${ }^{\circ}$ 矽睿	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Abstract
 3-Axis Accelerometer QMA6100

The QMA6100 is a 3-Axis Accelerometer. This surface-mount, small sized chip has integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration, targeted for applications such as screen rotation, step counting, sleep monitor, gaming and personal navigation in mobile and wearable smart devices.

The QMA6100 is based on the state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 14-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The device supports digital interface $I^{2} \mathrm{C}$ and SPI

The QMA6100 is in a $2 \times 2 \times 0.95 \mathrm{~mm}^{3}$ surface mount 12-pin land grid array (LGA) package.

FEATURES

- 3-Axis Accelerometer in a $2 \times 2 \times 0.95 \mathrm{~mm}^{3}$ Land Grid Array Package (LGA), guaranteed to operate over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- 14-Bit ADC with low noise accelerometer sensor
- $I^{2} \mathrm{C}$ Interface with SDR modes. Support SPI digital interface
- Built-In Self-Test
- Wide range operation voltage (1.71V to 3.6 V) and low power consumption (2-50uA low power conversion current)
- Integrated FIFO with depth of 64 frames RoHS compliant, halogen-free
- Built-in motion algorithm

BENEFIT

- Small size for highly integrated products. Signals have been digitized and factory trimmed
- High resolution allows for motion and tilt sensing
- High-Speed Interfaces for fast data communications.
- Enables low-cost functionality test after assembly in production
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- Environmental protection and wide applications
- Low power and easy applications including step counting, sleep monitor, gaming and personal navigation

${ }^{4}$ 矽睿	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

CONTENTS

CONTENTS 2
1 INTERNAL SCHEMATIC DIAGRAM 3
1.1 Internal Schematic Diagram 3
2 SPECIFICATIONS AND I/O CHARACTERISTICS 3
2.1 Product Specifications 3
2.2 Absolute Maximum Ratings 4
2.3 I/O Characteristics 5
3 PACKAGE PIN CONFIGURATIONS 5
3.1 Package 3-D View 5
3.2 Package Outlines 7
4 EXTERNAL CONNECTION 8
4.1 I2C Dual Supply Connection 8
4.2 I2C Single Supply connection 9
4.3 SPI Dual Supply Connection 9
4.4 SPI Single Supply connection 10
5 BASIC DEVICE OPERATION 11
5.1 Acceleration sensor 11
5.2 Power Management 11
5.3 Power On/Off Time 12
5.4 Communication Bus Interface $\mathrm{I}^{2} \mathrm{C}$ and Its Addresses 13
6 MODES OF OPERATION 13
6.1 Modes Transition 13
6.2 Description of Modes 14
7 Functions and interrupts 14
7.1 STEP INT 15
7.2 DRDY_INT 15
7.3 ANY_MOT_INT 16
7.4 SIG_MOT_INT 18
7.5 NO_MOT_INT 18
7.6 TAP_INT 19
7.7 RAISE_INT 20
7.8 FIFO_INT 20
7.9 Interrupt configuration 21
8 DIGITAL INTERFACE 23
$8.1 \quad I^{2} \mathrm{C}$ Timings 23
$8.2 \quad I^{2} \mathrm{C}$ R/W Operation 23
8.3 Serial Peripheral Interface(SPI) 25
9 REGISTERS 28
9.1 Register Map 28
9.2 Register Definition 30

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

1 INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

Figure 1. Block Diagram
Table 1. Block Function

Block	Function
Transducer	3-axis acceleration sensor
CVA	Charge-to-Voltage amplifier for sensor signals
Interrupt	Digital interrupt engine, to generate interrupt signal on data conversion, and motion function
FSM	Finite state machine, to control device in different mode
$I^{2} \mathrm{C} /$ SPI	Interface logic data I/O
OSC	Oscillator for internal operation
Power	Power block, including LDO

${ }^{4}$ 矽睿	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

2 SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 Product Specifications

Table 2. Specifications (* Tested and specified at $25^{\circ} \mathrm{C}$ and 3.0 V VDD except stated otherwise.)

Parameter	Conditions	Min	Typ	Max	Unit
Supply voltage VDD	VDD, for internal blocks	1.71	3.0	3.6	V
I/O voltage VDDIO	VDDIO, for IO only	1.71	3.0	VDD	V
Standby current	VDD and VDDIO on		1		$\mu \mathrm{A}$
Low power current	ODR $=800 \mathrm{~Hz}$		34		
	ODR $=400 \mathrm{~Hz}$		17		
	ODR $=160 \mathrm{~Hz}$		7		
	ODR $=80 \mathrm{~Hz}$		4		
			-		
Low noise current	ODR=50 Hz		134		$\mu \mathrm{A}$
	ODR=25 Hz		67		
	ODR=12.5		34		
	$\underline{1}$,		
Data output rate (ODR)		1.2		1000	Samples /sec
Startup time	From the time when VDD reaches to 90% of final value to the time when device is ready for conversion		2		ms
Wakeup time	From the time device enters into active mode to the time device is ready for conversion		1		ms
Operating temperature		-40		85	${ }^{\circ} \mathrm{C}$
Acceleration Full Range			$\begin{gathered} \pm 2 / \pm 4 / \pm 8 / \\ \pm 16 / \pm 32 \\ \hline \end{gathered}$		g LSB/g
Sensitivity	$F S= \pm 2 \mathrm{~g}$		4096		LSB/g
	$\mathrm{FS}= \pm 4 \mathrm{~g}$		2048		
	$\mathrm{FS}= \pm 8 \mathrm{~g}$		1024		
	FS $= \pm 16 \mathrm{~g}$		512		
	$\mathrm{FS}= \pm 32 \mathrm{~g}$		256		
Sensitivity Temperature Drift	FS $= \pm 2 \mathrm{~g}$, Normal VDD Supplies		± 0.02		\%/ ${ }^{\circ} \mathrm{C}$
Sensitivity tolerance	Gain accuracy		± 4		\%
Zero-g offset	FS $= \pm 2 \mathrm{~g}$, Normal VDD Supplies		± 80		mg
Zero-g offset Temperature Drift	FS $= \pm 2 \mathrm{~g}$, Normal VDD Supplies		± 2		$\mathrm{mg} /{ }^{\circ} \mathrm{C}$
Noise density	$\mathrm{FS}= \pm 2 \mathrm{~g}$, run state		220		$\mu \mathrm{g} / \mathrm{VHz}$
Nonlinearity	$F S= \pm 2 \mathrm{~g}$, Best fit straight line,		± 0.5		\%FS
Cross Axis Sensitivity			1		\%

The information contained herein is the exclusive property of QST, and shall not be distributed,

Document \#: 13-52-21
Title: QMA6100 Datasheet
Rev: A

2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at $25^{\circ} \mathrm{C}$ except stated otherwise.)

| Item | Symbol | Min | Max | Unit | Remark |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Power Supply Voltage | Vddmax | -0.3 | 5.4 | V | |
| Input Voltage (other than power) | Vmax | -0.2 | Vdd +0.2 | V | |
| Reflow Classification | MSL3, $260^{\circ} \mathrm{C}$ Peak Temperature | | | | |
| Storage Temperature | Tstr | -50 | 150 | ${ }^{\circ} \mathrm{C}$ | |
| Storage Humidity | Hstr | 10 | 95 | $\% \mathrm{RH}$ | |
| ESD(HBM) | Vhbm | | ± 2000 | V | |
| ESD(MM) | Vmm | | ± 200 | V | |
| ESD(CDM) | Vcdm | | ± 500 | V | |
| Shock Immunity | | | 10000 | g | duration < 200uS |

2.3 I/O Characteristics

Table 4. I/O Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Digital Input Low Voltage	Vil_d		-	-	Vddio*0.2	V
Digital Input High Voltage	Vih_d		Vddio*0.8	-	-	V
Digital Input Hysterisis	Vidhys	-	Vddio*0.1	-	-	V
Digital Output Low Voltage(${ }^{2} \mathrm{C}$)	Vol_d1	$1 \mathrm{o}=3 \mathrm{~mA}(\mathrm{SDI}) * 1$)	0	-	Vddio*0.2	V
Digital Output Low Voltage (SPI)	Vol_d2	$\mathrm{lo}=1 \mathrm{~mA}(\mathrm{SDI}, \mathrm{SDO}) * 1)$	0	-	Vddio*0.2	V
Digital Output High Voltage1 (SPI) (Vio>=1.62V)	Voh_d1	$\mathrm{Io}=1 \mathrm{~mA}(\mathrm{SDI}, \mathrm{SDO}) * 1)$	Vddio*0.8	-	-	V
Digital Output High Voltage2 (SPI) (Vio>=1.2V)	Voh_d2	$\mathrm{Io}=1 \mathrm{~mA}(\mathrm{SDI}, \mathrm{SDO}) * 1)$	Vddio*0.6	-	-	V
Leakage Current at Output OFF	Ioff	SDX, ADO	-10	-	10	$\mu \mathrm{A}$
Internal Pullup Resistor	Rpullup	SENB	70	120	190	$\begin{gathered} \text { koh } \\ \mathrm{m} \end{gathered}$
$1^{2} \mathrm{C}$ Load Capacitor	Cb	SDX, SCX	-	-	400	pF
Load Capacitance of Reset Terminal	Crst		-	-	20	pF
Pulse Width of Asynchronous Reset	Trst		100	-	-	$\mu \mathrm{sec}$
Power on Startup Time	Tstart		-	-	10	msec

3 PACKAGE PIN CONFIGURATIONS

3.1 Package 3-D View

Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration.

[^0]| TS $_{\text {矽睿 }}$ | Document \#: 13-52-21 | Title: QMA6100 Datasheet | Rev: A |
| :--- | :--- | :--- | :--- |

Figure 2. Package View
Table 5. Pin Configurations

No	Name	IO	Description	Logic Level
1	ADO	I	LSB of ${ }^{2}$ C address, or SDO of SPI serial data output	VDDIO
2	SDX	I/O	SDA of I2C serial data, or SDI of SPI serial data input	VDDIO
3	VDDIO	P	Power supply to IO	VDDIO
4	RESV1	A	Reserved	VDDIO
5	INT1	O	Interrupt1	VDDIO
6	INT2	O	Interrupt2	VDDIO
7	VDD	P	Power supply to internal circuitry	VDD
8	GNDIO	G	Ground to IO	GND
9	GND	G	Ground to internal circuitry	GND
10	SENB	I	Protocol selection	VDDIO
11	RESV2	A	Reserved	VDDIO
12	SCX	I	SCL of I2C serial clock, or SCK of SPI serial clock	VDDIO

No	Name	10	Connectivity		
			I2C	SPI_3W	SPI_4W
1	AD0	I	VDDIO/GND	Float	MISO

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	$6 / 40$

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

2	SDX	I/O	SDA	SDI/SDO	MOSI
3	VDDIO	P	VDDIO	VDDIO	VDDIO
4	RESV1	A	Float/GND	Float/GND	Float/GND
5	INT1	O	INT1	INT1	INT1
6	INT2	O	INT2	INT2	INT2
7	VDD	P	VDD	VDD	VDD
8	GNDIO	G	GND	GND	GND
9	GND	G	GND	GND	GND
10	SENB	I	VDDIO/Float	CSB	CSB
11	RESV2	A	VDDIO/Float/GND	VDDIO/Float/GND	VDDIO/Float/GND
12	SCX	I	SCL	SCK	SCK

3.2 Package Outlines

3.2.1 Package Type

LGA (Land Grid Array)

3.2.2 Package Outline Drawing:

2.0 mm (Length)*2.0mm (Width)*0.95mm (Height)

NOTE:

1. CONTROLLING DIMENSION: MILLIMETER.

Figure 3. Package Outline Drawing

3.2.3 Tape And Reel

Devices are shipped in reels, in standard cardboard box packaging.

Package	Reel Size	WidthxPitch	Qty/reel	Trailer(Inner	Leader(Outer	Pin 1 Loca
The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.						

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

				layer Min length)	layer Min length	
LGA(2x2)	13"	$12 * 4$	5000	300mm	300mm	Up Right

4 EXTERNAL CONNECTION

4.1 I2C Dual Supply Connection

Figure 5. I2C Dual Supply Connection

${ }^{\text {TS }}$ 矽睿	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

4.2

I2C Single Supply connection

Figure 6. I2C Single Supply Connection

4.3 SPI Dual Supply Connection

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	$9 / 40$

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Figure 7. SPI Dual Supply Connection

4.4
 SPI Single Supply connection

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Figure 8. SPI Single Supply Connection

5 BASIC DEVICE OPERATION

5.1 Acceleration sensor

The QMA6100 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output.

5.2 Power Management

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.
To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO.

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6. Power States

Power State	VDD	VDDIO	Power State Description
1	OV	OV	Device off
2	OV	$1.71 \mathrm{~V}-3.6 \mathrm{~V}$	Not allowed. User need to make sure VDDIO is less than VDD
3	$1.71 \mathrm{~V}-3.6 \mathrm{~V}$	OV	Device off
4	$1.71 \mathrm{~V}-3.6 \mathrm{~V}$	$1.71 \mathrm{~V}-\mathrm{VDD}$	Device on, normal operation mode, enters standby mode after POR

5.3 Power On/Off Time

Device has two power supply pins and two ground pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. GND is OV supply for all of internal blocks, and GNDIO for digital interface.

There is no limitation on the voltage levels of VDD and VDDIO relative to each other, as long as they are within operating range.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD.
The power on/off time related to the device is in Table 7

Table 7. Time Required for Power On/Off

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
POR Completion Time	PORT	Time Period After VDD and VDDIO at Operating Voltage to Ready for I2C Commend and Analogy Measurement.		250	$\mu \mathrm{~s}$	
Power off Voltage	SDV	Voltage that Device Considers to be Power Down.			0.2	V
Power on Interval	PINT	Time Period Required for Voltage Lower Than SDV to Enable Next POR	100			$\mu \mathrm{~s}$
Power on Time	PSUP	Time Period Required for Voltage from SDV to 90\% of final value			50	ms

The information contained herein is the exclusive property of QST, and shall not be distributed,

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Power On/Off Timing
Figure 9. Power On/Off Timing

5.4 Communication Bus Interface $I^{2} \mathrm{C}$ and Its Addresses

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via $I^{2} C$.

This device is compliant with $I^{2} \mathrm{C}$-Bus Specification, document number: 939839340011 . As an $I^{2} \mathrm{C}$ compatible device, this device has a 7-bit serial address and supports $\mathrm{I}^{2} \mathrm{C}$ protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz , respectively. External pull-up resistors are required to support all these modes.

There are two $I^{2} C$ addresses selected by connecting pin 1 (ADO) to GND or VDD. The first six MSB are hardware configured to "001001" and the LSB can be configured by ADO.

Table 8. $\quad I^{2} C$ Address Options

ADO (pin 1)	$\mathbf{I}^{2} \mathbf{C}$ Slave Address (HEX)	$\mathbf{I}^{2} \mathbf{C}$ Slave Address (BIN)
Connect to GND	12	0010010
Connect to VDD	13	0010011

6 MODES OF OPERATION

6.1 Modes Transition

QMA6100 has two different operational modes, controlled by register (0×11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through $I^{2} \mathrm{C}$ commands. The default mode after power-on is standby mode.

Al $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Figure 10. Basic operation flow after power-on

Figure 11. The work mode transferring
The default mode after power on is standby mode. Through $I^{2} \mathrm{C}$ instruction, device can switch between standby mode and active mode. With SOFTRESET by writing $0 \times B 6$ into register 0×36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD ($0 \times 33<3>$) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

6.2 Description of Modes

6.2.1 Active Mode

In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers ($0 \times 01 \sim 0 \times 06$) and FIFO (accessible through register $0 \times 3 F$).

6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through $1^{2} C$. Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0×36) to $0 \times B 6$ or set the MODE_BIT ($0 \times 11<7>$) to logic 0 .

7 Functions and interrupts

ASIC support interrupts, such as STEP_INT, DRDY_INT, ANY_MOT_INT, SIG_MOT_INT, NO_MOT_INT, RAISE_INT and FIFO_INT, etc.

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

7.1 STEP_INT

The STEP_FPAG detect that the user is entering/exiting step mode. When the user enters into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods and the acceleration intensity the step counter can be calculated.

Figure 10. STEP SIGNAL

The related interrupt status bit is STEP_INT $(0 x 0 A<3>)$ and SIG_STEP $(0 x 0 A<6>)$. When the interrupt is generated, the value of STEP_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP_IEN/SIG_STEP_IEN ($0 \times 16<3>/ 0 \times 16<6>$) is the enable bit for the STEP_INT/SIG_STEP_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP ($0 \times 19<3>) /$ INT1_SIG_STEP $(0 \times 19<6>) \quad$ or INT2_STEP ($0 \times 1 \mathrm{~B}<3>$) $/$ INT2_SIG_STEP $(0 \times 1 B<6>)$ to logic 1, to map the internal interrupt to the interrupt PINs.

7.2 DRDY_INT

The width of the acceleration data is 14 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS $(0 \times 21<6>)$ to logic 0 . This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1 , and will be cleared when corresponding MSB or LSB is read by user.

Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point.

The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F<3:0>), and the details as following:

RANGE	Acceleration range	Resolution
0001	2 g	$244 \mathrm{ug} / \mathrm{LSB}$
0010	4 g	$488 \mathrm{ug} / \mathrm{LSB}$
0100	8 g	$977 \mathrm{ug} / \mathrm{LSB}$

1000	16 g	$1.95 \mathrm{mg} /$ LSB
1111	32 g	$3.91 \mathrm{mg} /$ LSB
Others	2 g	$244 \mathrm{ug} /$ LSB

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z -axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64*MCLK, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched.

7.3 ANY_MOT_INT

Any motion Any motion detection uses slope between two successive data to detect the changes in motion. It generates interrupt when a preset threshold ANY_MOT_TH ($0 \times 2 \mathrm{E}$) is exceeded.

The time difference between two successive data depends on the output data rate (ODR).

$$
\text { Slope }(\mathrm{t} 1)=(\operatorname{acc}(t 1)-\operatorname{acc}(t 0)) * O D R
$$

The any motion detection criteria are fulfilled and interrupt is generated if any of enabled channels exceeds ANY_MOT_TH for ANY_MOT_DUR ($0 \times 2 \mathrm{C}<1: 0>$) consecutive times.

As long as all the enabled channels data fall or stay below ANY_MOT_TH for ANY_MOT_DUR consecutive times, the interrupt will be reset unless the interrupt signal is latched.

The any motion detection engine will send out the signals of axis which triggered the interrupt (ANY_MOT_FIRST_X ($0 \times 09<0>$), ANY_MOT_FIRST_Y ($0 \times 09<1>$), ANY_MOT_FIRST_Z ($0 \times 09<2>$)) and the sign of the motion (ANY_MOT_SIGN ($0 \times 09<3>$))

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

There is an option for using any motion detector to detect high-g.
If the $0 \times 2 \mathrm{~F}<6>$ (any_mot_in_sel) is logic-1, the input of any-motion detector would be acceleration, and the threshold range would cover full scale range.

any_mot_in_sel ($0 \times 2 \mathrm{~F}<6>$) : 0 for any motion detection 1 for high-g detection

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

7.4 SIG_MOT_INT

A significant motion is a motion due to a change in user location.
The algorithm is as following:

1) Look for movement, same setting as any motion detection
2) If movement detected, sleep for $T_{_}$Skip ($0 \times 2 \mathrm{~F}<3: 2>$)
3) Look for movement
a) If no movement detected within T_Proof ($0 \times 2 \mathrm{~F}<5: 4>$), go back to 1
b) If movement detected, report a significant movement, and generate the interrupt

The significant motion detection and any motion detection are exclusive, user can select either one through SIG_MOT_SEL ($0 \times 2 \mathrm{~F}<0>$).
If significant motion is detected, the engine will set SIG_MOT_INT ($0 \times 0 \mathrm{~A}<0>$).

No-motion interrupt is generated if the slope (absolute value of acceleration difference) on all selected axes is smaller than the programmable threshold for a programmable time. Figure shows the timing for the no-motion interrupt. Register (0x2C) NO_MOT_DUR defines the delay times before the no-motion interrupt is generated. Table lists the delay times adjustable with register ($0 \times 2 \mathrm{C}$) NO_MOT_DUR.
The no-motion interrupt is enabled per axis by writing logic 1 to bits (0×18) NO_MOTION_EN_X, (0×18) NO_MOTION_EN_Y, and (0×18) NO_MOTION_EN_Z, respectively. The no-motion threshold is set through the ($0 \times 2 \mathrm{D}$) NO_MOT_TH register. The meaning of an LSB of ($0 \times 2 \mathrm{D}$) NO_MOT_TH depends on the selected g-range: it corresponds to 3.91 mg in 2 g -range (7.81 mg in 4 g -range, 15.6 mg in 8 g -range, 31.25 mg in 16 g -range, 62.5 mg in 32 g -range). Therefore the maximum value is 996 mg in 2 g -range (2 g in 4 g -range, 4 g in 8 g -range, 8 g in 16 g -range, and 16 g in 32 g -range). The time difference between the successive acceleration samples depends on the selected ODR and equates to 1/ODR.

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

7.6 TAP_INT

Tap detection allows the device to detect the events such as clicking or double clicking of a touch-pad. A tap event is detected if a pre-defined slope of the acceleration. The tap detection includes single tap (S_TAP), double tap (D_TAP), triple tap (T_TAP), and quadruple tap (Q_TAP). A 'Single tap' is a single event within a certain shock time, followed by a certain quiet time. A 'double tap' consists of a first such event followed by a second event within a defined time frame, and so on.

Each tap interrupt can be enabled (disabled) by setting ' 1 ' (${ }^{\prime} 0$ ') to S_TAP_EN($0 \times 16<7>$), D_TAP_EN($0 \times 16<5>$), T_TAP_EN($0 \times 16<4>)$, and Q_TAP_EN($0 \times 16<0>)$.

The status of each tap interrupt is stored in S_TAP_INT(0x0A<7>), D_TAP_INT(0x0A<5>), T_TAP_INT(0x0A<4>), and Q_TAP_INT $(0 \times 0 B<0>)$.

The shock and quiet threshold for detecting a tap event is set by register ($0 \times 2 \mathrm{~B}$) TAP_SHOCK_TH and ($0 \times 1 \mathrm{E}$) TAP_QUIET_TH. The meaning of threshold LSB is 31.25 mg , the range is $0 \sim 2 \mathrm{G}$.

The tap input selection is defined in ($0 \times 2 \mathrm{~B}<7: 6>$) TAP_IN_SEL, the default input is $\sqrt{x^{2}+y^{2}+z^{2}}$, the tap detector could only detect 1 axis as shown below:

TAP_IN_SEL<1:0>:
0: X-axis
1: Y-axis
2: Z-axis
3: $\sqrt{x^{2}+y^{2}+z^{2}}$
In figure the timing for tap is visualized:

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Raise wake algorithm is used to detect the action of raise hand (or hand down). The interrupt is enabled by writing logic 1 to bits (0X16[1]) RAISE_EN, (0X16[2]) HD_EN. User can adjust the sensitivity through the registers. The register RAISE_WAKE_SUM_TH(0X22[5:0]) defines the strength of hand action (raise and down). The register RAISE_DIFF_TH(0X23[1:0],0X22[7:6]) defines the differential values of twice actions, when the hand behavior almost done the differential value will be smaller and we can use this register to set the threshold. RAISE_WAKE_PERIOD and RAISE_WAKE_TIMEOUT_TH define the duration of the total hand action.

7.8 FIFO_INT

This device has integrated FIFO memory, capable of storing up to 64 frames, with each frame contains three 14bits words, for acceleration data of X, Y, and Z axis. All of the 3 -axes acceleration is sampled at same time point

The FIFO can be configured as three modes, FIFO mode, STREAM mode, and BYPASS mode.
FIFO mode.
In FIFO mode, the acceleration data of selected axes are stored in the buffer memory. If enabled, a watermark interrupt can be triggered when the buffer filled up to the defined level. The buffer will continuously be filled until the fill level reaches to 64. When the buffer is full, data collection stops, and the new data will be ignored. Also, FIFO_FULL interrupt will be triggered when enabled.
STREAM mode
In STREAM mode, the acceleration data of selected axes will be stored into the buffer until the buffer is full. The buffer's depth is 64 now. when the buffer is full, data collection continues, and the oldest data is discarded. If enabled, a watermark interrupt will be triggered when the fill level reached to the defined level. Also, when buffer is full, FIFO_FULL interrupt will be triggered if enabled. If any old data is discarded, the FIFO_OR ($0 \times 0 B<7>$) will be set to be logic 1 .

BYPASS mode

In BYPASS mode, only the current acceleration data of selected axes can be read out from FIFO. The FIFO acts like the STREAM mode when a depth of 1 . Compared to reading directly from data register, this mode has the advantage of ensuring the package of xyz data are from same time point. The data registers are updated sequentially and have chance for

Document \#: 13-52-21 Title: QMA6100 Datasheet
Rev: A
xyz data are from different time. Also, if any old data is discarded, the FIFO_OR will be set to be logic 1 , similar as that in STREAM mode.
The FIFO mode can be configured by setting FIFO_MODE ($0 \times 3 E<7: 6>$).

FIFO_MODE	MODE
00	BYPASS
01	FIFO
10	STREAM
11	FIFO

User can select the acceleration data of which axes to be stored in FIFO. This configuration can be done by setting FIFO_CH ($0 \times 3 \mathrm{E}<2: 0>$)
If all of the 3-axes data are selected, the format of data read from $0 \times 3 F$ is as following

XLSB	XMSB	YLSB	YMSB	ZLSB	ZMSB

These comprise one frame
If only one axis is enabled, the format data read from $0 \times 3 F$ is as following

YLSB	YMSB

These comprise one frame
If the frame is not read completely, the remaining parts of the frame will be discarded.
If the FIFO is read beyond the FIFO fill level, all zeroes will be read out.
FIFO_FRAME_COUNTER ($0 \times 0 \mathrm{E}<7: 0>$) reflects the current filled level of the buffer. If additional data frames are written into the buffer when FIFO is full (in STREAM mode or BYPASS mode), then FIFO_OR ($0 \times 0 \mathrm{~B}<7>$) is set to be logic 1. This FIFO_OR bit can be considered as flag of discarding old data.
When a write access to one of the FIFO configuration registers ($0 \times 3 \mathrm{E}$) or watermark registers (0×31) occurs, the FIFO buffer will be cleared, the FIFO fill level indication register FIFO_FRAME_COUNTER ($0 \times 0 \mathrm{E}<7: 0>$) will be cleared, and the FIFO_OR ($0 \times 0 \mathrm{~B}<7>$) will be cleared as well.

As mentioned above, FIFO controller contains two interrupts, FIFO_FULL interrupt and watermark interrupt. These two interrupts are functional in all of the FIFO operating modes.
The watermark interrupt is triggered when the filled level of buffer reached to the level that is defined by register FIFO_WM_LVL ($0 \times 31<7: 0>$), if the interrupt is enabled by setting INT_FWM_EN ($0 \times 17<6>$) to logic 1 and INT1_FWM ($0 \times 1 \mathrm{~A}<6>$) or INT2_FWM ($0 \times 1 \mathrm{C}<6>$) is set.
The FIFO_FULL interrupt is triggered when the buffer has been fully filled. In FIFO mode, the filled level is 64, and in STREAM mode the filled level is 64, in BYPASS mode the filled level is 1 . To enable FIFO_FULL interrupt, INT_FFULL_EN ($0 \times 17<5>$) should be set to 1 , and INT1_FFULL $(0 \times 1 A<5>)$ and INT2_FFULL $(0 \times 1 \mathrm{C}<5>)$ is set.

The status of watermark interrupt and FIFO full interrupt can be read through INT_STAT (0xOB)
After soft-reset, the watermark interrupt and FIFO full interrupt are disabled.
For the FIFO to recollect the data, user should reconfigure the register FIFO_MODE.

7.9 Interrupt configuration

The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1 , and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The interrupt status registers INT_ST(0x09~0x0d) will update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

The information contained herein is the exclusive property of QST, and shall not be distributed,

宜	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

When interrupt condition is fulfilled, related bit of interrupt will be set, until the associated interrupt condition is no more valid. Read operation to related register will also clear the register.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT ($0 \times 21<0>$).

In non-latched mode, the mapped interrupt pin will be set and/or cleared same as associated interrupt register bit. Also, the mapped interrupt pin can be cleared with read operation to any of the INT_ST(0x09~0x0d).

Exception to this is the new data interrupt and step interrupt, which are automatically reset after a fixed time (T_Pulse = 64/MCLK), no matter LATCH_INT ($0 \times 21<0>$) is set to 0 or 1.

In latched mode, the clearings of mapped pins are determined by INT_RD_CLR ($0 \times 21<7>$).
If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT_MAP (0x19~0x1B)

The electrical interrupt pins can be set INT_PIN_CONF ($0 \times 20<3: 0>$). The active logic level can be set to 1 or 0 , and the interrupt pin can be set to open-drain or push-pull.

宜	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

8 DIGITAL INTERFACE

$8.1 \quad I^{2} \mathrm{C}$ Timings

Table 9 and Figure 11 describe the $I^{2} \mathrm{C}$ communication protocol times
Table 9. $I^{2} C$ Timings

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
SCL Clock	$\mathrm{f}_{\text {scl }}$		0		400	kHz
SCL Low Period	$\mathrm{t}_{\text {low }}$		1			$\mu \mathrm{~s}$
SCL High Period	$\mathrm{t}_{\text {high }}$		1			$\mu \mathrm{~s}$
SDA Setup Time	$\mathrm{t}_{\text {sudat }}$		0.1			$\mu \mathrm{~s}$
SDA Hold Time	$\mathrm{t}_{\text {hddat }}$		0		0.9	$\mu \mathrm{~s}$
Start Hold Time	$\mathrm{t}_{\text {hdsta }}$		0.6			$\mu \mathrm{~s}$
Start Setup Time	$\mathrm{t}_{\text {susta }}$		0.6			$\mu \mathrm{~s}$
Stop Setup Time	$\mathrm{t}_{\text {susto }}$		0.6			$\mu \mathrm{~s}$
New Transmission Time	$\mathrm{t}_{\text {buf }}$		1.3			
Rise Time					$\mu \mathrm{s}$	
Fall Time	t_{r}					$\mu \mathrm{s}$

Figure 11. $I^{2} C$ Timing Diagram

$8.2 \quad I^{2}$ C R/W Operation

8.2.1 Abbreviation

Table 10. Abbreviation

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once $I^{2} C$ transmission starts, the bus is considered busy.
STOP: STOP condition is a low to high transition on SDA line while SCL is held high.
ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the
acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.
NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.2.3 $\quad I^{2} C$ Write

$I^{2} \mathrm{C}$ write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit $(R / W=0)$. The slave sends an acknowledge bit ($A C K=0$) and releases the bus. The master sends the one-byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. $\quad I^{2} \mathrm{C}$ Write

8.2.4 $\quad I^{2} C$ Read

$I^{2} \mathrm{C}$ write sequence consists of a one-byte $I^{2} \mathrm{C}$ write phase followed by the $I^{2} \mathrm{C}$ read phase. A start condition must be generated between two phases. The $I^{2} \mathrm{C}$ write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit $(R / W=1)$. Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit ($\mathrm{ACK}=0$) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.
The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current $I^{2} \mathrm{C}$ write command.

Table 12. $I^{2} C$ Read

\sim	Slave Address							$\begin{gathered} \mathrm{R} \\ \mathrm{~W} \end{gathered}$	\sim			is	$\begin{aligned} & \text { ter } \\ & \text { (0x } \end{aligned}$	$\begin{aligned} & \text { Add } \\ & \mathrm{JO} \end{aligned}$				\sim	
$\underset{\sim}{\text { d }}$	0	0	1	0	0	1	0	0	긎	0	0	0	0	0	0	0	0	궂	
\sim	Slave Address							$\begin{gathered} \mathrm{R} \\ \mathrm{~W} \end{gathered}$	§									3	$\begin{gathered} \hline \text { Data } \\ (0 \times 01) \\ \hline \end{gathered}$

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

	0	0	1	0	0	1	0	1		0	0	0	0	0	0	1	0		0	0	0	0	0	0	0	0		
	$\begin{gathered} \text { Data } \\ (0 \times 02) \\ \hline \end{gathered}$								$\begin{aligned} & \text { ふ } \\ & \text { 릇 } \end{aligned}$							$\begin{aligned} & \text { ふ } \\ & \text { ৯ } \\ & \text { 긋 } \end{aligned}$	$\begin{gathered} \text { Data } \\ (0 \times 07) \end{gathered}$								$\begin{aligned} & \underset{\lambda}{\lambda} \\ & \underset{\lambda}{n} \end{aligned}$	n
$\stackrel{\text { ® }}{\text { त }}$	0	0	0	0	0	0	1	0								0	0	0	0	0	0	0	0		

8.3 Serial Peripheral Interface(SPI)

The timing specification of SPI is given in the following table.
Table 13: SPI timing

Parameter	Symbol	Condition	Min.	Max.	Unit
Clock Frequency	$\mathrm{f}_{\text {SPI }}$	Max. load on SDI or SDO=25pF	0	10	MHz
SCK Low Pulse	$\mathrm{t}_{\text {SCKL }}$		20		ns
SCK High Pulse	$\mathrm{t}_{\text {SCKH }}$		20		ns
SDI Setup Time	$\mathrm{t}_{\text {SDI_setup }}$		20		ns
SDI Hold Time	$\mathrm{t}_{\text {SDI_hold }}$		20		ns
SDO Output Delay	$\mathrm{t}_{\text {SDO_OD }}$	Load $=25 \mathrm{pF}$		30	ns
		Load $=250 \mathrm{pF}$ V $_{\text {ddio }}=2.4 \mathrm{~V}$		40	ns
SENB Setup Time	$\mathrm{t}_{\text {SENB_setup }}$		20		ns
SENB Hold Time	$\mathrm{t}_{\text {SENB_hold }}$		40		ns

The following figure shows the definition of SPI timing given in table 13:

Figure. 12 SPI timing diagram
The SPI interface of QMA6100 is compatible with mode '11'. Two configurations of SPI interface are supported by QMA6100: 4-wire and 3 -wire. The same protocol is used by both configurations. The device operates in 4 -wire configuration by default. The configuration can be switched to 3 -wire configuration by setting EN_SPI3W(0x20[5])=1. Pin SDI is used as the common data pin in 3wire configuration.

For single byte read or write operation, 16-bit protocols are used. QMA6100 also supports multiple-byte read or write operations.

Document \#: 13-52-21 Title: QMA6100 Datasheet
Rev: A

In 4-wire configuration, SENB(low active), SCK(serial clock), SDI(serial data input) and SDO(serial data output) pins are used. The communication starts when SENB is pulled low by SPI master and stops when SENB is pulled high. SCK is also controlled by SPI master. SDI and SDO are driven at the falling edge of SCK and should be captured at the rising edge of SCK.

The basic write operation waveform for 4-wire configuration is depicted below in figure 13. During the entire write cycle SDO remains in high impedance state.

Figure 13: 4-wire basic SPI Write sequence
The basic read operation waveform for 4 -wire configuration is depicted in figure 14 below.

Figure 14: 4-wire basic SPI Read sequence
The data bits are defined as follows:
Bit0: Read/Write bit. When 0, the data DI is written to the chip. When 1, the data DO is read from the chip.
Bit1-7: Address A(6:0).
Bit8-15: when in write mode, these are the data DI, which will be written to the address. When in read mode, these are the DO, which are read from the address.

Document \#: 13-52-21 Title: QMA6100 Datasheet
Rev: A

Multiple byte read/write operations are possible by keeping SENB low and continuing the data transfer. Only the first register address has to be provided. Addresses are automatically incremented after each read/write access as long as SENB stays low.

The principle of multiple read/write is shown below.

Figure 15: SPI multiple byte Read/Write
In 3-wire configuration, SENB(low active), SCK(serial clock) and SDI(serial data input) pins are used. The communication starts when SENB is pulled low by SPI master and stops when SENB is pulled high. SCK is also controlled by SPI master. SDI is driven at the falling edge of SCK when used as input of the device and should be captured at the rising edge of SCK when used as the output of the device.

Bit 0 : R/W bit, R/W=0 : write mode; R/W=1 : read mode.
Bit 1-7: 7-bit address of registers.
Bit 8-15: R/W=0 : D7 ~ D0 are written into slave; R/W=1: D7~D0 are read from slave. (MSB first).

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Figure 16: 3-wire basic SPI Read/Write sequence

9 REGISTERS

9.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses
Table 14. Register Map

Document \#: 13-52-21 Title: QMA6100 Datasheet

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

宜	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

9.2 Register Definition

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
CHIP_ID<7:0>				RW					

This register is used to identify the device

Register 0x01 ~ 0x02 (DXL, DXM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DX<5:0>							NEWDATA _X	R	0x00
DX<13:6>								R	0x00
DX NEWDATA_X:	14bits acceleration data of x-channel. This data is in two's complement. 1 , acceleration data of x-channel has been updated since last reading 0 , acceleration data of x-channel has not been updated since last reading								
Register 0x03 ~ 0x04 (DYL, DYM)									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DY<5:0>							NEWDATA	R	0x00
DY<13:6>								R	0x00
DY: NEWDATA_Y:	14bits acceleration data of y-channel. This data is in two's complement. 1 , acceleration data of y-channel has been updated since last reading 0 , acceleration data of y-channel has not been updated since last reading								

Register 0x05~0x06 (DZL, DZM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DZ $<5: 0>$					NEWDATA Z	R	Ox00		
DZ<13:6>					R	0×00			

DZ:	14bits acceleration data of z-channel. This data is in two's complement.
NEWDATA_Z:	1, acceleration data of z-channel has been updated since last reading
	0, acceleration data of z-channel has not been updated since last reading

Register 0x07~0×08 (STEP_CNT)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
STEP_CNT<7:0>	D			Default				
STEP_CNT<15:8>								

STEP_CNT<15:0>: 16 bits of step counter, out of total 24bits data. The MSB data are in 0x0e

Register 0x09 (INT_STO)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT	STEP_FLAG			ANY_MOT SIGN	ANY_MOT _FIRST_Z	ANY_MOT _FIRST_Y	ANY_MOT _FIRST_X	R	

NO_MOT:	1, no_motion interrupt active 0 , no_motion interrupt inactive
STEP_FLAG:	1, STEP detected 0 , STEP not detected
ANY_MOT_SIGN:	1, sign of any_motion triggering signal is negative 0 , sign of any_motion triggering signal is positive
ANY_MOT_FIRST_Z:	1 , any_motion interrupt is triggered by Z axis 0 , any_motion interrupt is not triggered by Z axis
ANY_MOT_FIRST_Y:	1 , any_motion interrupt is triggered by Y axis 0 , any_motion interrupt is not triggered by Y axis
ANY_MOT_FIRST_X:	1 , any_motion interrupt is triggered by X axis 0 , any_motion interrupt is not triggered by X axis

Register 0x0a (INT_ST1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
S_TAP_INT	SIG_STEP	D_TAP_INT	T_TAP_INT	STEP_INT	HD_INT	RAISE_INT	SIG_MOT_I NT	R	0x00

[^1]The information contained herein is the exclusive property of QST, and shall not be distributed,

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

SIG_STEP:	1, significant step is active 0, significant step is inactive
D_TAP_INT:	1, double tap is active
	0, double tap is inactive
STEP_INT:	1 , step valid interrupt is active
	0, step quit interrupt is inactive
T_TAP_INT:	1 , triple tap is active
	0 , triple tap is inactive
HD_INT:	1 , hand down interrupt is active
RAISE_INT:	0, hand down interrupt is inactive
	1 , raise hand interrupt is active
SIG_MOT_INT:	0 , raise hand interrupt is inactive
	1, significant interrupt is active
	0, significant interrupt is inactive

STEP_CNT<23:16>: 8bit MSB data of step counter, out of total 24bits data. The LSB data are in 0×07 and 0×08
Register 0x0e (FIFO_ST)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
FIFO_FRAME_COUNTER<7:0>								

FIFO_FRAME_COUNTER<7:0>: Fill level of FIFO buffer. An empty FIFO corresponds to 0x00. The frame counter can be cleared by reading out all of the frames, or by writing register 0x3e (FIFO_CFG1) or 0x21.

Register 0x0f (FSR)

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | RANGE<3:0> | Default | | | |

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

RANGE $\langle 3: 0>$	Acceleration range	Resolution
0001	2 g	$244 \mathrm{ug} / \mathrm{LSB}$
0010	4 g	$488 \mathrm{~g} / \mathrm{LSB}$
0100	8 g	$977 \mathrm{~g} / \mathrm{LSB}$
1000	16 g	$1.95 \mathrm{mg} / \mathrm{LSB}$
1111	32 g	$3.91 \mathrm{mg} / \mathrm{LSB}$
Others	2 g	$244 \mathrm{ug} / \mathrm{LSB}$

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	NLPF<1:0>	BW<4:0>			RW	0xE0			

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Register 0x16 (INT_ENO)

The information contained herein is the exclusive property of QST, and shall not be distributed,

Document \#: 13-52-21

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
S_TAP_EN	$\begin{aligned} & \hline \text { SIG_STEP_I } \\ & \text { EN } \end{aligned}$	D_TAP_EN	T_TAP_EN	STEP_IEN	HD_EN	RAISE_EN	Q_TAP_EN	RW	0x00
S_TAP_EN:		nable single t sable single							
SIG_STEP_IEN:		nable significa sable signific	t step interru t step interru						
D_TAP_EN:		nable double sable double							
T_TAP_EN:		nable triple ta sable triple t							
STEP_IEN:		nable step valid sable step va	interrupt interrupt						
HD_EN:		nable hand-d sable hand-d	n interrupt wn interrupt						
RAISE_EN:		nable raise-h sable raise-h	d interrupt d interrupt						
Q_TAP_EN:		nable quad ta sable quad tap							

Register 0x17 (INT_EN1)

Register 0x19 (INT_MAPO)

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

	0, not map hand down interrupt to INT1 pin INT1_RAISE:
	1, map raise hand interrupt to INT1 pin
INT1_SIG_MOT:	0, not map raise hand interrupt to INT1 pin
	1, map significant interrupt to INT1 pin
0, not map significant interrupt to INT1 pin	

Register 0x1b (INT_MAP2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT2_S_TAP	$\begin{aligned} & \hline \text { INT2_SIG_S } \\ & \text { TEP } \end{aligned}$	$\begin{aligned} & \text { INT2_D_ } \\ & \text { TAP } \end{aligned}$	$\begin{aligned} & \text { INT2_T_TA } \\ & \text { P } \end{aligned}$	INT2_STEP	INT2_HD	INT2_RAISE	$\begin{aligned} & \hline \text { INT2_SI } \\ & \text { G_MOT } \end{aligned}$	RW	0x00
INT2_S_TAP: INT2_SIG_STEP:	1, ma 0 , not 1 , ma 0	single tap map single significant map signifi	terrupt to IN	pin NT2 pin INT2 pin t to INT2 pin					
INT2_D_TAP:	1, ma	1, map double tap interrupt to INT2 pin		2 pin INT2 pin					
INT2_T_TAP:	1, map triple tap interrupt to INT2 pin								
INT2_STEP:	1, map step valid interrupt to INT2 pin								
INT2_HD:	1, ma	hand dow	wn interrupt to	2 pin					
INT2_RAISE:	1, map raise hand interrupt to INT2 pin								
INT2_SIG_MOT:	0 , not map significant interrupt to INT2 pin								

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
$\begin{aligned} & \text { INT2_NO_ } \\ & \text { MOT } \end{aligned}$	INT2_FWM	INT2_FFUL L	$\begin{aligned} & \text { INT2_DAT } \\ & \text { A } \end{aligned}$			$\begin{aligned} & \text { INT2_Q_TA } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { INT2_ANY_ } \\ & \text { MOT } \end{aligned}$	RW	0x00
INT2_NO_MOT: \quad1, map no_motion interrupt to INT2 pin									
INT2_FWM: $\quad 1$, map FIFO watermark interrupt to INT2 p									
INT2_FFULL: 1, map FIFO full interrupt to INT2 pin									
0 , not map register data ready interrupt to INT2 pin									
INT2_Q_TAP: 1, map quad tap interrupt to INT2 pin									
INT2_ANY_MOT: $\quad 1$, map any motion interrupt to INT2 pin									

Register 0x1d (STEP_CFGO)

$\underbrace{}_{\text {砥睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
STEP_INTERVAL<7:0>	Default							

STEP_INTERVAL <7:0>: algorithm setting
Register 0x1e (STEP_CFG1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
NLPF_STEP<1:0>	TAP_QUIET<5:0>							

NLPF_STEP<1:0>: Moving Average of Step: 1/2/4/8
TAP_QUIET_TH<5:0>: Tap quiet threshold selection, LSB of TAP_QUIET_TH<5:0> is 31.25 mg in all full scale.
Register 0x1f

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_START_CNT<2:0>		STEP_COUNT_PEAK $<1: 0>$	STEP_COUNT_P2P<2:0>		RW				

STEP_START_CNT<2:0>:	algorithm setting
STEP_COUNT_PEAK<2:0>:	algorithm setting

STEP_COUNT_P2P<2:0>: algorithm setting

Register 0x20 (INTPIN CONF)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
$\begin{aligned} & \text { DIS_PU_SE } \\ & \text { NB } \end{aligned}$	$\begin{aligned} & \text { DIS_IE_AD } \\ & 0 \end{aligned}$	EN_SPI3W	$\begin{aligned} & \text { STEP_COU } \\ & \text { NT_PEAK< } \\ & 2> \end{aligned}$	INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	0x05
DIS_PU_SENB	1, disable pull-up resistor of PIN_SENB 0, enable pull-up resistor of PIN_SENB								
DIS_IE_ADO:	1, disable input of ADO								
EN_SPI3W:	1, enable 3W SPI$0,4 \mathrm{~W} \mathrm{SPI}$								
STEP_COUNT_PEAK<2>: Definition in 0x1F<4:3>									
INT2_OD:	1, open-drain for INT2 pin 0, push-pull for INT2 pin								
INT2_LVL:	1, logic high as active level for INT2 pin 0 , logic low as active level for INT2 pin								
INT1_OD:	1, open-drain for INT1 pin 0, push-pull for INT1 pin								
INT1_LVL:	1, logic high as active level for INT1 pin 0 , logic low as active level for INT1 pin								
Register 0x21 (INT_CFG)									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
$\begin{aligned} & \text { INT_RD_CL } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { SHADOW_ } \\ & \text { DIS } \end{aligned}$	DIS_I2C				LATCH_INT STEP	LATCH_INT	RW	0x0C

INT_RD_CLR: 1, clear all the interrupts in latched-mode, when any read operation to any of registers from 0x09 to 0x0D
0 , clear the related interrupts, only when read the register INT_ST (0×09 to 0x0D),
no matter the interrupts in latched-mode, or in non-latched-mode.
Reading 0x09 will clear the register 0x09 only and the others keep the status
SHADOW_DIS: 1, disable the shadowing function for the acceleration data
0 , enable the shadowing function for the acceleration data.
When shadowing is enabled, the MSB of the acceleration data is locked,
when corresponding LSB of the data is reading.
This can ensure the integrity of the acceleration data during the reading.
The MSB will be unlocked when the MSB is read.
DIS_I2C: $\quad 1$: disable I2C. Setting this bit to 1 in SPI mode is recommended
0 : enable I2C
LATCH_INT_STEP: 1, step related interrupt is in latch mode 0 , step related interrupt is in non-latch mode
LATCH_INT: $\quad 1$, interrupt is in latch mode
0 , interrupt is in non-latch mode
Register 0x22

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RAISE_WAKE_DIFF_TH<1:0> | RAISE_WAKE_SUM_TH<5:0> | | Default | | | | | |

RAISE_WAKE_DIFF_TH<1:0>: Threshold $=0$ ~ 31.5 (LSB 0.5)
RAISE_WAKE_SUM_TH<5:0>:

The information contained herein is the exclusive property of QST, and shall not be distributed,

宜	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

0	0.2
1	0.3
2	0.4
3	0.5
4	0.6
5	0.7
6	0.8
7	0.9
8	1.0
9	1.1
10	1.2
Default	0.2

HD_Z_TH<2:0>: hand down z threshold, 0~7
HD_X_TH<2:0>: hand down x threshold, 0~7
RAISE_WAKE_DIFF_TH<3:2>: Threshold $=0 \sim 31.5$ (LSB 0.5)
Register 0x24

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RAISE_WAKE_TIMEOUT_TH<7:0> | Default | | | | | | | |

RAISE_WAKE_TIMEOUT_TH<7:0>: Raise_wake_timeout_th[11:0] * ODR period = timeout count

Register 0x25

Bit7 \quad Bit6	Bit5	Bit4	Bit3	\square	Bit2	Bit1	Bit0	R/W	Default
RAISE_WAKE_PERIOD<7:0>								RW	0x00

RAISE_WAKE_PERIOD<7:0>: Raise_wake_period[10:0] * ODR period = wake count
Register 0x26

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RAISE_MODE | RAISE_WAKE_PERIOD<10:8> | RAISE_WAKE_TIMEOUT_TH<11:8> | Default | | | | | |

RAISE_MODE: 0:raise wake function, 1:ear-in function
RAISE_WAKE_PERIOD<10:8>: Raise_wake_period[10:0] * ODR period = wake count
RAISE_WAKE_TIMEOUT_TH<11:8>: Raise_wake_timeout_th[11:0] * ODR period = timeout count

Register 0x27 (OS_CUST_X)

OS_CUST_Y<7:0>: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9 mg in 2 g range, 7.8 mg in 4 g range, 15.6 mg in 8 g range, 31.2 mg in 16 g , and 62.5 mg in 32 g
Register 0×29 (OS_CUST_Z)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
OS_CUST_Z<7:0>								

OS_CUST_Z<7:0>: offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9 mg in 2 g range, 7.8 mg in 4 g range, 15.6 mg in 8 g range, 31.2 mg in 16 g , and 62.5 mg in 32 g

Register 0x2a (RAISE_WAKE_SUM_TH RAISE_WAKE_DIFF_TH)
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W TAP_QUIET TAP_SHOC K TAP_DELA Y TAP_EARIN TAP_DUR<2:0> Default
TAP_QUIET:
1: Tap quiet time $=30 \mathrm{~ms}$
TAP_SHOCK:

矽睿	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

TS $_{\text {矽睿 }}$	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

	$01, T_{-}$SKIP $=3 \mathrm{~s}$
	$10, T_{-}$SKIP $=6 \mathrm{~s}$
	$11, T_{-}$SKIP $=12 \mathrm{~s}$
SIG_MOT_SEL:	1, select significant motion interrupt
	0, select any motion interrupt

Register 0x30

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
MO_BP_LP	STEP_BP_L F	TAP_RST_			NO_MOT_ $^{\text {PF }}$		SIG_MOT_	ANY_MOT	RW
RST_N	RST_N		Default						

FIFO_WTMK_LVL<7:0>: defines FIFO water mark level. Interrupt will be generated, when the number of entries in the FIFO exceeds FIFO_WTMK_LVL<7:0>. When the value of this register is changed, the FIFO_FRAME_COUNTER in OxOE is reset to 0 .
Register 0x32 (ST)

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SELFTEST_
 BIT | | | | | SELFTEST_
 SIGN | STEP_BP_AXIS<1:0> | RW | Default |

SELFTEST_BIT: 1, self-test enabled. When self-test enabled, a delay of 3 ms is necessary for the value settling.
0 , normal
SELFTEST_SIGN: 1, set self-test excitation positive
0 , set self-test excitation negative
STEP_BP_AXIS<1:0>: $\quad 11$, bypass Z axis, use only X and Y axes data for step counter algorithm
10, bypass Y axis, use only X and Z axes data for step counter algorithm
01, bypass X axis, use only Y and Z axes data for step counter algorithm
00 , use all of 3 axes data for step counter algorithm

Register 0x34 (Y_TH YZ_TH_SEL)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
YZ_TH_SEL<2:0>			Y_TH<4:0>					RW	0x9D

Y_TH: -16 ~ $15(\mathrm{~m} / \mathrm{s} 2)$

YZ_TH_SEL<2:0>	UNIT (m/s2)
0	7.0
1	7.5
2	8.0
3	8.5
4	9.0
5	9.5
6	10.0
7	10.5

Register 0x35 (RAISE_WAKE_PERIOD)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
Z_TH<3:0>	X_TH<3:0>	Default						

X_TH[3:0]: $0 \sim 7.5$
Z_TH[3:0]:-8~7
Register 0×36 (SR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
SOFT_RESET								

SOFT_RESET: 0xB6, soft reset all of the registers. After soft-reset, user should write 0x00 back
Register 0x3e (FIFO_CFGO)

The information contained herein is the exclusive property of QST, and shall not be distributed,

	Document \#: 13-52-21	Title: QMA6100 Datasheet	Rev: A

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FIFO_MODE<1:0>	RAISE_XYZ_SW<2:0>	FIFO_EN_Z	FIFO_EN_Y	FIFO_EN_X	RW	0x07			

FIFO_MODE<1:0> : FIFO_MODE<1:0>: FIFO_MODE defines FIFO mode of the device. Settings as following

FIFO_MODE $<1: 0>$	MODE
11	FIFO
10	STREAM
01	FIFO
00	BYPASS

RAISE_XYZ_SW<2:0> is $x / y / z$ axis switcher, default setting is " 0 : XYZ" and below is the detail configuration. Both raise wake and ear in/out can use this function.

$0 \times 3 E[5: 3]$	X	Y	Z
0	X	Y	Z
1	X	Z	Y
2	Y	X	Z
3	Y	Z	X
4	Z	X	Y
5	Z	Y	X
6	X	Y	Z
7	X	Y	Z

$0 \times 3 E[2: 0]$: User can select the acceleration data of which axis to be stored in the FIFO. This configuration can be done by setting FIFO_CH, where ' $111 \mathrm{D}^{\prime}$ for $\mathrm{x}-\mathrm{y}, \mathrm{y}$-, and z-axis, '001b' for x-axis only, ‘010b' for y-axis only, '100b' for z-axis only.
Register 0x3f (FIFO_DATA)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
FIFO_DATA<7:0>								

FIFO_DATA<7:0>: FIFO read out data. User can read out FIFO data through this register. Data format depends on the setting of FIFO_CH (0x3e<2:0>). When the FIFO data is the LSB part of acceleration data, and if FIFO is empty, then FIFO_DATA $<0>$ is 0 . Otherwise if FIFO is not empty and the data is effective, FIFO_DATA<0> is 1 when reading LSB of acceleration.

ORDERING INFORMATION

Ordering Number	Temperature Range	Package	Packaging
QMA6100	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	LGA-12	Tape and Reel: 5 k pieces/reel

CAUTION: ESDS CAT. 1B

For more information on QST's Accelerometer Sensors contact us at 86-21-69517300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001: 2015

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.

[^0]: The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

[^1]: S_TAP_INT: $\quad 1$, single tap is active
 0 , single tap is inactive

