2.4MHz 3A Step-Down Converter with I²C Interface

General Description

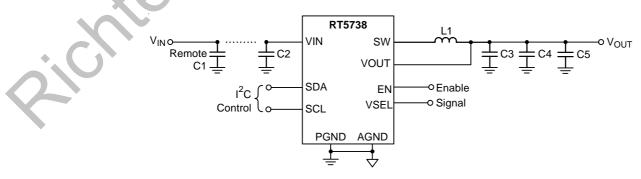
The RT5738 is a step-down switching voltage regulator that delivers a digitally programmable output from an input voltage supply of 2.5V to 5.5V. The output voltage is programmed through an I^2C interface capable of operating up to 3.4MHz.

Using a proprietary architecture with synchronous rectification, the RT5738 is capable of delivering 3A continuous at over 80% efficiency, maintaining that efficiency at load currents as low as 10mA. The regulator operates at a nominal fixed frequency of 2.4MHz, which reduces the value of the external components. Additional output capacitance can be added to improve regulation during load transients without affecting stability.

At moderate and light loads, Pulse Frequency Modulation (PFM) is used to operate in Power-Save Mode with a typical quiescent current of 40µA at room temperature. Even with such a low quiescent current, the part exhibits excellent transient response during large load swings. At higher loads, the system automatically switches to fixed-frequency control, operating at 2.4MHz. In Shutdown Mode, the supply current is typically 0.1µA, excellent in reducing power consumption. PFM Mode can be disabled if fixed frequency is desired. The RT5738 is available in a small WL-CSP-15B 1.31x2.02 (BSC)

Features

- 0.3V to 1.85V Programmable Slew Rate for Voltage Transitions
- Steady 2.4MHz Switching Frequency
- Best-in-Class Load Transient
- Continuous Output Current Capability : 3A
- 2.5V to 5.5V Input Voltage Range
- Digitally Programmable Output Voltage
- I²C-Compatible Interface Up to 3.4Mbps
- PFM Mode for High Efficiency in Light Load
- Quiescent Current in PFM Mode : 45µA (Typical)
- Input Under-Voltage Lockout (UVLO)
- Thermal Shutdown and Overload Protection
- 15-Ball WL-CSP Package


Applications

- Application, Graphic, and DSP Processors
 ARM[™], Tegra[™], OMAP[™], NovaThor[™], ARMADA[™], Krait[™], etc.
- Hard Disk Drives, LPDDR3, LPDDR4
- Tablets, Netbooks, Ultra-Mobile PCs
- Smart Phones
- Gaming Devices

Marking Information

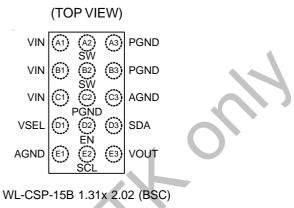
For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Simplified Application Circuit

Ordering Information

RT5738 🖵 🖵

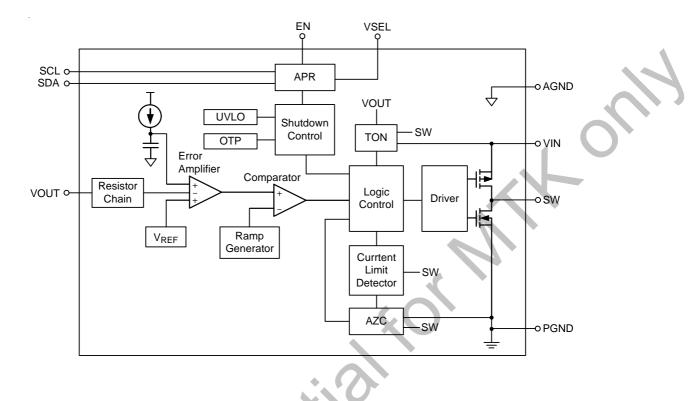
Package Type
 WSC : WL-CSP-15B 1.31x2.02 (BSC)
 Power-Up Defaults (VSEL0/VSEL1)


A : 0.4V/0.6V B : 1.125V/1.125V C : 0.65V/0.7V

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.


Pin Configuration

		
Pin No.	Pin Name	Pin Function
A1, B1, C1	VIN	Power input voltage. Connect to the input power source. Connect to C_{IN} with minimal path.
A2, B2	SW	Switching node. Connect to the inductor.
A3, B3, C2	PGND	Power ground. The low-side MOSFET is referenced to this pin. $C_{\rm IN}$ and $C_{\rm OUT}$ should be returned with a minimal path to these pins.
C3, E1	AGND	Analog ground. All signals are referenced to this pin. Avoid routing high dV/dt AC currents through this pin.
D1	VSEL	Voltage select. When this pin is LOW, VOUT is set by the VSEL0 register. When this pin is HIGH, VOUT is set by the VSEL1 register. Polarity of pin in conjunction with the MODE bits in the Control register 02h, will select Forced PWM or Auto PFM/PWM mode of operation. VSEL0 = Auto PFM, and VSEL1 = Forced PWM.
D2	EN	Enable. The device is in Shutdown Mode when this pin is LOW. Device keeps register content when EN pin is LOW.
D3	SDA	l ² C serial data.
E2	SCL	I ² C serial clock.
E3	VOUT	VOUT. Output voltage sense through this pin. Connect to output capacitor.

Functional Pin Description

Functional Block Diagram

Operation

The RT5738 is a low voltage synchronous step-down converter that can support input voltage ranging from 2.5V to 5.5V and the output current can be up to 3A. The RT5738 uses ACOT[™] mode control. To achieve good stability with low-ESR ceramic capacitors, the ACOT uses a virtual inductor current ramp generated inside the IC. This internal ramp signal replaces the ESR ramp normally provided by the output capacitor's ESR. The ramp signal and other internal compensations are optimized for low-ESR ceramic output capacitors.

In steady-state operation, the feedback voltage, with the virtual inductor current ramp added, is compared to the reference voltage. When the combined signal is less than the reference, the on-time one-shot is triggered, as long as the minimum off-time one-shot is clear and the measured inductor current (through the synchronous rectifier) is below the current limit. The on-time one-shot turns on the high-side switch and the inductor current ramps up linearly. After the on-time, the high-side switch is turned off and the synchronous rectifier is turned on and the inductor current ramps down linearly. At the same

time, the minimum off-time one-shot is triggered to prevent another immediate on-time during the noisy switching time and allow the feedback voltage and current sense signals to settle. The minimum off-time is kept short so that rapidly-repeated on-times can raise the inductor current quickly when needed.

PWM Frequency and Adaptive on Time Control

The on-time can be roughly estimated by the equation :

$$T_{ON} = \frac{V_{OUT}}{V_{IN}} \times \frac{1}{f_{SW}}$$

where f_{SW} is nominal 2.4MHz

Auto-Zero Current Detector

The auto-zero current detector circuit senses the SW waveform to adjust the zero current threshold voltage. When the current of low side MOSFET decrease to the zero current threshold. The low-side MOSFET turns off to prevent negative inductor current. In this way, the zero current threshold can adjust for different condition to get better efficiency.

RT5738

Under-voltage Protection (UVLO)

The UVLO continuously monitors the voltage of VIN to make sure the device works properly. When the VCC is high enough to reach the high threshold voltage of UVLO. The step down converter softly start or pre-bias to its regulated output voltage. When the VIN decreases to its low threshold (350mV hysteresis), the device will shut down.

Power GOOD

When the output voltage is higher than PGOOD rising threshold, the PGOOD flag is High.

Over-Current Protection (OCP)

The RT5738 senses the current signal when low side MOSFET turns on and uses a valley current limiting circuit. As a result, the OCP set point is the OCP DC

limit minus half of the ripple current. The OCP is cycleby-cycle limit. If the OCP occurs, the converter holds off the next on pulse until inductor current drops below the OCP limit. If the OCP keeps and the load current is larger than the current provided by the converter over 16 consecutive times, the output voltage drops and the converter latches off before entering Hiccup mode. Latch off time is 1.7ms or 50ms by factory configuration.

Soft-Start

An internal current source charges an internal capacitor to build the soft-start ramp voltage. The typical soft start time can be programming by I²C.

Over-Temperature Protection (OTP)

The RT5738 has over temperature protection. When the device triggers the OTP, the device shuts down.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage, VIN	0.3V to 7V	
Other I/O Pin Voltages	0.3V to (V _{IN} + 0.3V))
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$		
WL-CSP-15B 1.31x2.02 (BSC)	2W	
Package Thermal Resistance (Note 3)		
WL-CSP-15B 1.31x2.02 (BSC), θ _{JA}	49.8°C/W	
Junction Temperature	150°C	
Lead Temperature (Soldering, 10 sec.)	260°C	
Storage Temperature Range	65°C to 150°C	
ESD Susceptibility (Note 4)		
HBM (Human Body Model)	2kV	
MM (Machine Model)	200V	

Recommended Operating Conditions (Note 5)

• Supply Input Voltage, V _{IN}	 2.5V to 5.5V
• Output Current, IOUT	 0A to 3A
Junction Temperature Range	 –40°C to 125°C
Ambient Temperature Range	 –40°C to 85°C

Electrical Characteristics

(V_{IN} = 3.6V, $T_A = -40^{\circ}$ C to 85°C, unless otherwise specified)

Parar	neter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating quie PWM	escent current	IQ_PWM	I _{LOAD} = 0, MODE Bit = 1 (Forced PWM)		15	-	mA
Operating quie	escent current	IQ_PFM	ILOAD = 0		45		μA
H/W Shutdowr Current	n Supply	ISHDN_H/W	EN = GND		0.1	3	μA
S/W Shutdowr Current	n Supply	ISHDN_S/W	$\label{eq:entropy} \begin{array}{l} EN = VIN, \ BUCK_ENx = 0, \\ 2.5V \leq VIN \leq 5.5V \end{array}$		2	12	μΑ
Under-Voltage Threshold	Lockout	Vuvlo	VIN Rising		2.32	2.45	V
Under-Voltage Hysteresis	Lockout	Δνυνίο			350	-	mV
RDS(ON) of P-N	NOSFET	RDS(ON)_P	$V_{IN} = 5V$		30	-	mΩ
RDS(ON) of N-M	MOSFET	R _{DS(ON)} _L	$V_{IN} = 5V$		17		mΩ
	Logic-High	VIH	$2.5~V \leq V_{IN} \leq 5.5~V$	1.1			V
Input Voltage	Logic-Low	VIL	$2.5~V \leq V_{IN} \leq 5.5~V$			0.4	v
Input Bias Cur	rent	l _{IN}	Input Tied to GND or VIN		0.01	1	μA

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VOUT DC Accuracy		$2.5 V \le V_{IN} \le 5.5 V$, VOUT from Minimum to Maximum, $V_{OUT} = 0.4V$, Auto PFM/PWM (Note 5)	-3		3	%
VOOT DE Accuracy		$\begin{array}{l} 2.5V \leq V_{IN} \leq 5.5V, \mbox{ VOUT from Minimum} \\ \mbox{to Maximum,} \\ V_{OUT} = 0.4V, \mbox{ Forced PWM (Note 5)} \end{array}$	-1.5		1.5	%
Load Regulation	ΔV_{LOAD}	I _{OUT(DC)} = 1 to 3A		0.1		%/A
Line Regulation	ΔVLINE	$\begin{array}{l} 2.5V \leq VIN \leq 5.5V, \\ I_{OUT(DC)} = 1.5A \end{array} \end{array} \label{eq:IOUT}$		0.2		%/V
Transient load Response	ACLOAD	I_{LOAD} Step 0.01 A to 1.5 A, tr = tf = 500ns, V_{OUT} = 1.125 V (Note 5)		±45	-	mV
Line Transient	VLINE	$V_{IN} = 3V$ to 3.6V, tr = tf = 10µs, IOUT = 100mA, Forced PWM mode (Note 5)		±40		mV
P-MOSFET Peak Current Limit	I _{LIM_P}	*	5	5.5	6	А
Valley Current Limit		ζ	3.5	4	4.5	А
Thermal Shutdown	T _{SD}			150		°C
Thermal Shutdown Hysteresis	ΔTSD			30		°C
Input OVP Shutdown	VSDHD_OVPrth	Rising Threshold		6.15		V
Input OVP Shutdown	VSDHD_OVPfth	Falling Threshold	5.5	5.73		V
Switching Frequency	fsw	Vout = 1.2V (Note 5)	2100	2400	2700	kHz
Minimum Off-Time	A	X		170		ns
Resolution	Ċ			8		bits
Differential Nonlinearity					0.5	LSB

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.


Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Guarantee by design.

Preliminary

Typical Application Circuit

Application Information

I²C Interface

The RT5738A I²C slave address = 7'b1010000 for 0.4V/0.6V setting The RT5738B I²C slave address = 7'b1010111 for 1.125V/1.125V setting The RT5738C I²C slave address = 7'b1010010 for 0.65V/0.7V setting

I²C Register Map

Address	-	Register					- <i>t</i> -	- <i>t</i> -		
Name		ddress	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Meaning					VSEL0			
NSEL0	0x00	Default	0	0	0	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Meaning					VSEL1		•	
NSEL1	0x01	Default	0	0	0	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Meaning	DISCHG		UP_SF	R[2:0]	Reserved	SW_RESET	MODE_ VSEL1	MODE_ VSEL0
CONTROL1	0x02	Default	0	0	0	1	0	0	1	0
		Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
		Meaning	VEN	IDOR_	ID	Reserved		DIE	_ID	
ID1	0x03	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R	R	R	R	R	R
		Meaning		Res	served			DIE_	REV	
ID2	0x04	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R	R	R	R	R	R
		Meaning	PGOOD	UVLO	OVP	POS	NEG	RESET_ STAT	ОТ	BUCK_ STATUS
MONITOR	0x05	Default	0	0	0	0	0	0	0	1
		Read/Write	R	R	R	R	R	R	R	R
		Meaning	DN_	_SR[2:0	0]	Reserved	SS_S	SR[1:0]	EN_ VSEL1	EN_VSEL0
CONTROL2	0x06	Default	0	0	1	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
		Meaning	Reser	ved			EN	_DLY[5:0]		-
CONTROL3	0x07	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W
		Meaning	Reser	ved			DIS	_DLY[5:0]		
CONTROL4	0x08	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS5738-P02_MTK August 2016

Register Name		Register Address	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)					
		Meaning					VSEL0								
NSEL0	0x00	Default	0	0	0	0	0	0	0	0					
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
	VSEL0		VID Table SEL[7:0] = SEL[7:0] = SEL[7:0] = 5mV step	= 1111 = 1100 = 0000	1111 : 1000 : 000 : 0	Vout = 1 0.3V		o1.85	1	0					
Register Name		Register Address	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)					
		Meaning					VSEL1								
NSEL1	0x01	Default	0	0	0	0	0	0	0	0					
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
·	VSEL1		VID Table SEL[7:0] = SEL[7:0] = SEL[7:0] =	= 1111 = 1100 = 0000	1111 : 100 0: 000 : 0	Vout = ^ 0.3V	I.3V)							
			5mV step	for 0.3	5mV step for 0.3 to 1.3, 10mV step for 1.3 to 1.85										

Register Name		Register Address	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)	
	0.00	Meaning	DISCHG	C	P_SR[2:0]	Reserved	SW_ RESET	MODE_ VSEL1	MODE_ VSEL0	
CONTROL1	0x02	Default	0	0	0	1	0	0	1	0	
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			0 : Discha	rge pa	th disa	bled					
	ISCHO		1 : Discha	rge pa	th enal	oled					
UP	_SR[2	:0]	DVS Spee 000 = 24n 001 = 12n 010 = 6m ¹ 011 = 3m ¹ 100 = 1.5n 101 = 0.73 110 = 0.33 111 = 0.13	nV step NV step/ V step/ NV step/ mV ste 5mV st 75mV st	o/μs o/μs /μs /μs ep/μs ep/μs step/μs	ï					
	eserve		Reserved								
SW	_RES	El	write 1 to	reset, a	always	read 0					
MOE	DE_VS	EL1	0 : Auto 1 : Continuous mode								
			0 : Auto								
MOL	DE_VS	ELU	1 : Contin	uous n	node						

RT5738

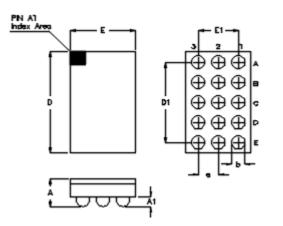
Preliminary

Register Name		egister ddress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[3] b[2]		b[0] (LSB)
		Meaning	VEND	OR_ID[2	2:0]	Reserved	DIE_ID[3:0]			
ID1	0x03	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R	R	R	R	R	R
VEN	DOR_I	D[2:0]	Vendor_II	D						
DI	IE_ID[3	3:0]	DIE_ID							

Register Name		legister Address	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning		Rese	erved			DIE_R	REV[3:0]	
ID2	0x04	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R	R	R	R	R	R
DIE	E_REV	[3:0]	Revision_	ID						

Register Name		egister ddress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)		
		Meaning	PGOOD	UVLO	OVP	POS	NEG	RESET_ STAT	ОТ	BUCK_ STATUS		
MONITOR	0x05	Default	0	0	0	0	0	0	0	1		
		Read/Write	R	R	R	R	R	R	R	R		
l	PGOO	D	1 : Buck is enabled and soft-start is completed.									
	UVLO		1 : Signifi	es the V	IN is le	ss than the l	JVLO three	shold.				
	OVP		1 : Signifi	es the V	IN is gr	eater than th	ne OVP thr	eshold.				
	POS		1 : Signifies a positive voltage transition is in progress									
	NEG		1 : Signifi	es a neg	ative v	oltage transi	tion is in pi	ogress				
RE	SET_S	ТАТ	1 : Indicates that a register reset was performed.									
	ОТ		1 : Signifies the thermal shutdown is active.									
BUC	K_STA	ATUS	1 : Buck e	enabled;	0 : buc	k disabled.						
	e											

Register Name	Regis	ster Address	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)			
		Meaning	DN	DN_SR[2:0] Reserved SS_SR[1:0] EN_ EN_ VSEL1 VSEL0									
CONTROL2	0x06	Default	0	1	1	0	0	0	0	0			
		Read/Write	R/W	R/W	R/W	R	R/W	R/W					
DN	_SR[2	:0]	000 = 2 001 = 1 010 = 6 011 = 3 100 = 1 101 = 0 110 = 0	DVS Speed for DN DVS 000 = 24mV step/μs 001 = 12mV step/μs 010 = 6mV step/μs 011 = 3mV step/μs 00 = 1.5mV step/μs 01 = 0.75mV step/μs 10 = 0.375mV step/μs 11 = 0.1875mV step/μs									
SS	_SR[1	:0]	00=10m 01=5m\ 10=2.5m	DVS Speed for SOFT START DVS D0=10mV step/µs D1=5mV step/µs 10=2.5mV step/µs 11=1.25mV step/µs									
EN	LVSEI	_1	0 : DISA 1 : ENA										
EN	LVSEI	_0	0 : DISA 1 : ENA			× 0							


Register Name	Register Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)	
CONTROL3	0x07	Meaning	Reserved		EN_DLY[5:0]						
		Default	0	0	0	0	0	0	0	0	
		Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved Re			Reserve	ed bits							
						bling (ms) 11b = 63ms	s (steps of	f 1ms)			

 \smile

	Register Name	Sedister Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
	×	S	Meaning	Reser	ved	DIS_DLY[5:0]					
	CONTROL4	0x08	Default	0	0	0	0	0	0	0	0
			Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W
	Reserved			Reserve	ed bits						
2	DIS_DLY[5:0]			Delay applied upon disable (ms) 000000b = 0ms - 111111b = 63ms (steps of 1ms)							

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
А	0.500 0.600		0.020	0.024		
A1	0.170	0.230	0.007	0.009		
b	0.240	0.300	0.009	0.012		
D	1.980	2.060	0.078	0.081		
D1	1.6	600	0.063			
E	1.270	1.350	0.050	0.053		
E1	0.8	300	0.031			
е	0.4	100	0.016			

15B WL-CSP 1.31x2.02 Package (BSC)

Footprint Information

			1			6	14
Package	Number of Pin	Туре	Footpri	nt Dimensic	on (mm)	Tolerance	
			е	А	В		
WL-CSP1.31*2.02-15(BSC)	15	NSMD	0.400	0.240	0.340	±0.025	
WE-COT 1.51 2.02-15(DOC)		SMD		0.270	0.240		
	<u> </u>		~	0			

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Datasheet Revision History

P00	2016/5/3		First Edition	
P01	2016/6/8	I ² C Interface	Modify	
P02	2016/8/4	Features Ordering Information Electrical Characteristics Note 2 I ² C Interface	Modify	

Copyright ©2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.