

General Description

The DY 20N60WS is a high voltage power MOSFET, fabricated using advanced super junction technology. The resulting device has extremely low on resistance, low gate charge and fast switching time, making it especially suitable for applications which require superior power density and outstanding efficiency.

The 20N60WS break down voltage is 600V and it has a high rugged avalanche characteristics. The 20N60WS is available in TO-263,ITO-220, TO-220,TO-262packages.

Features

- Ultra Low $R_{DS(ON)} = 200 \text{m}\Omega$ @ $V_{GS} = 10 \text{V}$.
- Ultra Low Gate Charge, Qg=25.3nC typ.
- Fast switching capability
- Robust design with better EAS performance
- EMI Improved

Application

- LED Lighting Power
- TV Power
- High Power AC/DC Power Supply

Part No.	Package	Packing
DMT20N60WS-TU	TO-220	50pcs / Tube
DMF20N60WS-TU	ITO-220	50pcs / Tube
DMK20N60WS-TU	TO-262	50pcs / Tube
DMG20N60WS-TU	TO-263	50pcs / Tube
DMG20N60WS-TR	TO-263	800pcs / 13" Reel

PRODUCT SUMMARY

V _{DS} (V)	R _{DS(on)} (Ω)	
600	0.19 @ V _{GS} =10V	

Figure 1 Symbol of 20N60WS

Absolute Maximum Ratings

Paran	Symbol	Rating	Unit		
Drain-Source Voltage		V _{DSS}	630	V	
Gate-Source Voltage		V _{GSS}	±30	V	
Continuous Drain Current	$T_{\rm C}=25^{\circ}{\rm C}$	т	14.0	А	
Commuous Drain Current	T _C =125°C	ID	7.1		
Pulsed Drain Current (Note 2)		I _{DM}	43	A	
Avalanche Energy, Single Pulse (Note 3)		E _{AS}	190	mJ	
Avalanche Energy, Repetitive (Note 2)		E _{AR}	0.2	mJ	
Avalanche Current, Repetitive (Note 2)		I _{AR}	4.0	A	
Continuous Diode Forward Current		Is	16.0	A	
Diode Pulse Current		I _{S.PULSE}	ULSE 43		
Operating Junction Temperature		TJ	150	°C	
Storage Temperature		T _{STG}	-55 to 150	°C	
Lead Temperature (Soldering, 10 sec)		T _{LEAD}	300	°C	

Note:

1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature

3. $I_{AS} = 4.0A$, $V_{DD} = 60V$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$

Electrical Characteristics

 $T_J=25\ensuremath{^\circ \text{C}}$, unless otherwise specified.

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Statistic Characteristics							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS}=0V, I_D=250uA$	600			V
Zero Gate Voltage Drain Current		I _{DSS}	V_{DS} =600V, V_{GS} =0V			1	uA
	Forward	I _{GSSF}	V_{GS} =30V, V_{DS} =0V			100	nA
Gale-Body Leakage Current	Reverse	I _{GSSR}	V_{GS} =-30V, V_{DS} =0V			-100	
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250uA	3		5	V
Static Drain-Source On-Resis	tance	R _{DS(ON)}	V _{GS} =10V, I _D =9.0A		170	190	mΩ
Gate Resistance		R _G	f=1MHz, Open Drain		2.0		Ω
Dynamic Characteristics							
Input Capacitance		C _{ISS}	V = 50 V V = 0 V		1093		
Output Capacitance		C _{OSS}	$v_{DS}=30v, v_{GS}=0v,$ f=1MHz		86.4		pF
Reverse Transfer Capacitance		C _{RSS}			10		
Effective output capacitance, energy		C _{O(er)}	V _{GS} =0V, V _{DS} =0480V		51.2		pF
Effective output capacitance, time related ^{NOTE5}		C _{O(tr)}			187.3		
Turn-on Delay Time		t _{d(on)}			12		
Rise Time		t _r	V _{DD} =400V, I _D =7.0A		20		ns
Turn-off Delay Time		t _{d(off)}	$R_G=10\Omega, V_{GS}=10V$		24		
Fall Time		t _f			50		
Gate Charge Characteristic	S						
Gate to Source Charge		Q_{gs}			7.2		
Gate to Drain Charge		Q_{gd}	V _{DD} =480V, I _D =7.0A		8.1		nC
Gate Charge Total		Qg	$V_{GS}=0$ to 10V		25.3		
Gate Plateau Voltage		V _{plateau}			5.4		V
Reverse Diode Characteristics							
Drain-Source Diode Forward Voltage		V _{SD}	$V_{GS}=0V, I_{SD}=7.0A$		0.81	1.1	V
Reverse Recovery Time		t _{rr}	$V_{-400V} I_{-70A}$		216.9		ns
Reverse Recovery Charge		Q _{rr}	$v_{R} = 400 v, 1_{F} = 7.0 A$		1.7		uC
Peak Reverse Recovery Curre	ent	I _{rrm}			16.1		А

Note:

4. $C_{O(er)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 480 V

5. $C_{O\,(tr)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 480 V

Typical Performance Characteristics

Test Circuits 1. Gate Charge Test Circuit & Waveform

2. Switch Time Test Circuit

3. Unclaimed Inductive Switching Test Circuit & Waveforms

4. Test Circuit and Waveform for Diode Characteristics

TO-220 Mechanical Drawing

TO-220AB			
Unit:mm			
DIM	MIN	MAX	
А	14.80	15.80	
В	9.57	10.57	
С	2.54	2.94	
D	5.80	6.80	
Е	2.95	3.95	
F	12.70	13.40	
G	2.34	2.74	
Н	0.51	1.11	
Ι	0.97	1.57	
J	3. 54 ø	4.14 ø	
Κ	4.27	4.87	
L	1.07	1.47	
М	2.03	2.92	
Ν	0.30	0.64	

ITO-220 Mechanical Drawing

F

-

٦	ITO-220AB			
	Unit:mm			
DIM	MIN	MAX		
А	14.50	15.50		
В	9.50	10.50		
С	2.50	2.90		
D	6.30	7.30		
Е	3.30	4.30		
F	13.00	14.00		
G	2.35	2.75		
Н	0.30	0.90		
I	0.90	1.50		
J	3.20	3.80		
К	4.24	4.84		
L	2.52	2.92		
М	1.09	1.49		
Ν	0.47	0.64		

TO-262 Mechanical Drawing

ТО-2	TO-262(I ² PAK)			
DIM	DIM MIN M			
A	10.14	11.14		
В	9.57	10.57		
С	1.44	1.84		
D	2.95	3.95		
E	12.70	13.40		
F	2.34	2.74		
G	0.51	1.11		
н	0.97	1.57		
I	4.27	4.87		
J	1.07	1.47		
к	2.03	2.92		
L	0.30	0.46		

TO-263 Mechanical Drawing

۰L

TO-263 (D ² PAK)			
Unit:mm			
DIN	MIN	MÁX	
A	10.44	10.84	
В	9.81	10.21	
C	1.44	1.84	
D	8.80	9.20	
E	4.46	4.66	
F	2.44	2.64	
G	0.61	1.01	
H	0.70	1.30	
I	4.27	4.87	
J	1.07	1.47	
K	0°	8°	
L	2.10	2.50	
M	0.30	0.46	
0	0	0.25	