
MSKSEMI

ESD

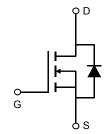
TVS

TSS

MOV

GDT

PLED


Broduct data sheet

1 Source 5 Drain 2 Source 6 Drain 3 Source 7 Drain 4 Gate 8 Drain

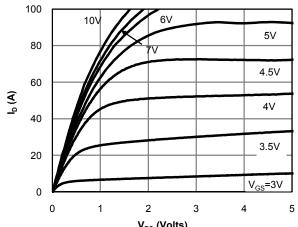
Features

- V_{DS}(V) = 30V
- ID = 12 A (VGS = 10V)
- $\bullet~\text{RDS(ON)} < \text{12.0m}\,\Omega~\text{(VGS = 10V)}$
- lacktriangle RDS(ON) < 15.5m Ω (VGS = 4.5V)

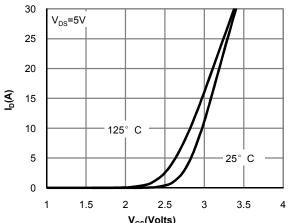
Absolute Maximum Ratings Ta = 25℃

Parameter	Symbol	Rating	Unit		
Drain-Source Voltage		VDS	30	V	
Gate-Source Voltage		Vgs	±20		
Continuous Drain Current	TA=25℃	lo	12		
Continuous Diain Current	TA=70℃		10	Α	
Pulsed Drain Current	IDM	100	^		
Avalanche Current		las	22		
Avalanche energy	L=0.1mH	Eas	24	mJ	
Power Dissipation	TA=25℃	PD	3.1	W	
1 ower bissipation	TA=70℃		2	VV	
Thermal Resistance.Junction- to-Ambient	t ≤ 10s	RthJA	40		
	Steady-State		75	°C/W	
Thermal Resistance.Junction- to-Lead	RthJL	24			
Junction Temperature	ТJ	150	°C		
Storage Temperature Range	Tstg	-55 to 150	C		

Electrical Characteristics Ta = 25℃


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	VDSS	ID=250 uA, VGS=0V	30			V	
Zoro Cata Valtago Prain Current	IDSS	V _{DS} =30V, V _{GS} =0V			1	uA	
Zero Gate Voltage Drain Current		V _D S=30V, V _G S=0V, T _J =55°C			5		
Gate-Body Leakage Current	Igss	V _{DS} =0V, V _{GS} =±20V			±100	nA	
Gate Threshold Voltage	VGS(th)	V _{DS} =V _{GS} , I _D =250uA	1.5		2.5	٧	
Static Drain-Source On-Resistance	RDS(ON)	Vgs=10V, Ip=12A			12	17 m Ω	
		Vgs=10V, Ip=12A TJ=125℃			17		
		Vgs=4.5V, Ip=10A			15.5		
On State Drain Current	ID(ON)	Vgs=10V, Vds=5V	100			Α	
Forward Transconductance	gFS	V _{DS} =5V, I _D =12A		45		S	
Input Capacitance	Ciss		610		910	pF	
Output Capacitance	Coss	Vgs=0V, Vps=15V, f=1MHz	88		160		
Reverse Transfer Capacitance	Crss		40		100		
Gate Resistance	Rg	Vgs=0V, Vps=0V, f=1MHz	0.8		2.4	Ω	
Total Gate Charge (10V)			11		17		
Total Gate Charge (4.5V)	Qg	Voc=10V Vcc=15V In=12A	5		8	nC	
Gate Source Charge	Qgs	VGS=10V, VDS=15V, ID=12A	1.9		2.9		
Gate Drain Charge	Qgd		1.8		4.2		
Turn-On DelayTime	td(on)			4.4			
Turn-On Rise Time	tr	Vgs=10V, Vds=15V, Rt=1.25Ω,		9			
Turn-Off DelayTime	td(off)	Rgen=3Ω		17		ns	
Turn-Off Fall Time	tf			6			
Body Diode Reverse Recovery Time	trr	In- 12A du/de- 500A/ug	5.6		8		
Body Diode Reverse Recovery Charge	Qrr	IF= 12A, di/dt= 500A/us	6.4		9.6	nC	
Maximum Body-Diode Continuous Current	Is				4	Α	
Diode Forward Voltage	VsD	Is=1A,VGS=0V			1	V	

Note : The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.



V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

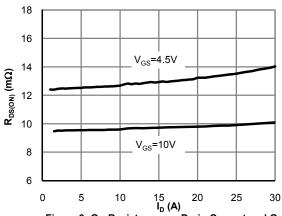


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

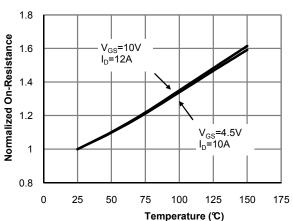
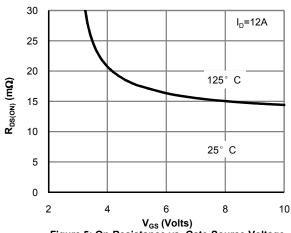
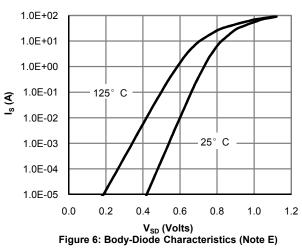
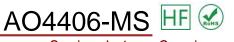
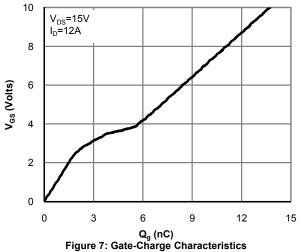
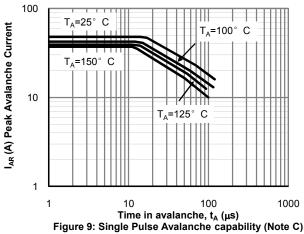




Figure 4: On-Resistance vs. Junction Temperature (Note E)



V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)





Typical Characterisitics

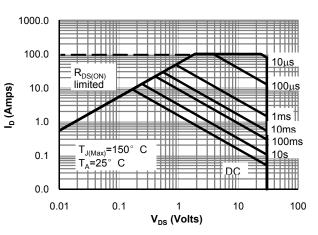
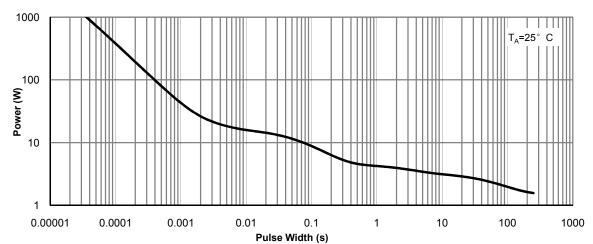
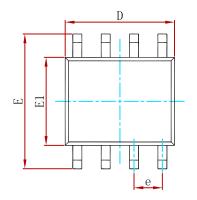
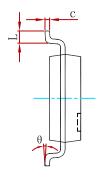
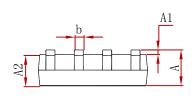
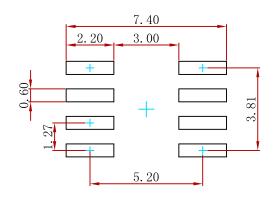


Figure 10: Maximum Forward Biased Safe Operating Area (Note F)


Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

PACKAGE MECHANICAL DATA



Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Min Max		Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0. 250	0.007	0.010	
D	4.800	5. 000	0.189	0. 197	
e	1.270 (BSC)		0.050 (BSC)		
E	5.800	6. 200	0. 228	0. 244	
E1	3.800	4.000	0. 150	0. 157	
L	0.400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
AO4406-MS	SOP-8	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.