SPECIFICATIONS

Customer	
Product Name	High Surge Type Multilayer Chip Varistor for Surge Current Suppression
Sunlord Part Number	SDVL4532SD260PTHS142
Customer Part Number	
[⊠New Released,	vised] SPEC No.:

【This SPEC is total 9 pages including specifications and appendix.】 【ROHS, Halogen-Free and SVHC Compliant Parts】

Approved By	Checked By	Issued By

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China518110Tel: 0086-755-29832660Fax: 0086-755-82269029E-Mail: sunlord@sunlordinc.com

[For Customer appro Qualification Status:	val Only】	Date: Restricted	ted
Approved By	Verified By	Re-checked By	Checked By
Comments:			

[Version change history]

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	Jan.06,2021	New release	/	Xu Liu

Caution

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- 8. Transportation equipment (automobiles, trains, ships, etc.)
- 9. Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Data-processing equipment
- 12. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

Sunlord

1. Scope

This specification applies to SDVL4532SD260PTHS142 high surge type multi-layer chip Varistors for surge current suppression.

Product Description and Identification (Part Number) 2.

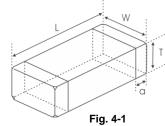
- Description 1)
 - SDVL4532SD260PTHS142 high surge type multi-layer chip Varistors for surge current suppression.
- Product Identification (Part Number) 2)

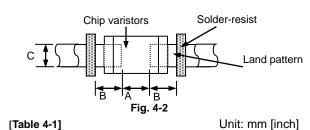
1		2			3	
	Туре	External Din	nensions (L×W) (mm)	٦ [Tolerance	e of Varistor Voltage
SDVL	Chip Varistor for Surge Current Suppression	4532 [1812]	4.50 × 3.20		S	Special
		5			7	
4)		Ма	x. Continuous			Packing
Туре	e of Working Voltage	Wo	orking Voltage		Т	Tape & Reel
D	DC Working Voltage	Example	Nominal Value		8	
		260	260 26V		Series	
					HS	High-surge type
		6			9	
		Terr	minal Code		Peak S	urge Current 8/20µs
		Р	Ni, Sn Plating		Example	Nominal Value
					142	1400A

Electrical Characteristics 3.

Part Number		Working Itage	Varistor Voltage	Max. Cl Volt	amping age	Rated	Single Pulse	Transient	Typical Capacitance
Test Condition	<4 DC	0 μ A AC RMS	@1mA DC	8/20	0µs	Energy 10/1000µs	Peak Current 8/20µs	Nominal Current 8/20µs	@1V _{ms} , 1kHz
Units	Volts	Volts	Volts	Volts	Amps	Joules	Amps	Amps	pF
Symbol	V _{WDC}	V _{WAC}	V _B	Vc	Ιc	Eτ	I _P	l _n	Ср
SDVL4532SD260PTHS142	26	18.4	35.0 [31.0-38.0]	65	5	3.6	1400	1000	3000

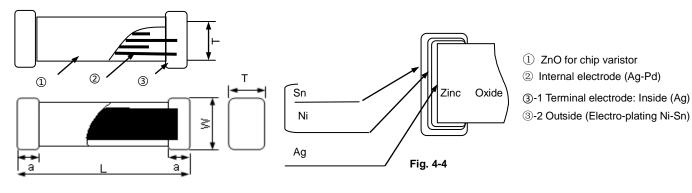
1) Operating and storage temperature range (individual chip without packing): -55°C ~ +125°C.


2) Storage temperature range (packaging conditions): -10°C~+40°C RH 70% (Max.).


VDC : Max DC working voltage of varistor must exceed or equal to 1.2 times that of the application circuit voltage, VDC≥1.2 Vn. 3)

4) IP : Rated single pulse current at 8/20us of Varistor must exceed or equal to 1.2 times that of the application circuit pulse current, IP ≥1.2 IPn.

4. Shape and Dimensions


- 1) Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1, Fig.4-2 and Table 4-1.
- 2) Structure: See Fig. 4-3 and Fig. 4-4.

L	W	т	а	
4.50±0.40	3.20±0.30	2.50 Max	0.25~1.00	

Туре	L	W	Т	а	А	В	С
4532	4.50±0.40	3.20±0.30	2.50 Max	0.25~1.00	2.8~3.0	1.5~1.8	3.3~3.6
[1812]	[0.177±0.016]	[0.126±0.012]	[0.098]	[0.010~0.039]	2.0 0.0	1.0 1.0	0.0 0.0

5. Test and Measurement Procedures

5.1 Test Conditions

- 5.1.1.Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
 - a. Ambient Temperature: 20±15°C.
 - b. Relative Humidity: 65±20%.
 - c. Air Pressure: 86kPa to 106kPa.
- 5.1.2.If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65±5%.
 - c. Air Pressure: 86kPa to 106kPa.

5.2 Visual Examination

a. Inspection Equipment: 20x magnifier.

5.3 Electrical Test

Items	Requirements	Test Methods and Remarks
5.3.1 Varistor Voltage at 1mA DC (V _B)	Refer to Electrical Characteristics	Measuring current: 1mA DC Duration: 0.2 to 2 sec
5.3.2 Capacitance (C)	Refer to Electrical Characteristics	Measure source: 1.0 V _{RMS} Test frequency: 1KHz.
5.3.3 leakage current (IL)	Refer to Electrical Characteristics	Measure source: 26.0V DC

5.4 Reliability Test

Items	Requirements	Test Methods and Remarks
5.4.1. Terminal Strength	No removal or split of the termination or other defects shall occur.	 Solder the chip to the testing jig (glass epoxy board shown in Fig.5.4.1-1) using eutectic solder. Then apply a force in the direction of the arrow.
	Chip F	 2 10N force for SDVL4532SD260PTHS142. Keep time: 10±1s.
	Mounting Pad Glass Epoxy Board Fig.5.4.1-1	

Sunlord	Specifications for high surge type Multi-I	ayer Chip Varistor Page 6 of 9
5.4.2 Resistance to Flexure	Type a b c 4532[1812] 3.0 6.0 3.8 Unit: mm	 Solder the chip to the test jig (glass epoxy board shown in Fig.5.4.2-1) using a eutectic solder. Then apply a force in the direction shown in Fig.5.4.2-2. Flexure: 2mm. Pressurizing Speed: 0.5mm/sec. Keep time: 30 sec. R230 Flexure Flexure Flexure Fig.5.4.2-2
5.4.3 Vibration	No visible mechanical damage. Cu pad Solder mask Glass Epoxy Board Fig. 5.4.3-1	 Solder the chip to the testing jig (glass epoxy board shown in Fig.5.4.3-1) using eutectic solder. The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).
5.4.4 Solderability	 No visible mechanical damage. Wetting shall exceed 90% coverage. 	 Solder temperature: 240±2°C Duration: 3 sec. Solder: Sn/3.0Ag/0.5Cu. Flux: 25% Resin and 75% ethanol in weight.
5.4.5 Resistance To Soldering Heat	 No visible mechanical damage. Varistor voltage change: within ±10%. 	 Solder temperature: 260±3°C Duration: 5 sec. The chip shall be stabilized at normal condition for 1~2hours before measuring. Solder: Sn/3.0Ag/0.5Cu. Flux: 25% Resin and 75% ethanol in weight.
5.4.6 Thermal Shock	 No visible mechanical damage. Varistor voltage change: within ±10%. 125°C 30 min. 30 min. Ambient -55°C 30 min. Fig 5.4.6-1 20sec. (max.) 	 Temperature, Time: -55°C for 30±3 min→125°C for 30±3min. Transforming interval: 20sec. (Max.) Tested cycle: 100 cycles. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.7 Resistance to Low Temperature	 No visible mechanical damage. Varistor voltage change: within ±10%. 	 Temperature: -55±2°C Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.8 Resistance to High Temperature	 No visible mechanical damage. Varistor voltage change: within ±10%. 	 Temperature: 125±2°C. Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.9 Damp Heat (Steady States)	 No visible mechanical damage. 2 Varistor voltage change: within ±10%. 	 Temperature: 60±2°C Humidity: 90% to 95% RH. Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.

Sunlord	Specifications for high surge type Multi	i-layer Chip Varistor Page 7 of 9
5.4.10 Loading Under Damp Heat	 No visible mechanical damage. Varistor voltage change: within ±10%. 	 Temperature: 60±2°C Humidity: 90% to 95% RH. Duration: 1000⁺²⁴ hours. Applied voltage: DC Working Voltage. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.11 Loading at High Temperature (Life Test)	 No visible mechanical damage. Varistor voltage change: within ±10%. 	 Temperature: 125±2°C Duration: 1000⁺²⁴ hours. Applied voltage: DC Working Voltage. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.12 Maximum Surge Current	 No visible mechanical damage. Varistor voltage change: within ±10%. IEC61000-4-5 standard 1.2/50us-8/20us voltage-current combination pulse 	1 Temperature: 25±5°C 2 Humidity: 30% to 65% RH. 3 Number of hit: 1 time 4 Pulse waveform: 8/20 us. 5 Applied current: maximum surge current (I _P). 6 The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.13 Maximum Surge Energy	 No visible mechanical damage. Varistor voltage change: within ±10%. IEC61000-4-5 standard 10/1000us current pulse 	 Temperature :25±5°C Humidity: 30% to 65% RH. Number of hit: 1 time. Pulse waveform: 10/1000 us. Applied energy: maximum surge energy (E_T). The chip shall be stabilized at normal condition for 1~2 hours before measuring.

6. Packaging, Storage and Transportation

6.1 Packaging

- 6.1.1 Tape Carrier Packaging:
 - Packaging code: T

a. Tape carrier packaging are specified in attached figure Fig.6.1-1~3

b. Tape carrier packaging quantity please see the following table:

Туре	SDVL4532		
Tape	Embossed Tape		
Quantity	4K		

(1) Taping Drawings (Unit: mm)

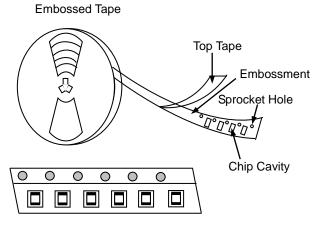
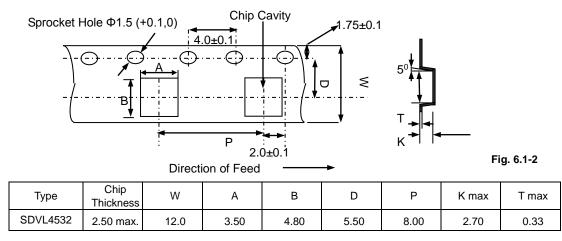



Fig 6.1-1

(2) Taping Dimensions (Unit: mm)

(3) Reel Dimensions (Unit: mm)

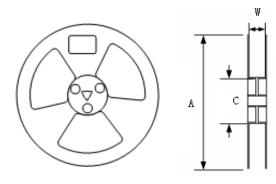
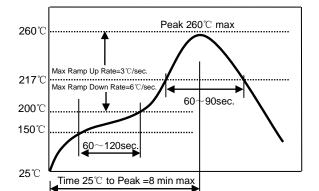


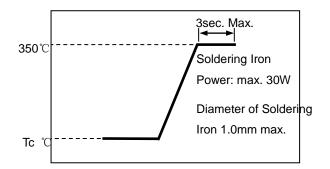
Fig. 6.1-3

Type Spec	Spoo	Dimensions(mm)		
	Spec.	А	W	С
SDVL4532	13"*12mm	330	12.4+2.0/-0.0	100

6.2 Storage

- a. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to high humidity. Package must be stored at 40°C or less and 70% RH or less.
- b. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H₂S).
- c. Packaging material may be deformed if package are stored where they are exposed to heat of direct sunlight.
- d. Solderability specified in **Clause 5.4.4** shall be guaranteed for 9 months from the date of delivery on condition that they are stored at the environment specified in **Clause 3**. For those parts, which passed more than 9 months shall be checked solder-ability before use.


Sunlord


7. Recommended Soldering Technologies

7.1 Reflow Profile:

- \triangle Preheat condition: 150 ~200°C/60~120sec.
- \triangle Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- \triangle Max time at max temp: 10sec.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- △ Allowed Reflow time: 2x max

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

7.2 Iron Soldering Profile.

- \bigtriangleup ~ Iron soldering power: Max. 30W
- \triangle Pre-heating: 150°C/60sec.
- \triangle Soldering Tip temperature: 350°C Max.
- \triangle Soldering time: 3sec. Max.
- \triangle Solder paste: Sn/3.0Ag/0.5Cu
- \triangle Max.1 times for iron soldering

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

8. Supplier Information

- a) Supplier:
 - Shenzhen Sunlord Electronics Co., Ltd.
- b) Manufacturer:

Shenzhen Sunlord Electronics Co., Ltd.

c) Manufacturing Address:

Sunlord Industrial Park, Dafuyuan Industrial Zone, Guanlan, Shenzhen, China Zip: 518110