General Features

- Vds=30V Id=6A
- Rds(on) < 23m Ω, Vgs@10V,
- Rds(ON) < $32 \mathrm{~m} \Omega, \mathrm{~V}_{\mathrm{Gs}} @ 4.5 \mathrm{~V}$,

Application

- Load/Power Switching
- Interfacing Switching
- Battery Management for Ultra Small Portable Electronics
- Logic Level Shift

Package and Pin Configuration

Marking Information
\boldsymbol{J} is Logo
XXXX: Marking ID

SOT23-6

\qquad -

Block Diagram

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5} 5^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	30	V
Gate-Source Voltage		$V_{\text {gs }}$	± 20	
Continuous Drain Current (Note 4)		ld	6	A
Pulsed Drain Current ${ }^{\text {(Note 1) }}$		IDM	25	
Power Dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	PD	2	W
	Derate above $25^{\circ} \mathrm{C}$		16	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction and Storage Temperature Range		TJ, $\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$
Typical Thermal Resistance - Junction to Ambient (Note 3)		RөjA	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Static						
Drain－Source Breakdown Voltage	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	$B V_{\text {DSS }}$	30	－－	－－	V
Drain－Source On－State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$	$\mathrm{R}_{\mathrm{DS}(\text {（n）}}$	－－	18	23	$\mathrm{m} \Omega$
	$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}$		－－	22	32	
Gate Threshold Voltage	$V_{D S}=V_{G S}, I_{D}=250 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS} \text {（TH）}}$	1.0	1.5	2.5	V
Zero Gate Voltage Drain Current	$\mathrm{V}_{\text {DS }}=30 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$	Idss	－－	－－	1	$\mu \mathrm{A}$
	$V_{\text {DS }}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		－－	－－	10	
Gate Body Leakage	$V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\text {gss }}$	－－	－－	± 100	$\mu \mathrm{A}$
Forward Transconductance ${ }^{\text {（Note 3）}}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}$	gis	－－	6.5	－－	S
Dynamic						
Total Gate Charge ${ }^{\text {（Note 3，4）}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \end{aligned}$	Q_{9}	－－	4.1	－－	nC
Gate－Source Charge ${ }^{\text {（Note } 3,4)}$		Q_{gs}	－－	1	－－	
Gate－Drain Charge ${ }^{\text {（Note 3，4）}}$		Q_{gd}	－－	2.1	－－	
Input Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\text {iss }}$	－－	345	－－	pF
Output Capacitance		$\mathrm{C}_{\text {oss }}$	－－	55	－－	
Reverse Transfer Capacitance		$\mathrm{C}_{\text {rss }}$	－－	32	－－	
Switching $\square^{\text {a }}$						
Turn－On Delay Time ${ }^{\text {（Note 3，4）}}$	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & V_{G S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=6 \Omega \end{aligned}$	$\mathrm{t}_{\mathrm{d} \text {（on）}}$	－－	2.8	－－	ns
Turn－On Rise Time ${ }^{\text {（Note 3，4）}}$		t_{r}	－－	7.2	－－	
Turn－Off Delay Time ${ }^{\text {（Note 3，4）}}$		$\mathrm{t}_{\text {d（off）}}$	－－	15.8	－－	
Turn－Off Fall Time ${ }^{\text {（Note 3，4）}}$		t_{f}	－－	4.6	－－	
Source－Drain Diode Ratings and Characteristic						
Maximum Continuous Drain－Source Diode Forward Current	Integral reverse diode in the MOSFET	Is	－－	－－	6	A
Maximum Pulse Drain－Source Diode Forward Current		$I_{\text {SM }}$	－－	－－	25	A
Diode－Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~A}$	$V_{\text {SD }}$	－－	－－	1	V

Note：

1．Pulse width limited by safe operating area
2． $\mathrm{L}=1 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=8 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega$ ，Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
3．Pulse test：pulse width $\leq 300 \mu \mathrm{~s}$ ，duty cycle $\leq 2 \%$
4．Switching time is essentially independent of operating temperature．

Typical Electrical and Thermal Characteristics（Curves）

Continuous Drain Current vs． T_{C}

On－Resistance vs．Junction Temperature

Gate Charge

Threshold Voltage vs．Junction Temperature

Normalized Thermal Transient Impedance Curve

SOT23-6 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	$0.950(B S C)$		$0.037(B S C)$	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

