8 (Pb-Free)	
NCV33164D-5R2G*	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
MC33164DM-5R2G	Micro8 (Pb-Free)	4000 Units / Tape & Reel
MC33164P-5G	TO-92 (Pb-Free)	2000 Units / Box
MC33164P-5RAG	TO-92 (Pb-Free)	2000 Units / Tape & Reel
MC33164P-5RPG	TO-92 (Pb-Free)	2000 Units / Pack
MC34164D-3G	SOIC-8 (Pb-Free)	98 Units / Rail
MC34164D-3R2G	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
MC34164DM-3R2G	Micro8 (Pb-Free)	4000 Units / Tape & Reel
MC34164P-3G	TO-92 (Pb-Free)	2000 Units / Box
MC34164P-3RPG	TO-92 (Pb-Free)	2000 Units / Pack
MC34164D-5G	SOIC-8 (Pb-Free)	98 Units / Rail
MC34164D-5R2G	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
MC34164DM-5R2G	Micro8 (Pb-Free)	4000 Units / Tape & Reel
MC34164SN-5T1G	TSOP-5 (Pb-Free)	3000 Units / Tape & Reel
MC34164P-5G	TO-92 (Pb-Free)	2000 Units / Box
MC34164P-5RAG	TO-92 (Pb-Free)	2000 Units / Tape & Reel
MC34164P-5RPG	TO-92 (Pb-Free)	2000 Units / Pack
	(=/	1

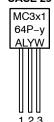
^{*}NCV33164: $T_{low} = -40$ °C, $T_{high} = +125$ °C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

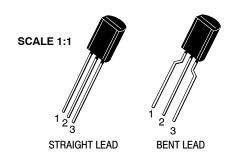
PIN CONNECTIONS AND MARKING DIAGRAMS


TSOP-5 SN SUFFIX CASE 483


SOIC-8 D SUFFIX CASE 751

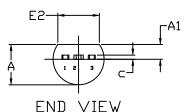

Micro8 MC33164DM CASE 846A

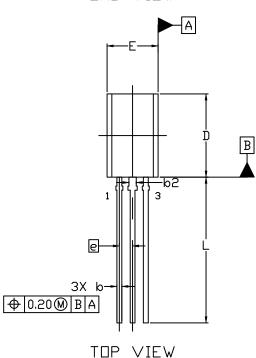
Micro8 MC34164DM CASE 846A


TO-92 MC3x164P-yRA MC3x164P-yRP MC3x164P-y CASE 29

SRC = Device Code

x = Device Number 3 or 4 y = Suffix Number 3 or 5 A = Assembly Location


L = Wafer Lot Y = Year W = Work Week ■ = Pb-Free



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

STRAIGHT LEAD

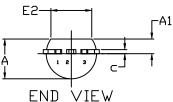
NOTES:

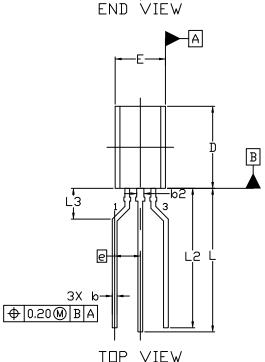
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Δ	3.75	3.90	4.05	
A1	1.28	1.43	1.58	
Ø	0.38	0.465	0.55	
ρQ	0.62	0.70	0.78	
C	0.35	0.40	0.45	
D	7.85	8.00	8.15	
E	4.75	4.90	5.05	
E2	3.90			
е	1.27 BSC			
L	13.80	14.00	14.20	

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	M.	ILLIMETER	22
DIM	MIN.	N□M.	MAX.
Α	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
С	0.35	0.40	0.45
D	7.85	8.00	8.15
Е	4.75	4.90	5.05
E2	3.90		
O.		2.50 BSC	
L	13.80	14.00	14.20
L2	13.20	13.60	14.00
L3	·	3.00 REF	

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE D

DATE 05 MAR 2021

2.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	PIN 1. 2.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	
	GATE	PIN 1.	SOURCE DRAIN	PIN 1. 2.	DRAIN	2.	BASE 1 EMITTER BASE 2		CATHODE GATE ANODE
2.	CATHODE & ANODE	2.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	2.	ANODE 1 GATE CATHODE 2		EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1
2.	ANODE	DINI 1	COLLECTOR BASE EMITTER	PIN 1	ANODE	PIN 1. 2.	GATE ANODE CATHODE	2.	NOT CONNECTED CATHODE ANODE
2.		PIN 1. 2.		PIN 1. 2.	GATE	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	V _{CC}		MT	PIN 1. 2.		PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	
		STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

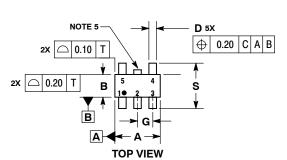
L = Wafer Lot Y = Year

W = Work Week

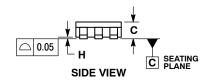
= Pb-Free Package

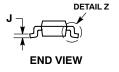
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

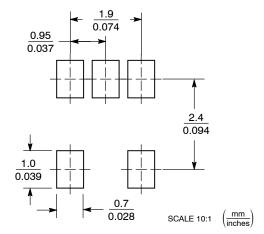

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
C	0.90	1.10	
D	0.25	0.50	
G	0.95	BSC	
Н	0.01	0.10	
J	0.10	0.26	
K	0.20	0.60	
М	0 °	10 °	
S	2.50	3.00	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

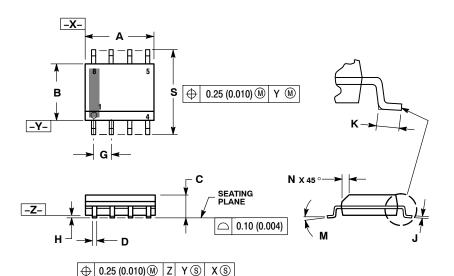
= Year = Pb-Free Package

= Work Week W

= Pb-Free Package

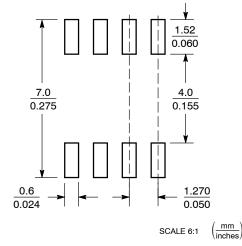
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

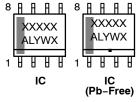

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	TSOP-5		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

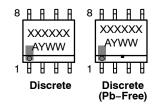

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		MILLIMETERS INCHES		HES
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

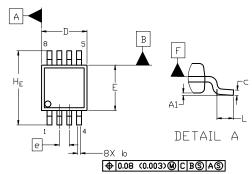
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

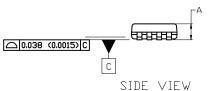
SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 3: PIN 1. DRAIN, PIE #1 CTOR, #1 CTOR, #2 CTOR, #1 CTOR, #2 CTOR, #2 CTOR, #2 CTOR, #2 CTOR, #1	2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #1 Vd STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN 8. TYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #1
E PIN 1. INPUT 2. EXTERNAL BY 3. THIRD STAGE 4. GROUND E 5. DRAIN 6. GATE 3 7. SECOND STAGE 8. FIRST STAGE STYLE 11: ID PIN 1. SOURCE 1 2. GATE 1 T 3. SOURCE 2 ID 4. GATE 2 ID 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 ID 8. DRAIN 1 ID	PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 Vd 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN 8. TYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2
ID PIN 1. SOURCE 1 2. GATE 1 T 3. SOURCE 2 ID 4. GATE 2 ID 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 ID 8. DRAIN 1 STYLE 15: RCE PIN 1. ANODE 1 E 2. ANODE 1 RCE 3. ANODE 1	PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2
STYLE 15: RCE PIN 1. ANODE 1 E 2. ANODE 1 RCE 3. ANODE 1	PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2
N 7. CATHODE, CON N 8. CATHODE, CON	MMON 5. COLLECTOR, DIE #2 MMON 6. COLLECTOR, DIE #2 MMON 7. COLLECTOR, DIE #1 MMON 8. COLLECTOR, DIE #1
STYLE 19: PIN 1. SOURCE 1 E 2. GATE 1 E 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 DE 7. DRAIN 1 DE 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 23: E1 PIN 1. LINE 1 IN DN CATHODE/VCC 2. COMMON ANC DN CATHODE/VCC 3. COMMON ANC E3 4. LINE 2 IN DN ANODE/GND 5. LINE 2 OUT E4 6. COMMON ANC E5 7. COMMON ANC DN ANODE/GND 8. LINE 1 OUT	ODE/GND 2. EMITTER ODE/GND 3. COLLECTOR/ANODE
STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN
1 1	
;	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ E 5. SOURCE E 6. SOURCE E 7. SOURCE 8. DRAIN

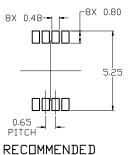

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when accessed already from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

MOUNTING FOOTPRINT

DIM	MI	LLIMETE	RS
ויונע	MIN.	N□M.	MAX.
Α	-	-	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
c	0.13	0.18	0.23
D	2.90	3.00	3.10
Ε	2.90	3.00	3.10
е	0.65 BSC		
HE	4.75	4.90	5.05
L	0.40	0.55	0.70

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
SOURCE	2. GATE 1	2. N-GATE
SOURCE	3. SOURCE 2	3. P-SOURCE
GATE	4. GATE 2	4. P-GATE
DRAIN	5. DRAIN 2	5. P-DRAIN
DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	MICRO8		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative