

Description

SE9027 is a complete constant-current & constant voltage linear charger for single cell lithium-ion and Lithium-Polymer batteries with direct interface with standard USB port. SE9027 is specifically designed to work within USB power specification and direct interface.

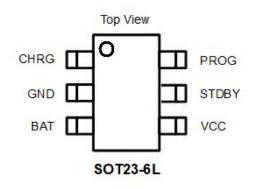
SE9027 integrates an internal Mid voltage block to prevent accidental high voltage spike from USB port such as line-inrush voltage and mistaken high voltages from QC3/ACP/AFC adaptors.

SE9027 will block all incoming voltage if 6.5V or above is detected. When Vin falls within 6.5V, the internal Power MOS is turned on and starts the normal charging cycle.

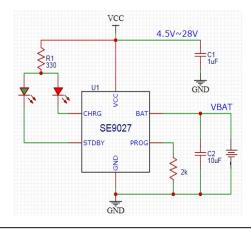
The charge voltage is fixed at 4.2V/4.35V, and the charge current can be programmed externally with a single resistor. The SE9027 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

When the input supply (wall adapter or USB supply) is removed, the SE9027 automatically enters a low current stage, dropping the battery drain current to less than 2uA.

Other features include charge current monitor, undervoltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage. SE9027 is intentionally designed to have slightly negative Tempco. This provides extra protection to Lithium battery during charging.


Features

- Over Voltage Protection (OVP) at 6.5V
- Max Input (Vin) up to 28V
- Programmable Charge Current Up to 600mA.
- No MOSFET, Sense Resistor or Blocking Diode Required.
- Constant-Current/Constant-Voltage Operation with Thermal Protection to Maximize Charge Rate without Risk of Overheating.
- Charges Single Cell Li-Ion Batteries Directly from USB Port.
- Preset 4.2V/4.35V Charge Voltage with ±1% Accuracy..
- 2.9V Trickle Charge Threshold
- Soft-Start Limits Inrush Current.
- Battery reverse protection
- Available in 6-Lead SOT-23


Application

- > Cellular Telephones, PDA's, MP3 Players.
- Charging Docks and Cradles
- Bluetooth Applications

Pin Configuration

Application Diagram

Ordering Information

Part Number	Marking Information	Package	Remarks
SE9027-42-HF	027AX	00700	A: 4.2V; C: 4.35V
SE9027-435-HF	027CX	SOT23-6	X means Production week batch HF means Halogen Free

Pin Functions

Pin	Pin Function Description	Pin	Pin Function Description
vcc	Positive Input Supply Voltage. Provides power to the charger and should be bypassed with at least a 1µF capacitor.	CHRG	Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is pulled low by an internal N-channel MOSFET. When the charge cycle is completed, the CHRG pin is HiZ
GND	Ground.	PROG	Charge Current Program/Monitor and Shutdown Pin.
ВАТ	Charge Current Output. Provides charge current to the battery and regulates the final float voltage to 4.2V/4.35V.	STDBY	Open-Drain Charge Termination Status Output. When the battery is charging, the STDBY pin is pulled high by an external compenent. After the charging is completed, this pin is pulled low by internal N-channel MOSFET

Absolute Maximum Rating (1)

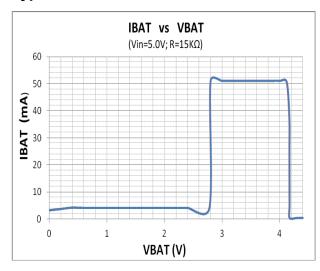
Parameter	Symbol	Value	Units
Input Supply Voltage	V _{cc}	-0.3V~28V	V
BAT Voltage	Vbat	-0.3V~11V	V
PROG Voltage	V_{PROG}	-0.3V~7V	V
CHRG Voltage	V_{CHRG}	-0.3V~28V	V
Thermal Resistance, Junction-to-Ambient	Θ_{JA}	250 (SOT-23-6)	°C/W
BAT Pin Current	I _{BAT}	800	mA
PROG Pin Current	I _{PROG}	800	μΑ
Maximum Junction Temperature	TJ	125	°C
Storage Temperature	Ts	-65 to +125	°C
Lead Temperature (Soldering, 10 sec)		260±5	°C

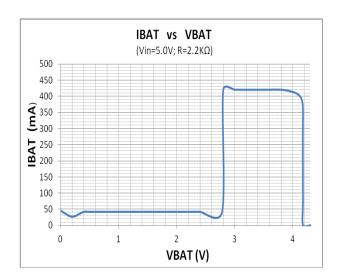
Operating Rating (2)

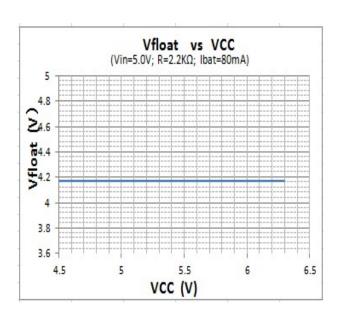
Parameter	Symbol	Value	Units
Supply Input Voltage	V _{IN}	4.5 to 25	V
Junction Temperature	TJ	-20 to +85	°C

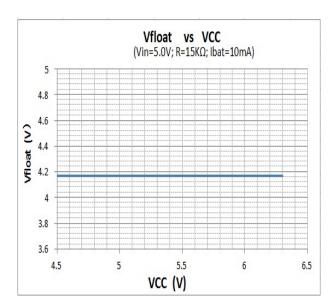
Electrical Characteristics

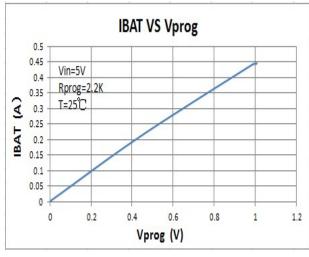
 V_{IN} = 5V; T_J = 25°C; unless otherwise specified.

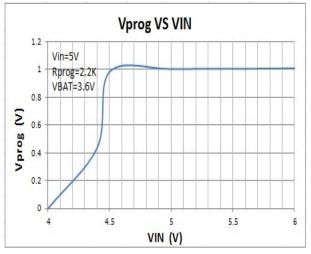

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	Input Supply Voltage		4.5		25	V
		Charge Mode ⁽³⁾ , R _{PROG} = 10k		1000		μA
Icc	Input Supply Current	Standby Mode (Charge Terminated)		170		μA
		Shutdown Mode ($V_{CC} < V_{BAT}$, or $V_{CC} < V_{UV}$)		40		μA
V	Demilated Output /Fleet\\/eltere	L = 20mA PPP 00=10V	4.158	4.2	4.242	\ \
V _{FLOAT}	Regulated Output (Float)Voltage	I _{BAT} = 30mA, RPROG=10K	4.306	4.35	4.394	V
		R _{PROG} = 10k, Current Mode	90	100	130	mA
		R _{PROG} = 2k, Current Mode		500		mA
I _{BAT}	BAT Pin Current	Standby Mode, VBAT = 4.2V	0	+/-2	+/-5	μA
		Shutdown Mode (R _{PROG} Not Connected)		+/-2	+/-5	μА
		Sleep Mode, V _{CC} = 0V		+/-2	+/-5	μA
I _{TRIKL}	Trickle Charge Current	V _{BAT} < V _{TRIKL} , R _{PROG} = 10k		10		mA
	Trickle Charge Threshold Voltage	R _{PROG} = 10k, V _{BAT} Rising		2.9		V
V_{TRIKL}	Hysteresis			200		mV
	VCC Undervoltage Lockout Threshold	From VCC Low to High		3.7		V
V _{UV}	Hysteresis			100		mV
.,	Manual Chartelessa Through ald Valtage	PROG Pin Rising		1.24		V
V _{MSD}	Manual Shutdown Threshold Voltage	PROG Pin Falling		1.2		V
V	VCC VDAT Lockey's Throughold Voltage	VCC from Low to High		150		mV
V _{ASD}	VCC – VBAT Lockout Threshold Voltage	VCC from High to Low		100		mV
	040 7	RPROG = 10k(4)		0.1		mA/mA
I _{TERM}	C/10 Termination Current Threshold	RPROG = 2k		0.1		mA/mA
V_{PROG}	PROG Pin Voltage	RPROG = 10k, Current Mode	0.9	1.0	1.1	V
V _{CHRG}	CHRG Pin Output Low Voltage	ICHRG = 5mA			0.4	V
Δ V _{RECHRG}	Recharge Battery Threshold Voltage	VFLOAT - VRECHRG		150		mV
T _{LIM}	Thermal-Regulation Set Point			120		°C
t _{SS}	Soft-Start Time	IBAT = 0 to 1000V/RPROG		100		us
t _{RECHARGE}	Recharge Comparator Filter Time	VBAT High to Low		1		ms
t _{TERM}	Termination Comparator Filter Time	IBAT Falling Below ICHG/10		1		ms
I _{PROG}	PROG Pin Pull-Up Current			0.5		μА
OVP	Overvoltage Protection threshold (rising)			6.5		V
	Hystersis			200		mV




- Note 1: Exceeding the absolute maximum rating may damage the device.
- Note 2: The device is not guaranteed to function outside its operating rating.
- **Note 3:** Supply current includes PROG pin current (approximately 100µA) but does not include any current delivered to the battery through the BAT pin (approximately 100mA).
- **Note 4:** I_{TERM} is expressed as a fraction of measured full charge current with indicated PROG resistor.




Typical Performance Characteristics



Operation

The SE9027 is a single cell lithium-ion battery charger using a constant-current/constant-voltage algorithm. It can deliver up to 600mA of charge current (using a good thermal PCB layout) with a final float voltage accuracy of ±1%. The SE9027 includes an internal P-channel power MOSFET and thermal regulation circuitry. No blocking diode or external current sense resistor is required; thus, the basic charger circuit requires only two external components. Furthermore, the SE9027 is capable of operating from a USB power source.

Normal Charge Cycle

A charge cycle begins when the voltage at the VCC pin rises above the UVLO threshold level and a 1% program resistor is connected from the PROG pin to ground or when a battery is connected to the charger output. If the BAT pin is less than 2.8V, the charger enters trickle charge mode. In this mode, the SE9027 supplies approximately 1/10 the programmed charge current to bring the battery voltage up to a safe level for full current charging. When the BAT pin voltage rises above 2.8V, the charger enters constant-current mode, where the programmed charge current is supplied to the battery. When the BAT pin approaches the final float voltage (4.2V/4.35V), the SE9027 enters constant-voltage mode and the charge current begins to decrease. When the charge current drops to 1/10 of the programmed value, the charge cycle ends.

Programming Charge Current

The charge current is programmed using a single resistor from the PROG pin to ground. The battery charge current is 1000 times the current out of the PROG pin. The program resistor and the charge

current are calculated using the following equations:

$$R_{PROG} = \frac{1000 V}{I_{CHG}}$$
, $I_{CHG} = \frac{1000 V}{R_{PROG}}$

The charge current out of the BAT pin can be determined at any time by monitoring the PROG pin voltage using the following equation:

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \bullet 1000$$

This actual current will vary from IC to IC. The typical variation is within +/-20%.

Charge Termination

A charge cycle is terminated when the charge current falls to 1/10th the programmed value after the final float voltage is reached. This condition is detected by using an internal, filtered comparator to monitor the PROG pin. When the PROG pin voltage falls below 100 mV for longer than t_{TERM} (typically 1ms), charging is terminated. The charge current is latched off and the SE9027 enters standby mode, where the input supply current drops to 170uA. (Note: C/10 termination is disabled in trickle charging and thermal limiting modes).

When charging, transient loads on the BAT pin can cause the PROG pin to fall below 100mV for short periods of time before the DC charge current has dropped to 1/10th the programmed value. The 1ms filter time (t_{TERM}) on the termination comparator ensures that transient loads of this nature do not result in premature charge cycle termination. Once the average charge current drops below 1/10th the programmed value, the SE9027 terminates the charge cycle and ceases to provide any current through the BAT pin. In this state, all loads on the BAT pin must be supplied by the battery.

in standby mode. If this voltage drops below the 4.05V recharge threshold (V_{RECHRG}), another charge cycle begins and current is once again supplied to the battery. To manually restart a charge cycle when in standby mode, the input voltage must be removed and reapplied, or the charger must be shut down and restarted using the PROG pin. Figure 1 shows the state diagram of a typical charge cycle.

Charge Status Indicator

CHRG Pin and STDBY pin indicates different charge states. When SE9027 is in a charge cycle, CHRG Pin is pull-down (~10mA), and STDBY pin is high impedance. Once the charge cycle has terminated, the CHRG pin is high impedance and STDBY pin is pull-down.

Thermal Limiting

An internal thermal feedback loop reduces the programmed charge current if the die temperature attempts to rise above a preset value of approximately 120°C. This feature protects the SE9027 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the SE9027. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.

Undervoltage Lockout (UVLO)

An internal undervoltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode until VCC rises above the undervoltage lockout threshold. The UVLO circuit has a built-in hysteresis of 200mV. Furthermore, to protect against reverse current in the power MOSFET, the UVLO circuit keeps the charger in shutdown mode if VCC falls to within 30mV of the battery voltage. If the UVLO comparator is tripped, the charger will not come out of shutdown mode until VCC rises 100mV above the battery voltage.

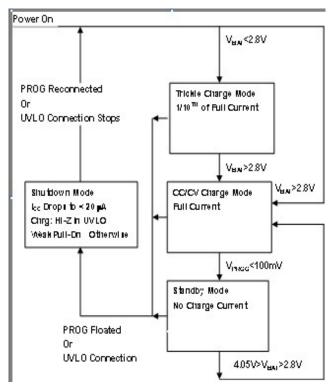


Figure 1. State Diagram of a Typical Charge Cycle

Application Hints

Stability Considerations

The constant-voltage mode feedback loop is stable without an output capacitor provided a battery is connected to the charger output. With no battery present, an output capacitor is recommended to reduce ripple voltage. When using high value, low ESR ceramic capacitors, it is recommended to add a 1Ω resistor in series with the capacitor. No series resistor is needed if tantalum capacitors are used.

In constant-current mode, the PROG pin is in the feedback loop, not the battery. The constant-current mode stability is affected by the impedance at the PROG pin. With no additional capacitance on the PROG pin, the charger is stable with program resistor values as high as 20k. However, additional capacitance on this node reduces the maximum allowed program resistor. The pole frequency at the PROG pin should be kept above 100kHz.

V_{cc} Bypass Capacitor

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live power source. Adding a 1.5Ω resistor in series with a ceramic capacitor will minimize start-up voltage transients.

Power Dissipation

The conditions that cause the SE9027 to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET—this is calculated to be approximately:

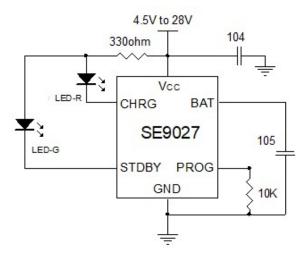
$$P_D = (V_{CC} - V_{BAT}) \cdot I_{BAT}$$

The approximate ambient temperature at which the thermal feedback begins to protect the IC is:

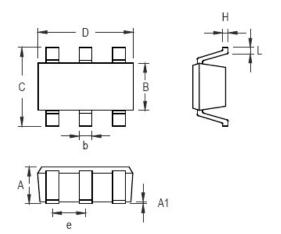
$$T_{A} = 120^{\circ}C - P_{D}\theta_{JA}$$

$$T_{A} = 120^{\circ}C - (V_{CC} - V_{BAT}) \cdot I_{BAT} \cdot \theta_{JA}$$

Thermal Considerations


Because of the small size of the thin SOT23 package, it is very important to use a good thermal PC board layout to maximize the available charge current. The thermal path for the heat generated by the IC is from the die to the copper lead frame, through the package leads, (especially the ground lead) to the PC board copper. The PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Other heat sources on the board, not related to the charger, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum charge current.

Applications


No-load indications

Put a 1uF capacitor between BAT and GND . This makes up of a No-load indications circuit as shown below. If there is not a battery connected to BAT and GND of SE9027 then we can see that LED-R will be flashing at about 4 Hz/S. If there is a battery connected to BAT and GND Pin of SE9027. Than SE9027 enters normal chargeing cycle.

OUTLINE DRAWING SOT-23-6L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

Customer Support

Seaward Electronics Incorporated - China

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Email: sales@seawardinc.com.cn

<u>Seaward Electronics Incorporated – North America</u>

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-650-444-0713

Last Updated - 3/17/2022