

High Performance Current Mode Controllers

The HT3844B, HT3845B series are high performance fixed frequency current mode controllers. They are specifically designed for Off-Line

and dc-dc converter applications offering the designer a cost-effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle–by–cycle current limiting, a latch for single pulse metering, and a flip–flop which blanks the output off every other oscillator cycle, allowing output deadtimes to be programmed from 50% to 70%.

These devices are available in an 8-pin dual-in-line and surface mount (SOIC-8) plastic package as well as the 14-pin plastic surface mount (SOIC-14). The SOIC-14 package has separate power and ground pins for the totem pole output stage.

The UCX844B has UVLO thresholds of 16V (on) and 10V (off), ideally suited for off-line converters. The UCX845B is tailored for lower voltage applications having UVLO thresholds of 8.5V (on) and 7.6V (off).

Features

- Trimmed Oscillator for Precise Frequency Control
- Oscillator Frequency Guaranteed at 250kHz
- Current Mode Operation to 500 kHz Output Switching Frequency
- Output Deadtime Adjustable from 50% to 70%
- Automatic Feed Forward Compensation
- Latching PWM for Cycle–By–Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current
- These Devices are Pb-Free and are RoHS Compliant
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

PIN CONNECTIONS

Rating	Symbol	Value	Unit
Bias and Driver Voltages (Zero Series Impedance, see also Total Dev	rice spec) (Note 1) V _{CC} , V _C	36	V
Total Power Supply and Zener Current	(I _{CC} + I _Z)	30	mA
Output Current, Source or Sink (Note 2)	lo	1.0	A
Output Energy (Capacitive Load per Cycle)	W	5.0	μJ
Current Sense and Voltage Feedback Inputs	V _{in}	- 0.3 to + 5.5	V
Error Amp Output Sink Current	lo	10	mA
Power Dissipation and Thermal Characteristics D Suffix, Plastic Package, SOIC-14 Case 751A Maximum Power Dissipation @ $T_A = 25^{\circ}C$ Thermal Resistance, Junction-to-Air D1 Suffix, Plastic Package, SOIC-8 Case 751 Maximum Power Dissipation @ $T_A = 25^{\circ}C$ Thermal Resistance, Junction-to-Air N Suffix, Plastic Package, Case 626 Maximum Power Dissipation @ $T_A = 25^{\circ}C$ Thermal Resistance, Junction-to-Air	PD R _{SJA} PD R _{SJA} PD R _{SJA}	862 145 702 178 1.25 100	mW °C/W mW °C/W ℃/W
Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature HT3 HT2 HT384	844B, HT3845B T _A 844B, HT2845B 4BV, HT3845BV	0 to +70 -25 to +85 -40 to +105	°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The voltage is clamped by a zener diode (see page 9 Under Voltage Lockout section). Therefore this voltage may be exceeded as long as the total power supply and zener current is not exceeded.

2. Maximum package power dissipation limits must be observed.

This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per JEDEC Standard JESD22-A114B, Machine Model Method 200 V per JEDEC Standard JESD22-A115-A

4. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V [Note 5], R_T = 10 k, C_T = 3.3 nF. For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies [Note 6], unless otherwise noted.)

		HT284xB		HT384xE				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION					•		•	-
Reference Output Voltage ($I_0 = 1.0 \text{ mA}, T_J = 25^{\circ}\text{C}$)	V _{ref}	4.95	5.0	5.05	4.9	5.0	5.1	V
Line Regulation (V _{CC} = 12 V to 25 V)	Reg _{line}	-	2.0	20	-	2.0	20	mV
Load Regulation (I _O = 1.0 mA to 20 mA)	Reg _{load}	-	3.0	25	-	3.0	25	mV
Temperature Stability	Τ _S	-	0.2	-	-	0.2	-	mV/°C
Total Output Variation over Line, Load, & Temperature	V _{ref}	4.9	-	5.1	4.82	-	5.18	V
Output Noise Voltage (f = 10 Hz to 10 kHz, $T_J = 25^{\circ}C$)	Vn	-	50	-	-	50	-	μV
Long Term Stability (T _A = 125°C for 1000 Hours)	S	-	5.0	-	-	5.0	-	mV
Output Short Circuit Current	I _{SC}	- 30	- 85	-180	- 30	- 85	-180	mA
OSCILLATOR SECTION								
Frequency T _J = 25°C	fosc	49	52	55	49	52	55	kHz
T _A = T _{low} to T _{high}		48	-	56	48	-	56	
T _J = 25°C (R _T = 6.2 k, C _T = 1.0 nF)		225	250	275	225	250	275	
Frequency Change with Voltage (V_{CC} = 12 V to 25 V)	Mfosc/MV	-	0.2	1.0	-	0.2	1.0	%
Frequency Change w/ Temperature (T _A = T _{low} to T _{high})	Mf _{OSC} /MT	-	1.0	-	-	0.5	-	%
Oscillator Voltage Swing (Peak-to-Peak)	V _{OSC}	-	1.6	-	-	1.6	-	V

5. Adjust V_{CC} above the Startup threshold before setting to 15 V.

Adduct v(c) above the startup threating to 15 v.
 Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
 T_{low} = 0°C for HT3844B, HT3845B = -25°C for HT2844B, HT2845B
 Thigh = + 70°C for HT2844B, HT2845B
 Thigh = + 85°C for HT2844B, HT2845B

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V [Note 7], R_T = 10 k, C_T = 3.3 nF. For typical values T_A = 25°C, for min/max values TA is the operating ambient temperature range that applies [Note 8], unless otherwise noted.)

Characteristic Symbol Min Typ Max Min Typ Max Unit OSCILLATOR SECTION T_= Tow to Thigh (HT284XB, HT384XB) (HT384XBV) 7.5 -<				HT284xB		HT: H	384xB, x TV384xE	BV, BV	
	Characteristic		Min	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OSCILLATOR SECTION	•							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Discharge Current (V _{OSC} = 2.0 V) T _J	= 25°C I _{dischg}	7.8	8.3	8.8	7.8	8.3	8.8	mA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$T_A = T_{low}$ to T_{high} (HT284XB, HT3	384XB)	7.5	-	8.8	7.6	-	8.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		54ABV)	-	_		1.2	_	0.0	
Nonage resuback might (%) = 2.5 (%) 2.42 2.42 2.42 2.42 2.42 2.42 2.44	Voltage Ecodback Input (Voltage 2.5.V)	V	2.45	25	2.55	2 4 2	2.5	2.50	V
Input base Current Parks 20 (1) Tig - 10 - - 0 10 - 0 - 0 MHz Power Supply Rejection Ratio (Voc = 12 V to 25 V) PSR 60 70 - 60 70 - dB Output Current - Sink (Vo = 1.1 V, VFB = 2.3 V) Isource -0.5 -1.0 - 5.0 6.2 - 5.0 6.2 - - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.1 0.1	Voltage Feedback input $(V) = 2.5 V$	V FB	2.40	2.5	2.55	2.42	2.5	2.00	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Open Leen Voltere Cein (V. 20) (to 40)()	IB	-	- 0.1	-1.0	-	- 0.1	- 2.0	μA dB
Unity Gain Bandwint (1 j = 25°C) BW 0.7 1.0 - 0.7 1.0 - 0.77 Power Supply Rejection Ratio (V _{CC} = 12 V to 25 V) PSRR 60 70 - 70 <td< td=""><td>Open Loop voltage Gain ($V_0 = 2.0$ v to 4.0 v)</td><td>AVOL</td><td>00</td><td>90</td><td>-</td><td>00</td><td>90</td><td>-</td><td></td></td<>	Open Loop voltage Gain ($V_0 = 2.0$ v to 4.0 v)	AVOL	00	90	-	00	90	-	
Power Supply Rejection Ratio (V _{CC} = 12 V to 25 V) PSRK eu 70 - 60 70 - 80 Output Current - Sink (V _O = 1.1 V, V _{FB} = 2.3 V) Isource -0.5 -1.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.2 - - 0.8 1.2 - 0.8 1.2 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.0 1.1 0.9 1.0 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1	Unity Gain Bandwidth ($T_J = 25^{\circ}C$)	BW	0.7	1.0	-	0.7	1.0	-	MHZ
	Power Supply Rejection Ratio (V _{CC} = 12 V to 25 V)	PSRR	60	70	-	60	70	-	dB
Output Voltage Swing High State (RL = 15 k to ground, VFB = 2.3 V) Low State (RL = 15 k to ground, VFB = 2.3 V) Low State (RL = 15 k to yref, VFB = 2.7 V) (HT284XB, HT384XB) V Vol Vol (HT284XB, HT384XB) So Construction 6.2 - 5.0 6.2 - 5.0 6.2 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.1 - 0.8 1.2 0.8 1.2 Current Sense Input Voltage Gain (Notes 9 & 10) Av 2.85 3.0 3.15 2.85 3.0 3.15 2.85 3.0 3.15 2.85 3.0 3.15 2.85 3.0 3.15 2.85 3.0 3.15 2.85 3.0 3.15 2.85 3.0 3.15 2.85	Output Current – Sink ($V_O = 1.1 \text{ V}$, $V_{FB} = 2.7 \text{ V}$)	I _{Sink}	2.0	12	_	2.0	12	_	mA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Voltage Swing	Source	0.0	1.0		0.0	1.0		V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	High State ($R_L = 15$ k to ground, $V_{FB} = 2.3$ V)	Vон	5.0	6.2	_	5.0	6.2	_	v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Low State ($R_L = 15 \text{ k to } V_{ref}, V_{FB} = 2.7 \text{ V}$)	V _{OL}					-		
(Introductor) Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	(HT284XB, HT384XB)		-	0.8	1.1	-	0.8	1.1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(П1304АВУ)		-	-	-	-	0.8	1.2	
Current Sense Input Voltage Gain (Notes 9 & 10) Av Av <t< td=""><td>CURRENT SENSE SECTION</td><td></td><td>-</td><td>1</td><td>1</td><td></td><td>1</td><td></td><td></td></t<>	CURRENT SENSE SECTION		-	1	1		1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Current Sense Input Voltage Gain (Notes 9 & 10) (HT284XB, HT384XB)	A _V	2.85	3.0	3 15	2.85	3.0	3 15	V/V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(HT384XBV)		-	-	-	2.85	3.0	3.25	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Maximum Current Sense Input Threshold (Note 9)								V
(HT384XBV) 0.85 1.0 1.1 Power Supply Rejection Ratio (V _{CC} = 12 V to 25 V) (Note 9) PSRR 70 70 70 70 4B Input Bias Current I _{IB} -2.0 -10 -2.0 -10 2.0 -10 4D Propagation Delay (Current Sense Input to Output) tpLH(In/Out) - 150 300 150 300 ns OUTPUT SECTION 1.6 2.2 1.6 2.2 - 1.6 2.2 Low State (Isink = 20 mA) HT284XB, HT384XB) (Isink = 200 mA, HT384XBV) - - - 1.6 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.3 - - 1.6 2.3 - - 1.6 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.3 1.5 - <td< td=""><td colspan="2">(HT284XB, HT384XB)</td><td>0.9</td><td>1.0</td><td>1.1</td><td>0.9</td><td>1.0</td><td>1.1</td><td></td></td<>	(HT284XB, HT384XB)		0.9	1.0	1.1	0.9	1.0	1.1	
Power Supply Rejection Ratio (V _{CC} = 12 V to 25 V) (Note 9) PSRR - 70 - 70 - 70 - dB Input Bias Current I _{IB} - -2.0 -10 - -2.0 -10 0.1 0.0 - 150 300 - 150 300 ns Propagation Delay (Current Sense Input to Output) trpLH(In/Out) - 150 300 - 150 300 ns OUTPUT SECTION - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - V Output Voltage	(HT384XBV)		-	-	-	0.85	1.0	1.1	
Input Bias Current IlB - -2.0 -10 - -2.0 -10 μA Propagation Delay (Current Sense Input to Output) tpLH(In/Out) - 150 300 - 150 300 ns OUTPUT SECTION - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.1 0 1.1 1.5 0 0 0.1 1.	Power Supply Rejection Ratio (V_{CC} = 12 V to 25 V) (Note 9)		-	70	-	-	70	-	dB
Propagation Delay (Current Sense Input to Output) tpLH(In/Out) - 150 300 - 150 300 ns OUTPUT SECTION Output Voltage VOL - 0.1 0.4 - 0.1 0.4 - V Low State (Isink = 20 mA) (Isink = 200 mA, HT284XB, HT384XB) (Isink = 200 mA, HT384XBV) VOL - 0.1 0.4 - 0.1 0.4 - 0.1 0.4 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.2 - 1.6 2.3 - High State (Isource 200 mA, HT384XBV) VOH 13 13.5 - 12.9 - - 12.9 - 12.9 - - - 12.9 13.4 - - - 12.9 13.4 - - - - - 12.9 13.4 - - - - - -	Input Bias Current	I _{IB}	-	- 2.0	-10	-	- 2.0	-10	μA
OUTPUT SECTION Output Voltage Low State (ISink = 20 mA) (ISink = 200 mA, HT284XB, HT384XB) (ISink = 200 mA, HT384XBV) VOL - 0.1 0.4 - 0.1 0.4 2.2 High State (ISource = 20 mA, HT284XB, HT384XB) (ISource = 20 mA, HT384XBV) VOH 13 13.5 - 1.6 2.2 - 1.6 2.3 Output Voltage (ISource = 20 mA, HT284XB, HT384XB) (ISource = 200 mA) VOH 13 13.5 - 1.6 2.2 - 1.6 2.3 Output Voltage with UVLO Activated (Vcc = 6.0 V, ISink = 1.0 mA) VOH 13 13.4 - 0.0 <td colspan="2">Propagation Delay (Current Sense Input to Output)</td> <td>) –</td> <td>150</td> <td>300</td> <td>-</td> <td>150</td> <td>300</td> <td>ns</td>	Propagation Delay (Current Sense Input to Output)) –	150	300	-	150	300	ns
Output Voltage	OUTPUT SECTION								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Voltage								V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Low State $(I_{Sink} = 20 \text{ mA})$ $(I_{Sink} = 200 \text{ mA} \text{ HT}284XB \text{ HT}384XB)$	V _{OL}	_	0.1	0.4	_	0.1	0.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Isink = 200 mA, HT204XB, HT304XB) (Isink = 200 mA, HT384XBV)		_	-	_	-	1.6	2.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	High State ($I_{Source} = 20 \text{ mA}$, HT284XB, HT384XB)		13	13.5	-	13	13.5	-	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$(I_{Source} = 20 \text{ mA}, HI384XBV)$ $(I_{Source} = 200 \text{ mA})$		- 12	-	-	12.9	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{10000000000000000000000000000000000$		12	13.4	-	12	13.4	-	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Output Voltage with $OVEO$ Activated (VCC = 6.0 V, ISink = 1.0 IIIA)) –	0.1	1.1	_	0.1	1.1	V
Output Voltage Fall Time (CL = 1.0 nF, TJ = 25°C) tf - 50 150 - 50 150 ns UNDERVOLTAGE LOCKOUT SECTION Startup Threshold UCX844B, BV UCX845B, BV Vth 15 16 17 14.5 16 17.5 V Minimum Operating Voltage After Turn-On UCX844B, BV UCX845B, BV V _{cC(min)} 9.0 10 11 8.5 10 11.5 V	Output Voltage Rise Time ($C_L = 1.0 \text{ nF}$, $T_J = 25^{\circ}C$)		-	50	150	-	50	150	ns
UNDERVOLTAGE LOCKOUT SECTION Startup Threshold UCX844B, BV UCX845B, BV V _{th} 15 7.8 16 8.4 17 9.0 14.5 7.8 16 8.4 17.5 9.0 16 7.8 17.5 8.4 9.0 17.5 8.4 9.0 Minimum Operating Voltage After Turn-On UCX845B, BV UCX844B, BV UCX845B, BV V _{CC(min)} 7.0 9.0 10 11 8.5 10 11.5 V	Output Voltage Fall Time ($C_L = 1.0 \text{ nF}, T_J = 25^{\circ}C$)	t _f	-	50	150	-	50	150	ns
Startup I hreshold UCX844B, BV UCX845B, BV V _{th} 15 16 17 14.5 16 17.5 V Minimum Operating Voltage After Turn-On UCX844B, BV UCX845B, BV V _{cC(min)} 9.0 10 11 8.5 10 11.5 V Minimum Operating Voltage After Turn-On UCX844B, BV UCX845B, BV V _{CC(min)} 9.0 10 11 8.5 10 11.5 V			·-	1		1 =	1 <i>4</i> -		
Minimum Operating Voltage After Turn-On UCX844B, BV V _{CC(min)} 9.0 10 11 8.5 10 11.5 V UCX845B, BV UCX845B, BV 7.0 7.6 8.2 7.0 7.6 8.2	Startup Threshold UCX84 UCX84	4B, BV V _{th} 5B, BV	15 7.8	16 8.4	17 9.0	14.5 7.8	16 8.4	17.5 9.0	V
UCX845B, BV 7.0 7.6 8.2 7.0 7.6 8.2	Minimum Operating Voltage After Turn-On UCX84	4B, BV V _{CC(min)}	9.0	10	11	8.5	10	11.5	V
	UCX84	5B, BV	7.0	7.6	8.2	7.0	7.6	8.2	

8. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

T_{high} = + 70°C for HT3844B, HT3845B = + 85°C for HT2844B, HT2845B = +105°C for HT3844BV, HT3845BV

= +125°C for HTV384xBV

9. This parameter is measured at the latch trip point with $V_{FB} = 0$ V. 10. Comparator gain is defined as: $A_{V} = \frac{MV Output/Compensation}{MV Output/Compensation}$

MV Current Sense Input

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 V$ [Note 11], $R_T = 10 k$, $C_T = 3.3 nF$. For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies [Note 12], unless otherwise noted.)

		HT284xB		HT384xB, xBV, NCV384xBV				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
PWM SECTION								
Duty Cycle Maximum (HT284XB, HT384XB) (HT384XBV) Minimum	DC _(max) DC _(min)	47 - -	48 - -	50 - 0	47 46 -	48 48 -	50 50 0	%
TOTAL DEVICE								
Power Supply Current Startup (V _{CC} = 6.5 V for UCX845B, 14 V for UCX844B, BV) Operating (Note 11)	ICC	-	0.3 12	0.5 17	-	0.3 12	0.5 17	mA
Power Supply Zener Voltage (I _{CC} = 25 mA)	Vz	30	36	-	30	36	-	V

11. Adjust V_{CC} above the Startup threshold before setting to 15 V.

12. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

 $T_{low} = 0^{\circ}C$ for HT3844B, HT3845B $T_{high} = +70^{\circ}C$ for HT384

- $= -25^{\circ}$ C for HT2844B, HT2845B
- = -40°C for HT384xBV, HTV384xBV

Thigh = + 70°C for HT3844B, HT3845B = + 85°C for HT2844B, HT2845B = + 105°C for HT2844B, HT2845B = +105°C for HT3844BV, HT3845BV

Figure 3. Output Deadtime versus Oscillator Frequency

Transient Response

Figure 7. Current Sense Input Threshold versus Error Amp Output Voltage

Phase versus Frequency

Figure 8. Reference Voltage Change versus Source Current

versus Temperature

Figure 10. Reference Load Regulation

Figure 14. Output Cross Conduction

Figure 15. Supply Current versus Supply Voltage

Pin			
8-Pin	14-Pin	Function	Description
1	1	Compensation	This pin is the Error Amplifier output and is made available for loop compensation.
2	3	Voltage Feedback	This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	5	Current Sense	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	7	Rt/Ct	The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor R_T to V_{ref} and capacitor C_T to ground. Oscillator operation to 1.0 kHz is possible.
5		GND	This pin is the combined control circuitry and power ground.
6	10	Output	This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin. The output switches at one-half the oscillator frequency.
7	12	V _{CC}	This pin is the positive supply of the control IC.
8	14	V _{ref}	This is the reference output. It provides charging current for capacitor C_T through resistor R_T .
	8	Power Ground	This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry.
	11	Vc	The Output high state (V_{OH}) is set by the voltage applied to this pin. With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry.
	9	GND	This pin is the control circuitry ground return and is connected back to the powersource ground.
	2,4,6,13	NC	No connection. These pins are not internally connected.

PIN FUNCTION DESCRIPTION

Undervoltage Lockout

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal (V_{CC}) and the reference output (V_{ref}) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The V_{CC} comparator upper and lower thresholds are 16 V/10 V for the UCX844B, and 8.4 V/7.6 V for the UCX845B. The V_{ref} comparator upper and lower thresholds are 3.6 V/3.4 V. The large hysteresis and low startup current of the UCX844B makes it ideally suited in off-line converter applications where efficient bootstrap startup techniques are required (Figure 30). The UCX845B is intended for lower voltage dc-dc converter applications. A 36 V Zener is connected as a shunt regulator from V_{CC} to ground. Its purpose is to protect the IC from excessive voltage that can occur during system startup. The minimum operating voltage for the UCX844B is 11 V and 8.2 V for the UCX845B.

Output

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to ± 1.0 A peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active. This characteristic eliminates the need for an external pulldown resistor.

The SOIC–14 surface mount package provides separate pins for V_C (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the $I_{pk(max)}$ clamp level. The separate V_C supply input allows the

designer added flexibility in tailoring the drive voltage independent of V_{CC} . A Zener clamp is typically connected to this input when driving power MOSFETs in systems where V_{CC} is greater than 20 V. Figure 23 shows proper power and control ground connections in a current–sensing power MOSFET application.

Reference

The 5.0 V bandgap reference is trimmed to $\pm 1.0\%$ tolerance at T_J = 25°C on the HT284XB, and $\pm 2.0\%$ on the HT384XB. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short–circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

Design Considerations

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulse-width jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low-current signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors (0.1 μ F) connected directly to V_{CC}, V_C, and V_{ref} may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise-generating components.

The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of C_T to go more than 300 mV below ground.

Figure 19. External Duty Cycle Clamp and Multi-Unit Synchronization

Figure 20. Adjustable Reduction of Clamp Level

Virtually lossless current sensing can be achieved with the implementation of a $\ensuremath{\mathsf{SENSEFET}}$

TM power switch. For proper operation during over-current conditions, a reduction of the $I_{pk(max)}$ clamp level must be implemented. Refer to Figures 20 and 22.

Figure 23. Current Sensing Power MOSFET

Figure 24. Current Waveform Spike Suppression

Series gate resistor R_g will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

Figure 25. MOSFET Parasitic Oscillations

The totem pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor $C_{\rm 1}.$

Figure 26. Bipolar Transistor Drive

Figure 27. Isolated MOSFET Drive

The MCR101 SCR must be selected for a holding of < 0.5 mA @ $T_{A(min)}$. The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10 k.

From Vo

2.5V

 $\label{eq:constant} Error\,Amp\,compensation\,circuit\,for\,stabilizing\,any\,current\,mode\,topology\,except\,for\,boost\,and\,flyback\,converters\,operating\,with\,continuous\,inductor\,current.$

Error Amp compensation circuit for stabilizing current mode boost and flyback topologies operating with continuous inductor current.

Secondary 5.0 V: 4 Turns (six strands) #26 Hexfiliar Wound Secondary Feedback: 10 Turns #30 AWG (2 strands) Bifiliar Wound Core: Ferroxcube EC35-3C8 Bobbin: Ferroxcube EC35PCB1 Gap: ≈ 0.10 " for a primary inductance of 1.0 mH

Test		Conditions	Results
Line Regulation:	5.0 V ±12 V	V _{in} = 95 Vac to 130 Vac	M = 50 mV or ±0.5% M = 24 mV or ±0.1%
Load Regulation	: 5.0 V ±12 V		M = 300 mV or ±3.0% M = 60 mV or ±0.25%
Output Ripple:	5.0 V ±12 V	V _{in} = 115 Vac	40 mV _{pp} 80 mV _{pp}
Efficiency		V _{in} = 115 Vac	70%

All outputs are at nominal load currents unless otherwise noted.

The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor may be required when using tantalum or other low ESR capacitors. The converter's output can provide excellent line and load regulation by connecting the R2/R1 resistor divider as shown.

The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor may be required when using tantalum or other low ESR capacitors.

Figure 32. Voltage-Inverting Charge Pump Converter

SIDE VIEW

NOTES:

PDIP-8 **N SUFFIX**

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.

- CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
 DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- DIMENSION E3 IS MEASURED AT THE LEAD THES WITH THE LEADS UNCONSTRAINED.
 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CONTECT)
- CORNERS).

	INCHES MILLIMET			ETERS		
DIM	MIN	MAX	MIN	MAX		
Α	1	0.210	1	5.33		
A1	0.015		0.38			
A2	0.115	0.195	2.92	4.95		
b	0.014	0.022	0.35	0.56		
b2	0.060) TYP	1.52 TYP			
С	0.008	0.014	0.20	0.36		
D	0.355	0.400	9.02	10.16		
D1	0.005		0.13			
Е	0.300	0.325	7.62	8.26		
E1	0.240	0.280	6.10	7.11		
е	0.100 BSC		2.54 BSC			
eB		0.430		10.92		
L	0.115	0.150	2.92	3.81		
M		10 °		10 °		

NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.05	0 BSC	
Н	0.10	0.25	0.004	0.010	
ſ	0.19	0.25	0.007	0.010	
Κ	0.40	1.27	0.016	0.050	
M	0	8	0	8	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOIC-8 NB CASE 751-07 **ISSUE AK**

> $\left(\frac{mm}{inches}\right)$ SCALE 6:1

SOIC-14 CASE 751A-03

DIMENSIONS: MILLIMETERS