

36V, Precision

Low-Power Instrumentation Amplifier

Features

■ Low Offset Voltage: 50µV (Max.)

■ Low Drift: 0.2µV/°C

■ Low Input Bias Current: 2nA (Max.)

Gain Bandwidth Product: 1.5MHz

■ Slew Rate: 1.0V/µs

■ Wide Supply Range: ±2.25V ~ ±18V

Low Quiescent Current: 1.0mA

Unity Gain Stable

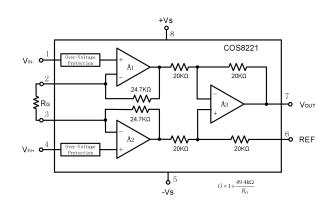
Input Over-Voltage Protection

Extended Temperature Ranges
 From -40°C to +125°C

Available as SOP8/MSOP8/DIP8

Applications

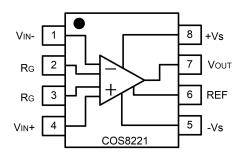
- Medical Instrumentation
- RTD Sensor Amplifier
- Data Acquisition
- Thermocouple Amplifier
- Bridge Amplifier


Rev1.2
Copyright@2018 Cosine Nanoelectronics Inc. All rights reserved

The information provided here is believed to be accurate and reliable. Cosine Nanoelectronics assumes no reliability for inaccuracies and omissions. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party.

General Description

COS8221 is a low-power, general purpose instrumentation amplifiers offering excellent accuracy. The versatile 3-op amp design and small size make these amplifiers ideal for a wide range of applications. A single external resistor sets any gain from 1 to 10,000.


COS8221 is laser-trimmed for very low offset voltage ($50\mu V$), drift ($0.2\mu V/^{\circ}C$) and high common mode rejection. It operates with power supplies as low as ± 2.25 . The quiescent current is only 1.0mA, ideal for battery-operated systems. COS8221 is available in 8-pin plastic SOP8, DIP8 and MSOP8 packages, specified for the -40 $^{\circ}C$ to +125 $^{\circ}C$ temperature range.

Block Diagram

1. Pin Configuration and Functions

Pin Functions

Pin	Name	I/O	Description	
1	V _{IN} -	1	Negative input	
2,3	R _G	-	Gain setting pin. For gains greater than 1, place a gain resistor between pin 2 & 3	
4	V _{IN} +	1	Positive input	
5	-Vs	Р	Negative supply	
6	REF	I	Reference input. This Pin must be driven by low impedance or connected to ground	
7	V _{OUT}	0	Output	
8	+Vs	Р	Positive supply	

2. Order Information

Model	Order Number	Package	Package Option	Marking Information
	COS8221ARZ	SOP-8	Tape and Reel, 4000	COS8221ARZ
0000001	COS8221BRZ	SOP-8	Tape and Reel, 4000	COS8221BRZ
COS8221	COS8221MR	MSOP-8	Tape and Reel, 4000	COS8221MR
	COS8221DT	DIP-8	Tube, 50	COS8221DT

3. Product Specification

3.1 Absolute Maximum Ratings (1,2)

Parameter	Rating	Units
Power Supply: +Vs to -Vs	36	V
Differential Input Voltage Range	±36	V
Common Mode Input voltage Range ⁽²⁾	-Vs to +Vs	V
Output Current	50	mA
Storage Temperature Range	-65 to 150	°C
Junction Temperature	150	°C
Operating Temperature Range	-40 to 125	°C
ESD Susceptibility, HBM	2000	V

⁽¹⁾ Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

3.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	206 (MSOP8) 155 (SOP8) 46 (DIP8)	°C/W

3.3 Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	±2.3V ~ ±18V	V
Input common-mode voltage range	-Vs+1.9 ~ +Vs-1.2	V
Operating ambient temperature	-40 to +125	°C

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

3.4 Electrical Characteristics

(+V_S=+15V, -V_S=-15V, T_A =+25°C, R_L =10k Ω , unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Input Characteristics								
		COS8221BRZ		±15	±50	\/		
Input Offset Voltage	Vos	COS8221ARZ		±25	±125	μV		
Input Offset Voltage Drift	ΔV _{OS} /ΔΤ	-40 to 125°C		0.2	0.7	μV/°C		
Input Bias Current	I _B			±0.5	±2	nA		
Input Offset Current	los			±0.2	±1	nA		
Common-Mode Voltage Range	V _{CM}		-V _S +1.9		+V _S -1.2	V		
Common-Mode Rejection Ratio	CMRR		120	125		dB		
Open-Loop Voltage Gain	AOL	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	100	120		dB		
Output Characteristics								
Output Voltage High	Vон				+V _S -1.1	V		
Output Voltage Low	VoL		-V _S +0.9			V		
Output Current	Іоит	V _{DROPOUT} < 1.2 V		±10		mA		
Short-Circuit Current	Isc			±24		mA		
Power Supply								
Operating Voltage Range			±2.25		±18	V		
Power Supply Rejection Ratio	PSRR		120	130		dB		
Quiescent Current / Amplifier	IQ			1.0	1.3	mA		
Dynamic Performance	Dynamic Performance							
Gain Bandwidth Product	GBWP	C _L =100pF, R _L =10kΩ		1.5		MHz		
Slew Rate	SR	C_L =100pF, R_L =10k Ω , Av=1		1.0		V/µs		
Noise Performance								
Voltage Noise Density	e _n	f=1kHz		8.0		nV/ √ Hz		

4. Application Notes

4.1 Overview

The COS8221 instrumentation amplifier is a type of differential amplifier that has been outfitted with input protection circuit and input buffer amplifiers, which eliminate the need for input impedance matching and make the amplifier particularly suitable for use in measurement and test equipment. Additional characteristics of the COS8221 include a very low DC offset, low drift, low noise, very high open-loop gain, very high common-mode rejection ratio, and very high input impedances.

4.2 Application Information

COS8221 measures small differential voltage with high common-mode voltage developed between the noninverting and inverting input. The ability to set the reference pin to adjust the functionality of the output signal offers additional flexibility that is practical for multiple configurations.

Figure 4.1 shows the basic connections required for operation of the COS8221. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR.

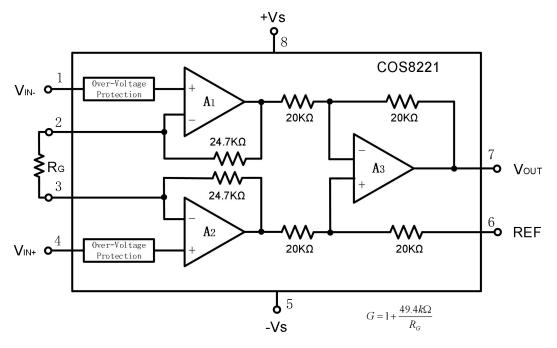


Figure 4.1 Functional Block Diagram

Gain is set by connecting a single external resistor, R_G, connected between pins 1 and 8:

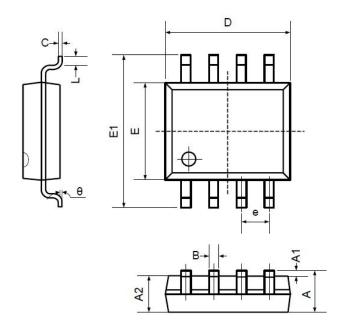
$$G = 1 + 49.4 \text{ k}\Omega/R_G$$
 (1)

Commonly used gains and resistor values are shown in Table 4.1.

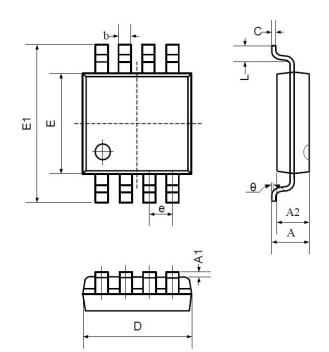
Table 4.1 Required Values of Gain Resistors

Desired Gain	COS8221: G=1 + 49.4 kΩ/R _G			
(V/V)	$R_G(\Omega)$	Nearest 1% R _G (Ω)		
1	NC	NC		
2	49.4k	49.9k		
5	12.35k	12.4k		
10	5489	5.49k		
20	2600	2.61k		
50	1008	1k		
100	499	499		
200	248	249		
500	99	100		
1000	49.5	49.9		
2000	24.7	24.9		
5000	9.88	9.76		
10000	4.94	4.87		

4.3 Power-Supply Bypassing and Layout

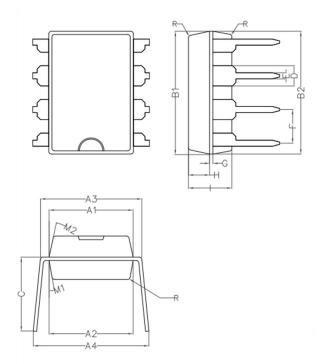

The COS8221 operates from a single +4.5V to +36V supply or dual $\pm 2.25V$ to $\pm 18V$ supplies. For single-supply operation, bypass the power supply +Vs with a $0.1\mu F$ ceramic capacitor which should be placed close to the +Vs pin. For dual-supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

The length of the current path is directly proportional to the magnitude of parasitic inductances and thus the high frequency impedance of the path. High speed currents in an inductive ground return create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. Thus a ground plane layer is important for high speed circuit design.


5. Package Information

5.1 SOP8 (Package Outline Dimensions)

Symbol		nsions meters	Dimensions In Inches	
	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
В	0.330	0.510	0.013	0.020
С	0.190	0.250	0.007	0.010
D	4.780	5.000	0.188	0.197
E	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.248
е	1.270TYP		0.050	OTYP
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°


5.2 MSOP8 (Package Outline Dimensions)

Symbol		nsions meters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.800	1.200	0.031	0.047	
A1	0.000	0.200	0.000	0.008	
A2	0.760	0.970	0.030	0.038	
b	0.30 TYP		0.012 TYP		
С	0.15	TYP	0.006 TYP		
D	2.900	3.100	0.114	0.122	
е	0.65	TYP	0.026 TYP		
Е	2.900	3.100	0.114	0.122	
E1	4.700	5.100	0.185	0.201	
L,	0.410	0.650	0.016	0.026	
θ	0°	6°	0°	6°	

5.3 DIP8 (Package Outline Dimensions)

Symbol	Min	Non	Max
A1	6.28	6.33	6.38
A2	6.33	6.38	6.43
A3	7.52	7.62	7.72
A4	7.80	8.40	9.00
B1	9.15	9.20	9.25
B2	9.20	9.25	9.30
С		5.57	
D		1.52	
E	0.43	0.45	0.47
F		2.54	
G		0.25	
Н	1.54	1.59	1.64
1	3.22	3.27	3.32
R		0.20	
M1	9°	10°	11°
M2	11°	12°	13°