General Description APG12N10D use advanced SGT MOSFET technology to provide low RDS(ON), low gate charge, fast switching and excellent avalanche characteristics. This device is specially designed to get better ruggedness and suitable to use in Low RDS(on) & FOM Extremely low switching loss Excellent stability and uniformity or Invertors ### **Applications** Consumer electronic power supply Motor control Synchronous-rectification Isolated DC Synchronous-rectification applications ### **Package Marking and Ordering Information** | Product ID | Pack | Marking | Qty(PCS) | |------------|--------|--------------------|----------| | APG12N10D | TO-252 | APG12N10D XXX YYYY | 2500 | # Absolute Maximum Ratings at T_j=25°C unless otherwise noted | Parameter | Symbol | Value | Unit | |--|----------------|------------|------------| | Drain source voltage | VDS | 100 | V | | Gate source voltage | VGS | ±20 | V | | Continuous drain current¹), Tc=25 ℃ | I _D | 12 | А | | Pulsed drain current²), Tc=25 ℃ | ID, pulse | 24 | А | | Power dissipation³), T _C =25 °C | P _D | 17 | W | | Single pulsed avalanche energy ⁵⁾ | EAS | 1.2 | mJ | | Operation and storage temperature | Tstg, Tj | -55 to 150 | $^{\circ}$ | | Thermal resistance, junction-case | RθJC | 7.4 | °C/W | | Thermal resistance, junction-ambient ⁴⁾ | RθJA | 62 | °C/W | # **Electrical Characteristics** at T_j=25 °C unless otherwise specified | Symbol | Parameter | Test condition | Min. Typ. | | Max. | Unit | | |---------------------|----------------------------------|---|-----------|-------|------|------|--| | BVDSS | Drain-source breakdown voltage | V _{GS} =0 V, I _D =250 μA | 100 | 111 | | V | | | V _{GS(th)} | Gate threshold voltage | V _{DS} =V _{GS} , I _D =250 μA | 1.2 | 2.0 | 2.5 | V | | | Rds(on) | Drain-source on-state resistance | V _{GS} =10 V, I _D =5 A | | 105 | 125 | mΩ | | | Rds(on) | Drain-source on-state resistance | V _{GS} =4.5 V, I _D =3 A | | 115 | 145 | mΩ | | | | | V _{GS} =20 V | | | 100 | nA | | | lgss | Gate-source leakage current | V _{GS} =-20 V | | | -100 | | | | loss | Drain-source leakage current | V _{DS} =100 V, V _{GS} =0 V | | | 1 | uA | | | Ciss | Input capacitance | V _{GS} =0 V, | | 206.1 | | pF | | | Coss | Output capacitance | V _{DS} =50 V, | | 28.9 | | pF | | | Crss | Reverse transfer capacitance | f=100 kHz | | 1.4 | | pF | | | t d(on) | Turn-on delay time | V _{GS} =10 V, | | 14.7 | | ns | | | t _r | Rise time | V _{DS} =50 V, | | 3.5 | | ns | | | td(off) | Turn-off delay time | R _G =2 Ω, | | 20.9 | | ns | | | t _f | Fall time | I _D =5 A | | 2.7 | | ns | | | Qg | Total gate charge | | | 4.3 | | nC | | | Q _{gs} | Gate-source charge | I _D =5 A, | | 1.5 | | nC | | | Q _{gd} | Gate-drain charge | V _{DS} =50 V, V _{GS} =10 V | | 1.1 | | nC | | | Vplateau | Gate plateau voltage | VG5-10 V | | 5.0 | | V | | | Is | Diode forward current | | | | 7 | _ | | | Isp | Pulsed source current | V _G S <v<sub>th</v<sub> | | | 21 | A | | | VsD | Diode forward voltage | I _S =7 A, V _{GS} =0 V | | | 1.0 | V | | | t _{rr} | Reverse recovery time | | | 32.1 | | ns | | | Qrr | Reverse recovery charge | I _S =5 A, di/dt=100 | | 39.4 | | nC | | | Irrm | Peak reverse recovery current | Α/μs 2.1 | | | А | | | ### Note - 1) Calculated continuous current based on maximum allowable junction temperature. - 2) Repetitive rating; pulse width limited by max. junction temperature. - 3) Pd is based on max. junction temperature, using junction-case thermal resistance. - 4) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_a =25 °C. - 5) V_{DD} =50 V, R_G =50 Ω , L=0.3 mH, starting T_j =25 °C. # **Electrical Characteristics Diagrams** Figure 1, Typ. output characteristics Figure 2, Typ. transfer characteristics Figure 3, Typ. capacitances Figure 4, Typ. gate charge Figure 5, Drain-source breakdown voltage Figure 6, Drain-source on-state resistance Figure 7, Forward characteristic of body diode Figure 8, Drain-source on-state resistance Figure 9, Drain current Figure 10, Safe operation area T_C=25 °C Fig.12 Unclamped Inductive Switching Waveform # Package Mechanical Data-TO-252-3L | | Dimensions | | | | | | |------|-------------|------|----------|-------|------|-------| | Ref. | Millimeters | | Inches | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | 2.10 | | 2.50 | 0.083 | | 0.098 | | A2 | 0 | | 0.10 | 0 | | 0.004 | | В | 0.66 | | 0.86 | 0.026 | | 0.034 | | B2 | 5.18 | | 5.48 | 0.202 | | 0.216 | | С | 0.40 | | 0.60 | 0.016 | | 0.024 | | C2 | 0.44 | | 0.58 | 0.017 | | 0.023 | | D | 5.90 | | 6.30 | 0.232 | | 0.248 | | D1 | 5.30REF | | 0.209REF | | | | | E | 6.40 | | 6.80 | 0.252 | | 0.268 | | E1 | 4.63 | | | 0.182 | | | | G | 4.47 | | 4.67 | 0.176 | | 0.184 | | Н | 9.50 | | 10.70 | 0.374 | | 0.421 | | L | 1.09 | | 1.21 | 0.043 | | 0.048 | | L2 | 1.35 | | 1.65 | 0.053 | | 0.065 | | V1 | | 7° | | | 7° | | | V2 | 0° | | 6° | 0° | | 6° | # **Reel Spectification-TO-252** | | Dimensions | | | | | | |------|------------|-------|-----------|-------|-------|-------| | Ref. | Millimete | | rs Inches | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | W | 15.90 | 16.00 | 16.10 | 0.626 | 0.630 | 0.634 | | Е | 1.65 | 1.75 | 1.85 | 0.065 | 0.069 | 0.073 | | F | 7.40 | 7.50 | 7.60 | 0.291 | 0.295 | 0.299 | | D0 | 1.40 | 1.50 | 1.60 | 0.055 | 0.059 | 0.063 | | D1 | 1.40 | 1.50 | 1.60 | 0.055 | 0.059 | 0.063 | | P0 | 3.90 | 4.00 | 4.10 | 0.154 | 0.157 | 0.161 | | P1 | 7.90 | 8.00 | 8.10 | 0.311 | 0.315 | 0.319 | | P2 | 1.90 | 2.00 | 2.10 | 0.075 | 0.079 | 0.083 | | A0 | 6.85 | 6.90 | 7.00 | 0.270 | 0.271 | 0.276 | | В0 | 10.45 | 10.50 | 10.60 | 0.411 | 0.413 | 0.417 | | K0 | 2.68 | 2.78 | 2.88 | 0.105 | 0.109 | 0.113 | | Т | 0.24 | | 0.27 | 0.009 | | 0.011 | | t1 | 0.10 | | | 0.004 | | | | 10P0 | 39.80 | 40.00 | 40.20 | 1.567 | 1.575 | 1.583 | ### **Attention** - 1,Any and all APM Microelectronics products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your APM Microelectronics representative nearest you before using any APM Microelectronics products described or contained herein in such applications. - 2,APM Microelectronics assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all APM Microelectronics products described or contained herein. - 3, Specifications of any and all APM Microelectronics products described or contained here instipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. - 4, APM Microelectronics Semiconductor CO., LTD. strives to supply high quality high reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. Whendesigning equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - 5,In the event that any or all APM Microelectronics products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law. - 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of APM Microelectronics Semiconductor CO., LTD. - 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. APM Microelectronics believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. - 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "DeliverySpecification" for the APM Microelectronics product that you Intend to use. # APG12N10D # **100V N-SGT Enhancement Mode MOSFET** | Edition | Date | Change | |---------|-----------|----------------------| | Rve1.0 | 2019/1/31 | Initial release | | Rve1.1 | 2019/8/15 | Reducing VTH To 1.5V | Copyright Attribution"APM-Microelectronice"