

Description

The AP5G03S/DF uses advanced trench

technology to provide excellent R_{DS(ON)} and low gate charge .

The complementary MOSFETs may be used to form a

level shifted high side switch, and for a host of other

applications

General Features

N-Channel

 $V_{DS} = 30V, I_D = 8A$ $R_{DS(ON)} < 20m\Omega@V_{GS} = 10V$

P-Channel

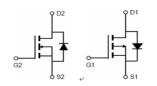
 $V_{DS} = -30V, I_{D} = -6.2A$

 $R_{DS(ON)} < -50 m\Omega$ @ V_{GS} =-10V

Application

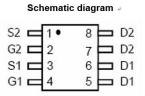
Power switching application

Hard Switched and High Frequency Circuits

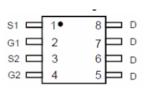

Uninterruptible Power Supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP5G03S	SOP-8	AP5G03S XXX YYYY	3000
AP5G03DF	DFN3*3-8L	AP5G03DF XXX YYYY	5000


Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	Ratir	Rating	
VDS	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	±20	±20	V
	Drain Current – Continuous (Tc=25°C)	8	-7.2	А
ID	Drain Current – Continuous (Tc=100°C)	6	-5.5	А
Ірм	Drain Current – Pulsed¹	35	-32	А
EAS	Single Pulse Avalanche Energy ^{2,6}	12	4	mJ
IAS	Single Pulse Avalanched Current ²	15	11	Α
_	Power Dissipation (T _C =25°C)	12	12	
PD	Power Dissipation – Derate above 25°C	0.1	0.13	
Тѕтс	Storage Temperature Range	-55 to	-55 to 150	



N-channel

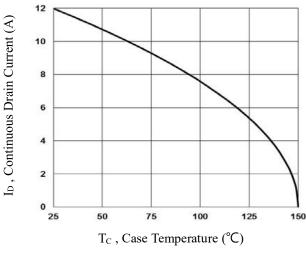
P-channel

TJ	Operating Junction Temperature Range	-55 to 150	°C
	, , ,		-

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
RеJA	Thermal Resistance Junction to ambient		52.5	°C/W
Reuc	Thermal Resistance Junction to Case		5.8	°C/W

N-CH Electrical Characteristics (T_J=25 °C, unless otherwise)


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
		V _{DS} =30V , V _{GS} =0V , T _J =25°C			1	uA
loss	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =125°C			10	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
		V _{GS} =10V , I _D =10A		18	20	mΩ
RDS(ON)	Static Drain-Source On-Resistance	V _{GS} =4.5V , I _D =6A		21	30	mΩ
VGS(th)	Gate Threshold Voltage		0.9	1.1	2.2	V
$V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =250uA		-4		mV/°C
gfs	Forward Transconductance	V _{DS} =5V , I _D =6A		13		S
Qg	Total Gate Charge ^{3, 4}			4.1	6	
Qgs	Gate-Source Charge ^{3, 4}	V _{DS} =15V , V _{GS} =4.5V , I _D =8A		1	1.4	nC
Q_{gd}	Gate-Drain Charge ^{3, 4}			2.1	4	
T _{d(on)}	Turn-On Delay Time ^{3, 4}			2.8	5	
Tr	Rise Time ^{3, 4}	V _{DD} =15V , V _{GS} =10V , R _G =6		7.2	14	
$T_{d(off)}$	Turn-Off Delay Time ^{3, 4}	I _D =1A		15.8	30	ns
Tf	Fall Time ^{3, 4}			4.6	9	
Ciss	Input Capacitance			345	500	
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , F=1MHz		55	80	pF
Crss	Reverse Transfer Capacitance			32	55	
Rg	Gate resistance	Vgs=0V, Vds=0V, F=1MHz		3.2	6.4	Ω
ls	Continuous Source Current				12	Α
lsм	Pulsed Source Current	V _G =V _D =0V , Force Current			24	Α
VsD	Diode Forward Voltage	V _{GS} =0V , I _S =1A , T _J =25°C			1	V

Note:

- 1、Repetitive Rating : Pulsed width limited by maximum junction temperature.
- $\label{eq:continuous} 2 \ \ V_{DD} = 25 \ V, V_{GS} = 10 \ V, L = 0.1 \ mH, I_{AS} = 17 \ A., RG = 25 \quad , Starting \ TJ = 25 \ ^{\circ}C.$
- 3_{\times} The data tested by pulsed , pulse width $\leqq 300 us$, duty cycle $\leqq 2\%.$
- $\mathbf{4}_{\times}$ Essentially independent of operating temperature.

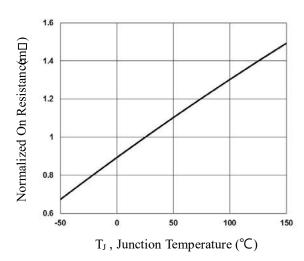
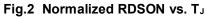
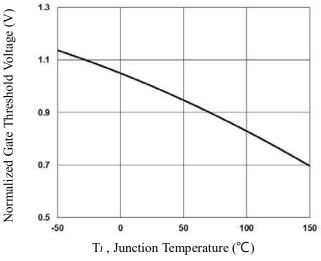




Fig.1 Continuous Drain Current vs. Tc

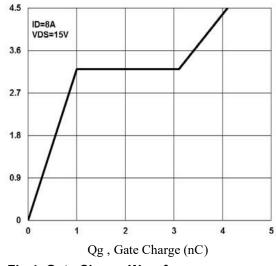
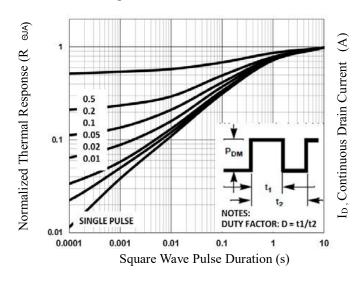
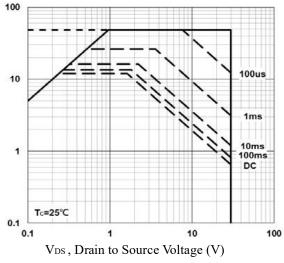




Fig.3 Normalized Vth vs. TJ

Fig.4 Gate Charge Waveform

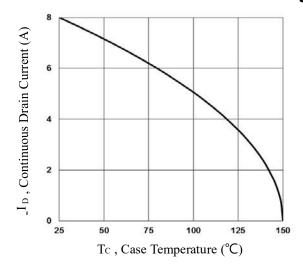
VGS, Gate to Source Voltage (V)

Fig.5 Normalized Transient Response

Fig.6 Maximum Safe Operation Area

P-CH Electrical Characteristics (TJ=25 °C, unless otherwise Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D = - 250uA	-30			V
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.03		V/°C
_		V _{DS} =-30V , V _{GS} =0V , T _J =25°C			-1	uA
loss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =125°C			-10	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
		V _{GS} =-10V , I _D =-5A		43	48	mΩ
RDS(ON)	Static Drain-Source On-Resistance	V _{GS} =-4.5V , I _D =-3A		66	75	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	- 1.2	- 1.5	- 2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{DS} =-10V , I _D =-3A		4		mV/°C
gfs	Forward Transconductance			3.5		S
Qg	Total Gate Charge ^{7,8}			5.1	7	nC
Q _{gs}	Gate-Source Charge ^{7,8}	V _{DS} =-15V , V _{GS} =-4.5V , I _D =-3A		2	3	
Q_{gd}	Gate-Drain Charge ^{7,8}			2.2	4	
T _d (on)	Turn-On Delay Time ^{7,8}			3.4	6	
Tr	Rise Time ^{7,8}	V _{DD} =-15V , V _{GS} =-10V , R _G =6		10.8	21	
T _{d(off)}	Turn-Off Delay Time ^{7,8}	I _D =-1A		26.9	51	ns
T _f	Fall Time ^{7,8}			6.9	13	
Ciss	Input Capacitance			560	810	
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , F=1MHz		55	80	pF
Crss	Reverse Transfer Capacitance			40	60	
ls	Continuous Source Current				-8	A
lsм	Pulsed Source Current	V _G =V _D =0V , Force Current			- 16	Α
VsD	Diode Forward Voltage	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V


Note:

- 5. Repetitive Rating: Pulsed width limited by maximum junction temperature
- 6. VThe data tested by pulsed , pulse width pp=-25V,Vss=-10V,L=0.1mH,Ias=-10A.,R \leq 300us , duty cycle s=25 Ω , Starting TJ=25 \leq 2%. °C
- 8. Essentially independent of operating temperature.

1.6 (B) 1.4 (C) Normalized On Resistance (B) 1.2 (C) (C) (D) 1.50 (D) 1.50

Fig.1 Continuous Drain Current vs. Tc

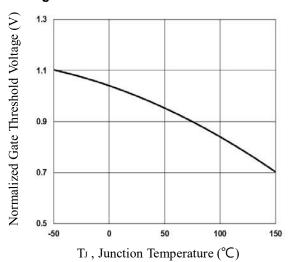


Fig.2 Normalized RDSON vs. TJ

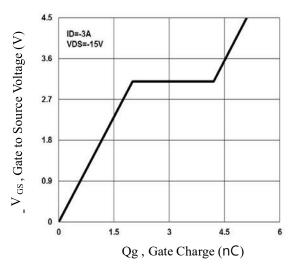


Fig.3 Normalized Vth vs. TJ

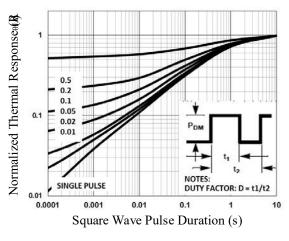
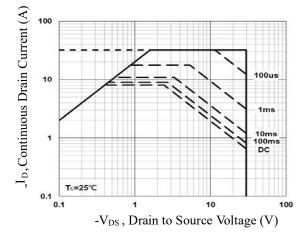
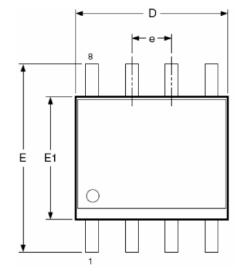
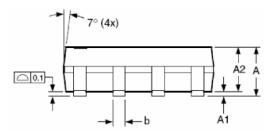
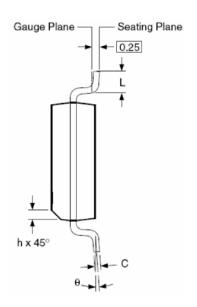
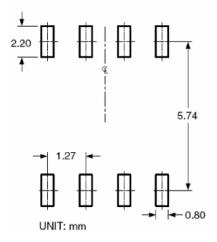


Fig.4 Gate Charge Waveform


Fig.5 Normalized Transient Impedance

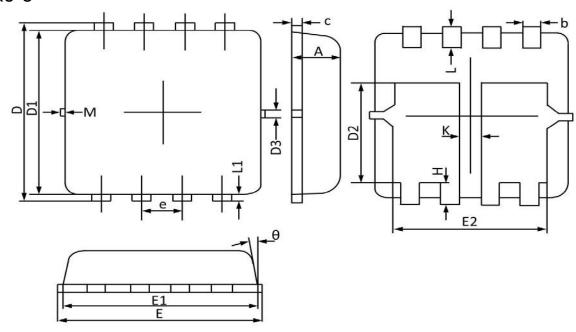

Fig.6 Maximum Safe Operation Area


SOP-8

RECOMMENDED LAND PATTERN

Symbols	Min.	Nom.	Max.		
Α	1.35	1.65	1.75		
A1	0.10	_	0.25		
A2	1.25	1.50	1.65		
b	0.31	_	0.51		
С	0.17	_	0.25		
D	4.80	4.90	5.00		
E1	3.80	3.90	4.00		
е	1.27 BSC				
F	5.80	6.00	6.20		

Dimensions in millimeters


	3.00	3.90	4.00		
е	1.27 BSC				
Е	5.80	6.00	6.20		
h	0.25		0.50		
L	0.40	_	1.27		
θ	0°	_	8°		

Symbols	Min.	Nom.	Max.
Α	0.053	0.065	0.069
A1	0.004	_	0.010
A2	0.049	0.059	0.065
b	0.012	_	0.020
С	0.007	_	0.010
D	0.189	0.193	0.197
E1	0.150	0.154	0.157
е	0	.050 BS	С
Е	0.228	0.236	0.244
h	0.010	_	0.020
L	0.016	_	0.050
θ	0°	_	8°

DFN3x3-8

Symbol	Dimensions In Millime	eters	Dimension	s In Inches	
	Min	Max	Min	Max	
Α	0.700	0.800	0.028	0.031	
b	0.250	0.350	0.010	0.013	
С	0.100	0.250	0.004	0.009	
D	3.250	3.450	0.128	0.135	
D1	3.000	3.200	0.119	0.125	
D2	1.780	1.980	0.070	0.077	
D3	0.130	0.130 REF		REF	
E	3.200	3.400	0.126	0.133	
E1	3.000	3.200	0.119	0.125	
E2	2.390	2.590	0.094	0.102	
е	0.650	0.650 BSC		BSC	
Н	0.300	0.500	0.011	0.019	
L	0.300	0.500	0.011	0.019	
L1	0.130	0.130 REF		REF	
K	0.300	REF	0.012 REF		
θ	0°	12°	0°	12°	
М	0.150) REF	0.006 REF		

Attention

- 1,Any and all APM Microelectronics products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your APM Microelectronics representative nearest you before using any APM Microelectronics products described or contained herein in such applications.
- 2,APM Microelectronics assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all APM Microelectronics products described or contained herein.
- 3, Specifications of any and all APM Microelectronics products described or contained here instipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, APM Microelectronics Semiconductor CO., LTD. strives to supply high quality high reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all APM Microelectronics products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of APM Microelectronics Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. APM Microelectronics believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the APM Microelectronics product that you Intend to use.

