

Description

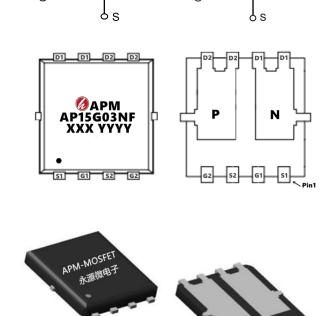
The AP15G03NF uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a

Battery protection or in other Switching application.

 $V_{DS} = 30V I_{D} = 18A$

 $R_{DS(ON)} < 22m\Omega$ @ $V_{GS}=10V$ (Type: $15m\Omega$)

 $V_{DS} = -30V I_{D} = -15A$


 $R_{\text{DS(ON)}} < 32 \text{m}\Omega$ @ V_GS=-10V (Type: $25 \text{m}\Omega)$

Wireless charging

Boost driver

Brushless motor

Package Marking and Ordering Information

	<u> </u>		
Product ID	Pack	Marking	Qty(PCS)
	· uon		Q.J(. 00)
AP15G03NF	PDFN5*6-8L	AP15G03NF XXX YYYY	5000
AF IOGUSINE	FDFN3 0-6L	AF IOGUSINF AAA TITT	3000

Absolute Maximum Ratings (T_c=25°Cunless otherwise noted)

Cumbal	Downwater	Rati	11		
Symbol	Parameter	N-Ch	P-Ch	Units	
VDS	Drain-Source Voltage	30	-30	٧	
VGS	Gate-Source Voltage	±20	±20	>	
I _D @T _A =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	18	-15	Α	
I _D @T _A =100℃	Continuous Drain Current, V _{GS} @ 10V ¹	10	-8	Α	
IDM	Pulsed Drain Current ²	52	-45	А	
EAS	Single Pulse Avalanche Energy ³	22	45	mJ	
IAS	Avalanche Current	21	-30	Α	
P _D @T _A =25°C	Total Power Dissipation⁴	18	18	W	
TSTG	Storage Temperature Range	-55 to 150	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C	
R₀JA	Thermal Resistance Junction-Ambient ¹	55		°C/W	
R₀JA	Thermal Resistance Junction-Ambient¹-(t<=10sec)	5		°C/W	

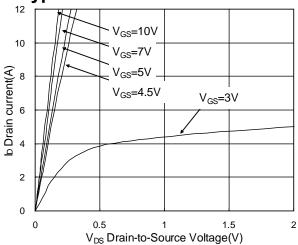
Electrical Characteristics (Tc=25 ℃ unless otherwise noted)

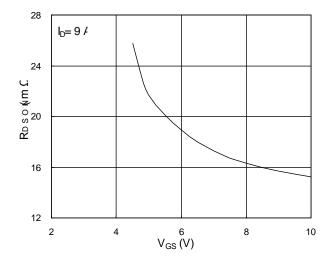
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30	32.5		V
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		15	22	mΩ
T CD3(ON)	Otatic Drain-Odrice On-Nesistance	V _{GS} =4.5V , I _D =5A		20	30	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250uA$	1.0	1.6	2.5	V
1	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA
IDSS	Dialii-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nΑ
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		16		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.5	5	Ω
Qg	Total Gate Charge (4.5V)			7.2		
Qgs	Gate-Source Charge	V _{DS} =20V , V _{GS} =4.5V , I _D =10A		1.4		nC
Qgd	Gate-Drain Charge			2.2		
T _{d(on)}	Turn-On Delay Time			4.1		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω ,		9.8		no
T _{d(off)}	Turn-Off Delay Time	I _D =5A		15.5		ns
Tf	Fall Time	.5 671		6.0		
Ciss	Input Capacitance			572		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		81		pF
Crss	Reverse Transfer Capacitance			65		
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			10	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width $\, \leqq \,$ 300us , duty cycle $\, \leqq \,$ 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,I_{AS}=10A
- 4. The power dissipation is limited by 150 $^{\circ}\mathrm{C}$ junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Electrical Characteristics (T_c=25 ℃ unless otherwise noted)


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30	-33		V
Rds(on)	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-7A		25	32	mΩ
T CD3(ON)	Otatic Brain-Gource On-Nesistance	V _{GS} =-4.5V , I _D =-5A		37	54	
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, I_{D} =-250uA	-1.0		-2.5	V
Ipss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			1	
IDSS				5	uA	
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-7A		15		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		15	30	
Qg	Total Gate Charge (-4.5V)			9.8		
Qgs	Gate-Source Charge	V _{DS} =-20V , V _{GS} =-4.5V , I _D =-7A		2.2		nC
Qgd	Gate-Drain Charge			3.4		
Td(on)	Turn-On Delay Time			16.4		
Tr	Rise Time	V_{DD} =-15V , V_{GS} =-10V , R_{G} =3.3 ,		20.2		no
Td(off)	Turn-Off Delay Time	In=-5A		55		ns
T _f	Fall Time			10		
Ciss	Input Capacitance			930		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		148		pF
Crss	Reverse Transfer Capacitance			115		
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-8	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V


Note:

- 1. The data tested by surface mo unted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width $\, \leqq \,$ 300us , duty cycle $\, \leqq \,$ 2%
- 3. The EAS data shows Max. rating . The test condition is V^{DD}=-25V,VGS=-10V,L=0.1mH,I^{AS}=-10A
- 5 . The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

N-Typical Characteristics

Fig.1 Typical Output Characteristics

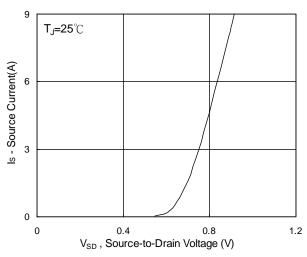


Fig.2 On-Resistance v.s Gate-Source

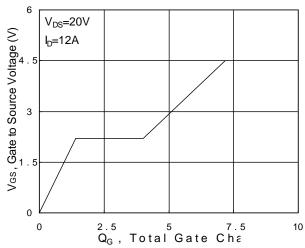


Fig.3 Forward Characteristics Of Reverse

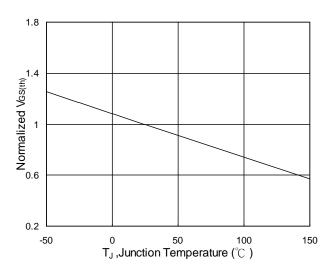


Fig.4 Gate-Charge characteristics

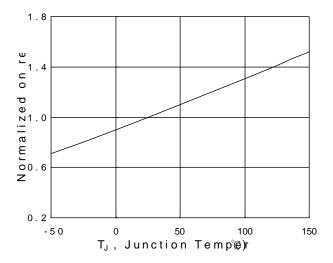
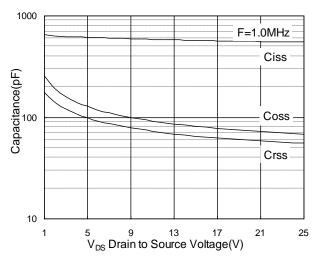



Fig.5 Normalized V_{GS(th)} v.s T_J

Fig.6 Normalized R_{DSON} v.s T_J

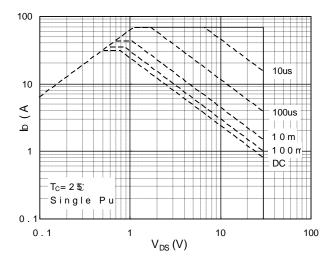


Fig.7 Capacitance

Fig.8 Safe Operating Area

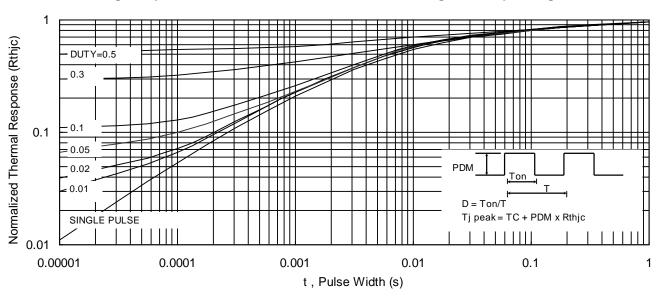


Fig.9 Normalized Maximum Transient Thermal Impedance

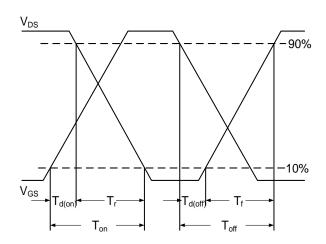


Fig.10 Switching Time Waveform

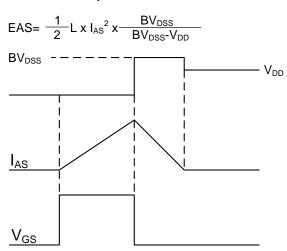


Fig.11 Unclamped Inductive Waveform

P-Typical Characteristics

Fig.1 Typical Output Characteristics

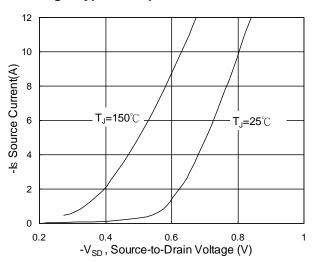


Fig.3 Forward Characteristics Of Reverse

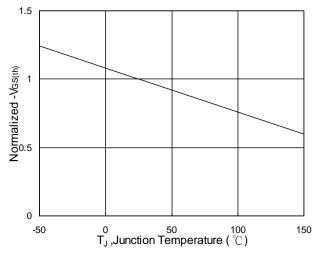


Fig.5 Normalized V_{GS(th)} v.s T_J

Fig.2 On-Resistance v.s Gate-Source

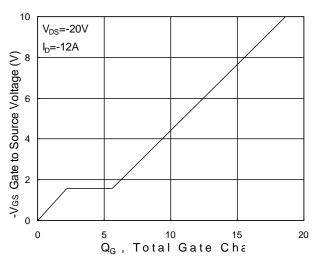


Fig.4 Gate-Charge Characteristics

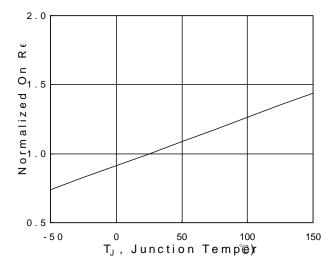
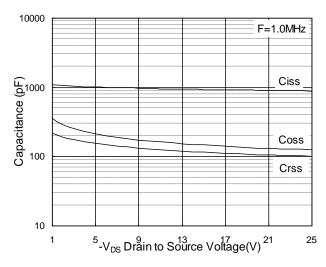



Fig.6 Normalized R_{DSON} v.s T_J

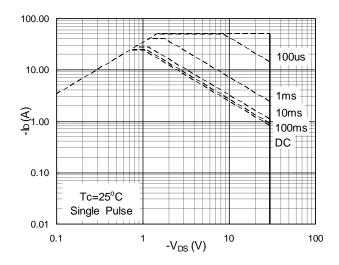


Fig.7 Capacitance

Fig.8 Safe Operating Area

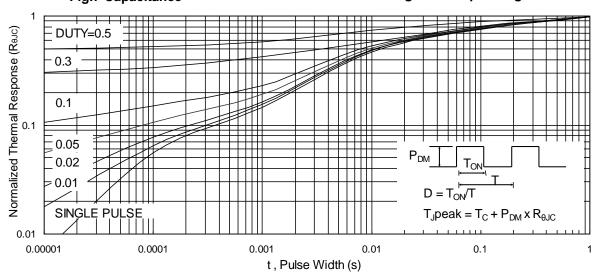


Fig.9 Normalized Maximum Transient Thermal Impedance

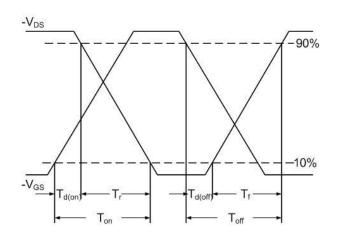


Fig.10 Switching Time Waveform

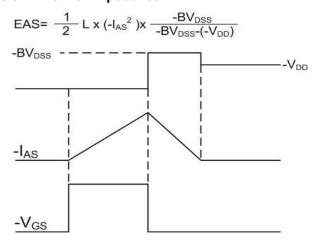
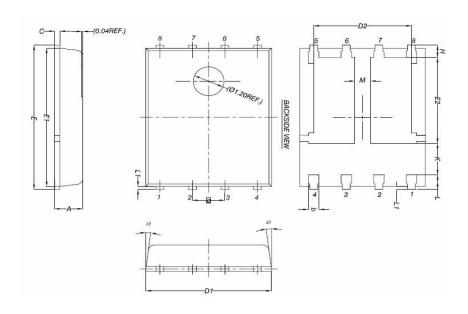



Fig.11 Unclamped Inductive Waveform

Package Mechanical Data-DFN5*6-8L-JQ Double

	Common				
Symbol	mm				
	Mim	Nom	Max		
А	0.90	1.00	1.10		
b	0.33	0.41	0.51		
С	0.20	0.25	0.30		
D1	4.80	4.90	5.00		
D2	3.61	3.81	3.96		
E	5.90	6.00	6.10		
E1	5.66	5.76	5.83		
E2	3.37	3.47	3.58		
е		1.27BSC			
Н	0.41	0.51	0.61		
К	1.10				
L	0.51	0.61	0.71		
L1	0.06	0.13	0.20		
M	0.50				
a	0°		12°		

Attention

- 1,Any and all APM Microelectronics products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your APM Microelectronics representative nearest you before using any APM Microelectronics products described or contained herein in such applications.
- 2,APM Microelectronics assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all APM Microelectronics products described or contained herein.
- 3, Specifications of any and all APM Microelectronics products described or contained here instipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, APM Microelectronics Semiconductor CO., LTD. strives to supply high quality high reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. Whendesigning equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all APM Microelectronics products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of APM Microelectronics Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. APM Microelectronics believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "DeliverySpecification" for the APM Microelectronics product that you Intend to use.

AP15G03NF

30V N+P-Channel Enhancement Mode MOSFET

Edition	Date	Change
Rve1.0	2020/12/30	Initial release

Copyright Attribution"APM-Microelectronice"