Features

－ $2 \mu \mathrm{~A}$ Ground Current at no Load
－$\pm 2 \%$ Output Accuracy
－600mA Output Current
－10nA Disable Current（ by option ）
－Wide Operating Input Voltage Range： 1.2 V to 5.5 V
－Dropout Voltage： 0.32 V at $600 \mathrm{~mA} / \mathrm{V}$ out 3.3 V
－Adjustable Output Voltage
－Stable with Ceramic or Tantalum Capacitor
－Current Limit Protection
－Over－Temperature Protection
－SOT－23－5 Packages Available

General Description

The TP172CADJS5 are a group of low－dropout（LDO ） voltage regulators offering the benefits of wide input voltage range from 1.2 V to 5.5 V ，low dropout voltage， low power consumption，and miniaturized packaging． Quiescent current of only $2 \mu \mathrm{~A}$ makes these devices ideal for powering the battery－powered，always－on systems that require very little idle－state power dissipation to a longer service life．There is an option of

Applications

－Portable，Battery Powered Equipment
－Low Power Microcontrollers
－Laptop，Palmtops and PDAs
－Wireless Communication Equipment
－Audio／Video Equipment
－Car Navigation Systems
shutdown mode by selecting the parts with the EN pin and pulling it low．The shutdown current in this mode goes down to only 10nA（ typical ）．
The TP172CADJS5 of linear regulators are stable with the ceramic output capacitor over its wide input range from 1.2 V to 5.5 V and the entire range of output load current（ 0 mA to 600 mA ）．

Ordering Information

TP172CADJS5

（SNS）VFB＝0．8V

PIN CONFIGURATION

Pin No	Pin Name	Pin Function
2	GND	Ground
5	VOUT	Output of the Regulator
1	VIN	Input of Supply Voltage．
3	EN	Enable Control Input．
4	SNS	Sense of Output Voltage．

TYPICAL APPLICATION

Figure 3．Adjustable Output Voltage Application Circuit

$$
\mathrm{R}_{1}=\mathrm{R}_{2} \times\left(\frac{\mathrm{V}_{\text {out }}}{0.8 \mathrm{~V}}-1\right) \quad \text { where } \mathrm{R}_{2}<24 \mathrm{~K} \Omega
$$

BLOCK DIAGRAM

Absolute Maximum Rating（ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted）
VIN to GND -0.3 V to 6.5 V
VOUT，EN，SNS to GND -0.3 V to 6 V
VOUT to VIN -6 V to 0.3 V
Package Thermal Resistance（Note 2）
SOT－23－5，ӨJA $200^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature（Soldering， 10 sec ．） $260^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ESD Susceptibility
HBM－ 2 KV
MM 200V
CDM 2KV

Recommended Operating Conditions

Input Voltage VIN－－－－－－	1.2 V to 5.5 V
Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Ambient Temperature Range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

TECH PUBLIC
TP172CADJS5
一台用电马
2uA 600mA Ultra－LowDropout Regulator
Electrical Characteristics
（ $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified）

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
Supply Voltage	V IN			1.2	－－	5.5	V
DC Output Voltage Accuracy	V ${ }_{\text {SNS }}$	$I_{\text {LOAD }}=0.1 \mathrm{~mA}$			0.8		V
SNS Input Current	IsNS	SNS＝Vout			0.7		$\mu \mathrm{A}$
Dropout Voltage（lload $=600 \mathrm{~mA}$ ） （Note 3）	VDROP＿3V	Vout $\geq 3 \mathrm{~V}$			0.32		V
	VDROP＿2．8V	$\mathrm{V}_{\text {OUT }}=2.8 \mathrm{~V}$			0.36		
	VDROP＿2．5V	Vout $=2.5 \mathrm{~V}$			0.36		
	VDROP＿1．8V	$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$			0.57		
	VDROP＿1．5V	$\mathrm{V}_{\text {OUt }}=1.5 \mathrm{~V}$			0.71		
	VDROP＿1．2V	Vout $=1.2 \mathrm{~V}$			0.8		
Ground Current	1 l	$\mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$			2		$\mu \mathrm{A}$
Shutdown Ground Current	IsD	$\begin{aligned} & V_{E N}=0 V, \\ & V_{\text {OUt }}=0 V \end{aligned}$			0.01	0.5	
Vout Shutdown Leakage Current	Ileak				0.01	0.5	
Enable Threshold Voltage	V_{IH}	EN Rising				2	
	VIL	EN Falling		0.6			
EN Input Current	Ien	$\mathrm{V}_{\text {EN }}=5 \mathrm{~V}$			10	100	nA
Line Regulation	\triangle LINE	$\begin{aligned} & \text { ILOAD }=30 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V} \text { or } \\ & \left(\mathrm{V}_{\text {OUT }}+0.2 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V} \end{aligned}$			0.2		\％
Load Regulation	\triangle LOAD	$10 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq 0.3 \mathrm{~A}$			0.2		\％
Output Current Limit	ILim	Vout $=0$		600	1100		mA
Power Supply Rejection Ratio$(\operatorname{LLOAD}=5 \mathrm{~mA})$	PSRR	$\begin{aligned} & \text { Vout }=1.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=2 \mathrm{~V} \end{aligned}$	$f=100 \mathrm{~Hz}$	－－	80	－－	dB
			$f=1 \mathrm{kHz}$	－－	75	－－	
Output Voltage Noise$\begin{aligned} & (B W=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \text { Cout } \\ & =1 \mu \mathrm{~F},) \end{aligned}$	Noise	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A} \end{aligned}$	Vout $=0.9 \mathrm{~V}$	－－	40	－－	$\mu \mathrm{V}_{\text {RMS }}$
			$V_{\text {OUT }}=2.8 \mathrm{~V}$	－－	50	－－	
Thermal Shutdown Temperature	Tsd	$\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$		－－	155	－－	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\Delta \mathrm{T}_{\text {sD }}$			－－	15	－－	${ }^{\circ} \mathrm{C}$
Discharge Resistance		$\mathrm{EN}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUt }}=0.1 \mathrm{~V}$		－－	100	－－	Ω

TECH PUBLIC

Typical Characteristics

Fig． 11 Shutdown Ground Current vs．Temperature

Fig． 13 Current Limit vs．Input Voltage

Fig． 15 Load Transient Response

Fig． 12 SNS Input Current vs．Temperature

Fig． 14 Current Limit Response

Fig． 16 Load Transient Response

Current Limit Response

Load Transient Response II

Line Transient Response

PSRR vs. Frequency

Vout Turn On/Off by EN

Noise Density Spectrum

Package informantion

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
C	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	$0.950(\mathrm{BSC})$		$0.037(\mathrm{BSC})$	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

