

5.5V Low Loss Power Distribution Switch

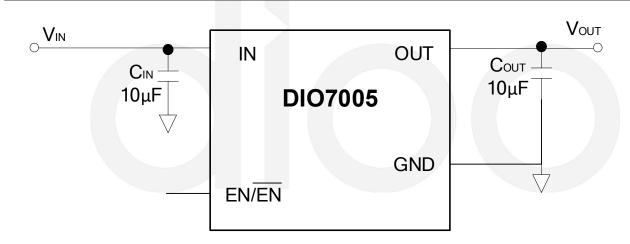
Features

- Input voltage: 2.7V to 5.5V
- Typical 75mΩ on-resistance
- Output discharge resistance
- Five different continuous current versions
- Under voltage lockout
- Over current protection, short circuit protection and over temperature protection
- Fault time 5ms typically with blanking
- Reverse blocking (no body diode)
- No reverse current when power ON or power OFF
- Enable polarity: active high or active low
- Green SOT23-5packages

Applications

- USB Ports/Hubs
- Digital TV
- Set-Top Boxes
- VOIP Phones

Descriptions


The DIO7005 power distribution switch is intended for applications where precision current limiting is required or heavy capacitive loads and short circuits are encountered. The power switch rising and falling times are controlled to minimize current surges during turning on/off.

The DIO7005A/B/C/D/E provide separately 350mA/700mA/1A/1.5A/2A five current levels.

The DIO7005 device limits the output current under a safe level by using a constant current mode when the output load exceeds the current limit threshold.

The DIO7005 is available in the SOT23-5 packages. It is rated over the -40°C to 85°C temperature range.

Typical Application

Ordering Information

Order Part Number	Top Marking	Recommended Continuous Current	EN/EN	Output Discharge Resistance	Package	
DIO7005HAST5	5HAW	350mA	Active High	Yes	SOT23-5	Tape & Reel, 3000
DIO7005HBST5	5HBW	700mA	Active High	Yes	SOT23-5	Tape & Reel, 3000
DIO7005HCST5	5HCW	1A	Active High	Yes	SOT23-5	Tape & Reel, 3000
DIO7005HDST5	5HDW	1.5A	Active High	Yes	SOT23-5	Tape & Reel, 3000
DIO7005HEST5	5HEW	2A	Active High	Yes	SOT23-5	Tape & Reel, 3000
DIO7005LAST5	5LAW	350mA	Active Low	Yes	SOT23-5	Tape & Reel, 3000
DIO7005LBST5	5LBW	700mA	Active Low	Yes	SOT23-5	Tape & Reel, 3000
DIO7005LCST5	5LCW	1A	Active Low	Yes	SOT23-5	Tape & Reel, 3000
DIO7005LDST5	5LDW	1.5A	Active Low	Yes	SOT23-5	Tape & Reel, 3000
DIO7005LEST5	5LEW	2A	Active Low	Yes	SOT23-5	Tape & Reel, 3000

Ordering Information Complimentary Note

Ordering number = Part No. +Enable Active Version + Continuous Current Version +Package Code

DIO7005

H: Enable Active High

L: Enable Active Low

ST5: Stands for SOT23-5

A: 350mA Continuous Current Version B: 700mA Continuous Current Version

C: 1A Continuous Current Version

D: 1.5A Continuous Current Version

E: 2A Continuous Current Version

Pin Assignments

SOT23-5(Top View)

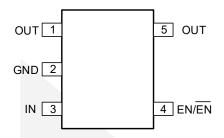


Figure 1 Pin Assignment

Pin Description

Pin Name	Pin Description		
OUT	Output pin, decoupled with a 10µF capacitor to GND		
GND	Ground pin		
EN/EN	Active high or Active low. Do not leave it floating		
IN	Input pin, decoupled with a 10µF capacitor to GND		

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

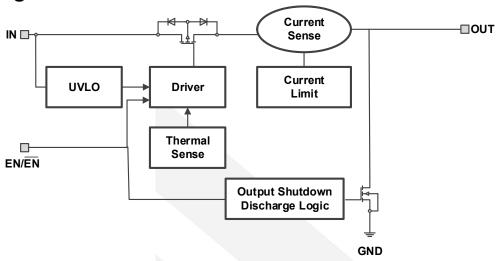
Parameter			Rating	Unit	
All pins				-0.3 to 6	V
Package Thermal Resistance θ _{JA} ,SOT23		T23-5	250	°C/W	
Junction Temperature Range			150	°C	
Lead Temperature (Soldering, 10 sec)			260	°C	
Storage Temperature Range (T _{STG})			-65 to 150	°C	
ESD Susceptibility	HBM (Human Body Mode)		lode)	6	147
	CDM (Charged Device Mode)		e Mode)	2	kV

Note: Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to Absolute Maximum Ratings.

Parameter	Rating	Unit
IN	2.7 to 5.5	V
All other pins	0 to 5.5	V
Junction Temperature Range	-40 to 125	°C
Ambient Temperature Range	-40 to 85	°C


Electrical Characteristics

 T_A =25°C, V_{IN} = 5V, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage Range		2.7		5.5	V
I _{SHDN}	Shut down Input Current	Open load, IC Disabled		0.2	1	μA
ΙQ	Quiescent Supply Current	Open load, IC Enabled		50	88	μA
R _{DS(ON)}	FET R _{ON}	I _{OUT} =100mA		75	99	mΩ
$V_{\text{EN(H)}}$	EN Rising Threshold	V _{IN} = 2.7V to 5.5V	1.4			٧
V _{EN(L)} EN		V _{IN} = 4.5V to 5.5V			0.6	V
	EN Falling Threshold	V _{IN} = 2.7V to 4.5V			0.5	
I _{EN}	EN Leakage Current	V _{EN} =5.0V			1	μA
$V_{\text{IN_UVLO}}$	IN UVLO Threshold				2.5	V
V _{IN_HYS}	IN UVLO Hysteresis			240	400	mV
I _{LIM} C		DIO7005HA, DIO7005LA	0.375	0.5	0.625	A
		DIO7005HB, DIO7005LB	0.75	1	1.25	
	Current Limit	DIO7005HC, DIO7005LC	1.1	1.5	1.9	
		DIO7005HD, DIO7005LD	1.5	2	2.5	
		DIO7005HE, DIO7005LE	2.1	2.5	3.1	
T _{ON}	Turn-on Time	R _L =10Ω, C _{OUT} =1μF		400		μs
T_{OFF}	Turn-off Time	R _L =10Ω, C _{OUT} =1μF		20		μs
T _{SD}	Thermal Shut down Temperature			140		°C
	Thermal Shut down Hysteresis			20		°C

Block Diagram

Application Information

Power Supply Considerations

A $10\mu F$ ceramic capacitor from V_{IN} to GND to prevent the input voltage from dropping during the hot-plug condition is strongly recommended. However higher capacitance could help reduce the voltage drop. Further more, bypassing the output with a $10\mu F$ ceramic capacitor improves the immunity of the device to short-circuit transients, because an output short will cause ringing on the input without the input capacitor. It could destroy the internal circuitry when the input transient voltage exceeds the absolute maximum supply voltage even for a short duration.

Under Voltage Lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2.4V, a control signal turns off the power switch.

Enable

The logic enable controls the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current. The EN control pin must be driven to a logic high or logic low for a clearly defined signal input. Floating these control lines may cause unpredictable operation.

Over-Current Protection

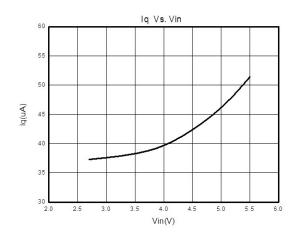
The DIO7005 responds to over current conditions by limiting output current to the I_{LIM} levels. When an over current condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shut down occurs only if the fault is present long enough to activate thermal limit.

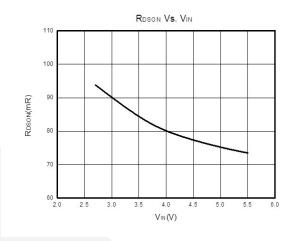
Two possible overload conditions can occur. In the first condition, an excessive load occurs while the device is enabled. When the excessive load occurs, very high currents may flow for a short time before the current limit circuit can react. After the current limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant current mode to limit the current close to I_{LIM}.

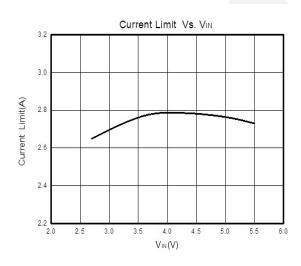
In the second condition, the load is gradually increasing beyond the recommended operating current. The current is permitted to rise until the currentlimit threshold (I_{LIM}) is reached or until the thermal limit of the device is exceeded. The DIO7005 is capable of delivering current up to the current limit threshold (I_{LIM}) without damaging the device. Once the threshold has been reached, the device switches into its constant current mode.

Thermal Protection

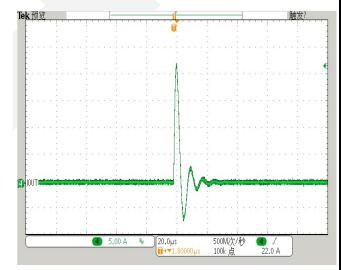
Thermal protection prevents damage to the IC when heavy overload or short circuit conditions are present for extended periods of time. The conditions force the DIO7005 into constant current mode, and under short circuit conditions, the voltage across the switch is equal tothe input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this way until the overload or input power is removed.


Reverse-voltage Protection

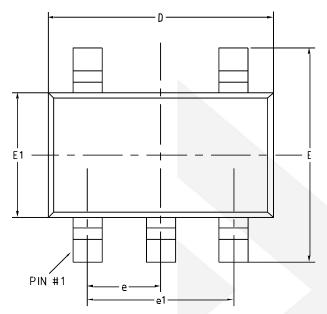

The reverse-voltage protection feature turns off the P-channel MOSFET whenever the output voltage exceeds the input voltage by 175mV (typ) for 4ms (typ). A reverse current of (V_{OUT}-V_{IN})/R_{DS(on)} will be present when this occurs. This prevents damage to devices on the input side of the DIO7005 by preventing significant current from sinking into the input capacitance. The DIO7005 devices allow the P-channel MOSFET to turn on once the output voltage goes bellow the input voltage for the same 4ms deglitch time.

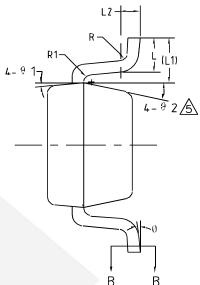

Typical Performance Characteristics

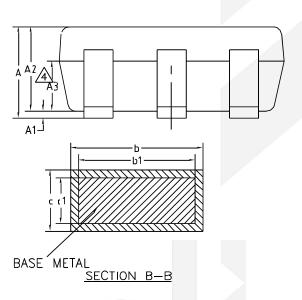
T_A=25°C, V_{IN} = 5V, unless otherwise noted.



Current Limit




Output Short Response



Physical Dimensions: SOT23-5

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)					
Symbol	MIN	MAX			
Α	-	-	1.25		
A1	0	-	0.15		
A2	1.00	1.10	1.20		
A3	0.60	0.65	0.70		
b	0.36	-	0.50		
b1	0.36	0.38	0.45		
С	0.14	-	0.20		
с1	0.14	0.15	0.16		
D	2.826	2.926	3.026		
E	2.60	2.80	3.00		
E1	1.526	1.626	1.726		
е	0.90	0.95	1.00		
e1	1.80	1.90	2.00		
L	0.35	0.45	0.60		
L1	0.59REF				
L2	0.25BSC				
R	0.10	-	-		
R1	0.10	-	0.25		
Θ	0°	-	8°		
Θ1	3°	5°	7°		
Θ2	6°	-	14°		

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to http://www.dioo.com for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.