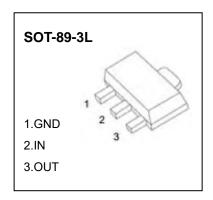
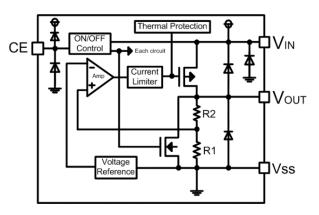
JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD


36V Low Current Consumption 300mA CMOS Voltage Regulator

CJ75XXS

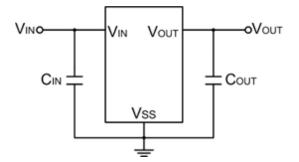
INTRODUCTION

The CJ75XXS Series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-out-put voltage is small.


The CJ75XXS Series can deliver 300 mA output current and allow an input voltage as high as 36V. The series are very suitable for the battery powered equipments, such as RF applications and other systems requiring a quiet voltage source.

FEATURES

- Low Quiescent Current: 2µA
- Operating Voltage Range: 2.5V~36V
- Output Current: 300mA
- Low Dropout Voltage: 200mV@100mA(V_{OUT}=3.3V)
- Output Voltage: 1.2~ 12V
- High Accuracy: ±2%(Typ.)
- High Power Supply Rejection Ratio: 70dB@1kHz
- Low Output Noise: 27xV_{OUT} µV_{RMS}(10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection


BLOCK DIAGRAM

APPLICATIONS

- Cordless Phones
- Radio control systems
- Laptop, Palmtops and PDAs
- Single-lens reflex DSC
- PC peripherals with memory
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems
- LAN Cards
- Ultra Low Power Microcontrollers

TYPICAL APPLICATION CIRCUIT

For CJ75XXS series, input and output capacitors are required to achieve stability and help the equipment obtain better transient response and PSRR. It is recommended to use 1μ F input and 1μ F output capacitors.

Electrical Characteristics

ABSOLUTE MAXIMUM RATINGS	(Unless otherwise specified, T₄=25℃)				
PARAMETER	SYMBOL	RATINGS	UNITS		
Input Voltage ⁽²⁾	V _{IN}	-0.3~40	V		
Output Voltage ⁽²⁾	V _{OUT}	-0.3~13	V		
Power Dissipation	PD	0.6	W		
Operating Ambient Temperature Range	T _A	-40~+85	°C		
Operating Junction Temperature Range ⁽³⁾	Tj	-40~+125	°C		
Storage Temperature	T _{stg}	-40~+125	°C		
Lead Temperature(Soldering, 10 sec)	T _{solder}	260	°C		
ESD rating	Human Body Model -(HBM)	2	kV		
	Machine Model- (MM)	200	V		

(1) Stresses beyond those listed under *absolute maximum ratings may* cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

(2) All voltages are with respect to network ground terminal.

(3) This IC includes over temperature protection that is intended to protect the device during momentary overload. Junction temperature will exceed 125°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

RECOMMENDED OPERATING CONDITIONS

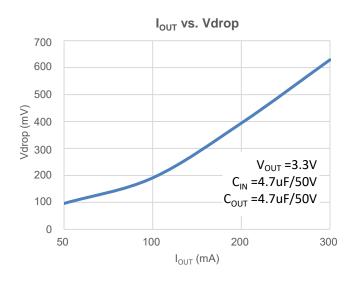
PARAMETER	MIN.	NOM.	MAX.	UNITS
Supply voltage at V _{IN}	2.5		36	V
Operating junction temperature range, T _j	-40		125	°C
Operating free air temperature range, T _A	-40		85	°C

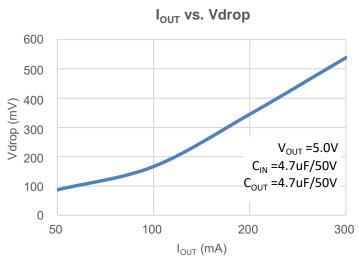
ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, TA=25°C)

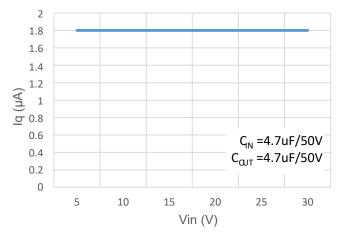
PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP. ⁽⁴⁾	MAX.	UNITS	
Input Voltage	V _{IN}			2.5	—	36	V	
Output Voltage Range	Vout			2.1	—	12	V	
DC Output Accuracy		lo	υт=1	mA	-2	—	2	%
Dropout Voltage	V _{dif} ⁽⁵⁾	I _{OUT} =100mA,V _{OUT} =3.3V		_	200	—	mV	
Supply Current		I _{оит} =0А	1.2≤	≦V _{OUT} ≤7.0V	_	2	5	μA
	I _{SS}		7.0<	<v<sub>OUT≤12V</v<sub>	—	3	6	μA
Line Regulation	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$	I _{OUT} =10mA V _{OUT} +1V≤V _{IN} ≤36V			0.01	0.3	%/V	
Load Regulation	<u>Δ</u> Vout	V _{IN} = V _{OUT} +1V, 1mA≤I _{OUT} ≤100mA		_	10	_	mV	
Temperature	ΔV _{OUT}	I _{OUT} =10mA,			50		ppm	
Coefficient	$V_{OUT} \times \Delta T_A$	-40°C <t<sub>j<125°C</t<sub>						
Output Current Limit	I _{LIM}	V_{OUT} = 0.5 x $V_{OUT(Normal)}$, Vin=5.0V		350	600		mA	
Short Current	ISHORT	V _{OUT} =V _{SS}			100	—	mA	
	PSRR Iout=	I _{OUT} =50mA		100Hz		75		dB
Power Supply Rejection Ratio				1kHz	_	70	—	
		10UT-50IIIA	A	10kHz		55	_	UD
				100kHz		40	—	
Output Noise Voltage	V _{ON}	BW=10Hz to 100kHz			$27 \text{ x V}_{\text{OUT}}$	_	μV_{RMS}	
Thermal Shutdown Temperature	T _{SD}				160	_	°C	
Thermal Shutdown Hysteresis	ΔT_{SD}			—	20	_	°C	

(4) Typical numbers are at 25°C and represent the most likely norm.

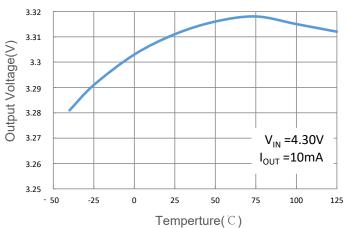

(5)V_{dif}: The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).

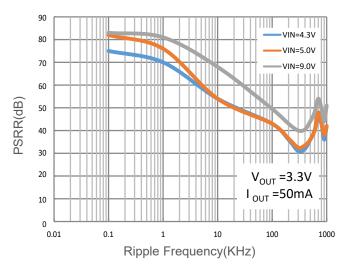

MODEL DEFINITION INFORMATION

Model	Output Voltage
CJ7533S	3.3V
CJ7550S	5.0V
CJ75C0S	12.0V

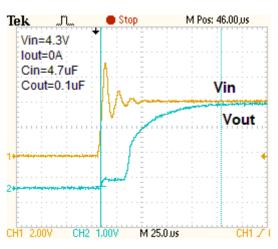

Typical Characteristics

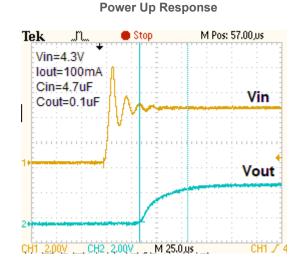
(Unless otherwise specified, T_A=25°C)




Vin vs Iq

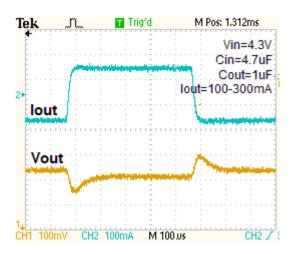
Output Voltage vs Temperture

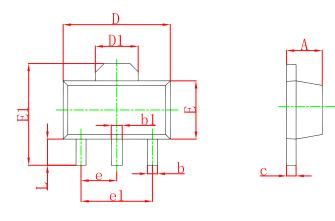




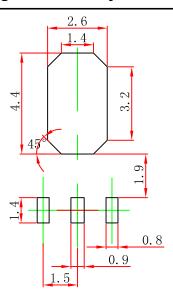
Typical Characteristics

(Unless otherwise specified, T_A=25°C)




Load Transient Response

Load Transient Response



SOT-89-3L Package Outline Dimensions

Querra ha a l	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF		0.061 REF		
Е	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060 TYP		
e1	3.000 TYP		0.118 TYP		
L	0.900	1.200	0.035	0.047	

SOT-89-3L Suggested Pad Layout

Note:

1.Controlling dimension:in millimeters.

2.General tolerance:±0.05mm.

3. The pad layout is for reference purposes only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.