

One Cell Lithium-ion/Polymer Battery Protection IC

GENERAL DESCRIPTION

The XB4908 SERIES product is a high i ntegration solution for lithium-ion/polymer battery protection. XB4908 SERIES contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits. XB4908 SERIES is put into an ultrasmall ESN4 package and only one external component makes it an ideal solution in limited space of battery pack.

XB4908 SERIES has all the protection functions required in the battery application including overcharging, over-discharging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage.

The device is not only targeted for digital cellular phones, but also for any other Li-lo n and Li-Poly battery-powered information appliances requiring long-term battery life.

FEATURES

- Protection of Charger Reverse Connection
- Protection of Battery Cell Reverse Con -nection Without external load

- Integrated Advanced Power MOSFET with Equivalent of 13.5 mΩ Rss(ON)
- Ultra-small ESN4 Package
- Only One External Capacitor Required
- Over-temperature Protection
- Overcharge Current Protection
- Two-step Overcurrent Detection
 Over-discharge Current
 - -Load Short Circuiting
- Low Current Consumption
 Operation Mode: 3.3µA typ
 Power-down Mode: 1.8µA typ
- Charger Detection Function
- 0V Battery Charging Function
- Delay Times are generated inside
- High-accuracy Voltage Detection
- RoHS Compliant and Lead (Pb) Free

APPLICATIONS

One-Cell Lithium-ion Battery Pack Lithium-Polymer Battery Pack

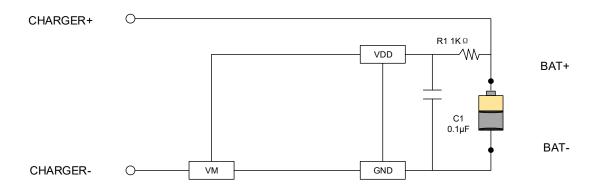


Figure 1. Typical Application Circuit

ORDERING INFORMATION

PART NUMBER	ocv [vcu] (v)	OCRV [VCL] (V)	ODV [VDL] (V)	ODRV [VDR] (V)	TOP MARK
XB4908A	4.30±50mV	4.10±50mV	2.4±100mV	3.0±100mV	XB4908AYWT(note)
XB4908G	4.425±50mV	4.25±50mV	2.4±100mV	3.0±100mV	XB4908GYWT(note)

Note: "YW" is manufacture date code, "Y" means the year, "W" means the week. "T" means the times of odering.

PIN CONFIGURATION

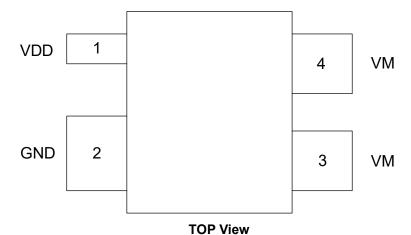


Figure 2. PIN Configuration

PIN DESCRIPTION

XB4908 SERIES PIN NUMBER	PIN NAME	PIN DESCRIPTION	
1	VDD	Positive power input,connected with battery cell's positive pole.	
2	GND	Ground, connect the negative terminal of the battery to this pin.	
3,4	VM	The negative terminal of the battery pack. The internal FET switch connects this terminal to GND Please Connect these pins with mass metal.	

ABSOLUTE MAXIMUM RATINGS

(NOTE: DO NOT EXCEED THESE LIMITS TO PREVENT DAMAGE TO THE DEVICE. EXPOSURE TO ABSOLUTE MAXIMUM RATING CONDITIONS FOR LONG PERIODS MAY AFFECT DEVICE RELIABILITY.)

PARAMETER	VALUE	UNIT
VDD input pin voltage	-0.3 to 6	V
VM input pin voltage	-6 to 10	V
Operating Ambient Temperature	-40 to 85	°C
Maximum Junction Temperature	150	°C
Storage Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C
Power Dissipation at T=25°C	0.3	W
Package Thermal Resistance (Junction to Ambient) θJA	150	° C/W
Package Thermal Resistance (Junction to Case) θJC	100	° C/W
HBM ESD	2000	V

ELECTRICAL CHARACTERISTICS

Typical and limits appearing in normal type apply for TA = 25°C, unless otherwise specified.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Detection Current	01202					• • • • • • • • • • • • • • • • • • • •
Overdischarge Current Detection	*liov1	VDD=3.6V	6.0	9.0	12.0	Α
Overdischarge Current Recovery	*IROV1	VDD=3.6V	15	25	40	μA
Overcharge Current Detection	*Ichoc	VDD=3.6V	4	6	8	A
Load Short-Circuiting Detection	*ISHORT	VDD=3.6V	20	40	60	A
Current Consumption	ISHURI	VDD-3.6V	20	40	00	^
Current Consumption in Normal Operation	lope	VDD=3.6V VM pin floating		3.3	6	μA
Current Consumption in Power Down	lpd	VDD=2.0V VM pin floating		1.8	4	μΑ
VM Internal Resistance						
Internal Resistance between VM and VDD	RVMD	VDD =3.6V VM=1.0V	200	300	400	kΩ
Internal Resistance between VM and GND	Rvms	VDD=3.6V VM pin floating	15	25	35	kΩ
FET on Resistance						
Equivalent FET on Resistance	*Rss(on)	VDD=3.6V IVM=1.0A		13. 5		mΩ
Over Temperature Protection			•		•	
Over Temperature Protection	*TshD+			150		°C
Over Temperature Recovery Degree	*Tshd-			100		°C
Detection Delay Time			•		•	
Overcharge Voltage Detection Delay- Time	tcu		80	130	180	mS
Overdischarge Voltage Detection Delay Time	tDL		20	40	60	mS
Overdischarge Current1 Detection De- lay Time	tiov1	VDD=3.6V	5	10	20	mS
Load Short-Circuiting Detection De- lay Time	*tsHORT	VDD=3.6V	180	380	600	μS

Note1: *---The parameter is guaranteed by design.

FUNCTIONAL BLOCK DIAGRAM

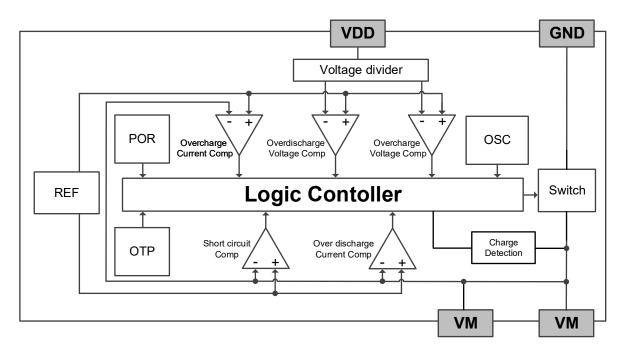


Figure 3. Functional Block Diagram

FUNCTIONAL DESCRIPTION

The XB4908 SERIES monitors the volta ge and current of a battery and protects it f rom being damaged due to overcharge volt age, overdischarge voltage, overdischarge curren-t, and short circuit conditions by disc onnec-ting the battery from the load or charger. These functions are required in order to ope-rate the battery cell within specified limits. The device requires only one external capacitor. The MOSFET is integrated and it-s Rss(ON) is as low as 13.5 mΩ typical.

Normal Mode

If no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.

Overcharge Condition

When the battery voltage becomes higher than the overcharge detection voltage (V cu) during charging under normal condition

and the state continues for the overcharge detection delay time (tcu) or longer, the XB4 908 SERIES turns the charging control FE T off to stop charging. This condition is call ed the overcharge condition. The overcharge condition is released in the following two cases:

- 1. When the battery voltage drops below the overcharge release voltage (VcL), the X B4908 SERIES turns the charging control FET on and returns to the normal condition
- 2. When a load is connected and dischar-ging starts, the XB4908 SERIES turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forwall-rd voltage of the diode) from the GND pin voltage momentarily. The XB4908 SERIES detects this voltage and releases the overce

harge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (Vcu), the XB4908 SERIES returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (Vcu), the chip does not return to the normal condition until the battery voltage drops below the overcharge detection voltage (Vcu) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent 1 detection voltage when a load is connected and discharging starts, the chip does not return to the norm-al condition.

Remark

If the battery is charged to a voltage higher than the overcharge detection voltage (V_{CU}) and the battery voltage does not drops below the overcharge detection voltage (V_{CU}) even when a heavy load, which causes an overcurrent, is connected, the overcurrent 1 and overcurrent 2 do not work until the battery voltage drops below the overcharge detection voltage (V_{CU}). Since an actual battery has, however, an internal impedance of several dozens of m Ω , and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent 1 and overcurrent 2 work. Detection of load short-circuiting works regardless of the battery voltage.

Overdischarge Condition

When the battery voltage drops below th -e overdischarge detection voltage (V_{DL}) du -ring discharging under normal condition and it continues for the overdischarge detect -ion delay time (t_{DL}) or longer, the XB4908 SERIES turns the discharging control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the R_{VMD} resistor between VM and VDD in XB4908 SERIES. Mean while when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), t -he current of the chip is reduced to the po wer-down current (IPDN). This condition is ca lled power-down condition. The VM and V DD pins are shorted by the R_{VMD} resistor in t he IC under the overdischarge and powerdown conditions.

The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load short-circuiating detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage(VDL) or higher (see note), the XB4908 SERIES turns the FET on and changes to the normal condition from the overdischarge condition.

Remark

If the VM pin voltage is no less than the charger d -etection voltage (V_{CHA}), when the battery under ove -rdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that t -he battery voltage reaches the overdischarge relea -se voltage (V_{DU}) or higher.

Overcurrent Condition

When the discharging current becomes equal to or higher than a specified value (th -e VM pin voltage is equal to or higher than the overcurrent detection voltage) during di -scharging under normal condition and the state continues for the overcurrent detectio -n delay time or longer, the XB4908 SERIE S turns off the discharging control FET to s top discharging. This condition is called overcurrent condition. (The overcurrent includ es overcurrent, or load short-circuiting.)

The VM and GND pins are shorted intern-ally by the R_{VMS} resistor under the overcurr-ent condition. When a load is connected, t-he VM pin voltage equals the VDD voltage due to the load.

The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and B-pins becomes higher than the automatic re-coverable impedance. When the load is re-moved, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the R_{VMS} resistor. Detecting that the VM pin potential is lower than the overc-urrent detection voltage (V_{IOV}), the IC retur-

Abnormal Charge Current Detection

If the VM pin voltage drops below the charger detection voltage (V_{CHA}) during chargi-ng under the normal condition and it continues for the overcharge detection delay tim-e (t_{CU}) or longer, the XB4908 SERIES turns the charging control FET off and stops charging. This action is called abnormal charge current detection.

Abnormal charge current detection works when the discharging control FET is on a -nd the VM pin voltage drops below the charger detection voltage (V_{CHA}). When an abnormal charge current flows into a battery i -n the overdischarge condition, the XB4908 SERIES consequently turns the charging control FET off and stops charging after the battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (t_{CU}) elapses.

Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (V_{CHA}) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.

Load Short-circuiting condition

If voltage of VM pin is equal or below short circuiting protection voltage (VSHORT), the XB4908 SERIES will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is tshort. This status is released when voltage of VM pin is higher than short protection voltage (VSHORT), such as when disconnecting the load.

Delay Circuits

The detection delay time for overdischarg -e current 2 and load short-circuiting starts when overdischarge current 1 is detected. As soon as overdischarge current 2 or load

short-circuiting is detected over detection d-elay time for overdischarge current 2 or loa-d short-circuiting, the XB4908 SERIES stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the XB4908 SER IES stop disscharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the XB4908 SERIES shi-fts to power-down.

0V Battery Charging Function (1) (2) (3)

This function enables the charging of a connected battery whose voltage is 0V by self-discharge. When a charger having 0V battery start charging charger voltage (V_{OCHA}) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (V_{DU}), the normal condition returns. Note:

- (1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.
- (2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).
- (3) When a battery is connected to the IC for the first time, the IC may not enter the normal condit -ion in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.

TYPICAL APPLICATION

As shown in Figure 5, the current path must be kept as short & heavy as possible. C1 is a filter decoupling circuit and should be as close as possible to VCC pin of XB4908 SERIES.

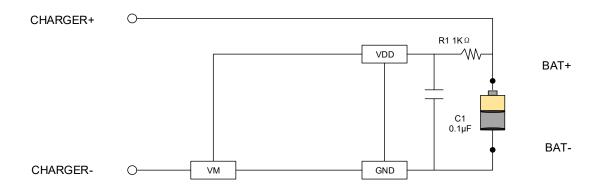
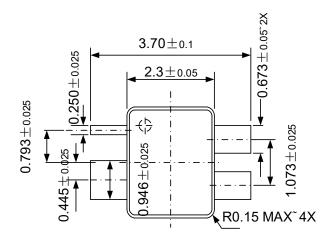
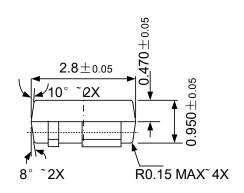


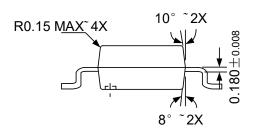
Figure 5 XB4908 SERIES in a Typical Battery Protection Circuit

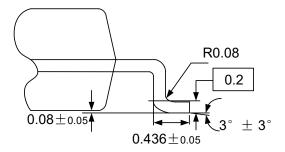
Symbol	Тур	Value range	Unit
C1	0.1	0.1~2.2	μF
R1	1	0.1~1	ΚΩ

Remark:


- 1. The above parameters may be changed without notice;
- 2. The schematic diagram and parameters of the IC are not used as the basis to ensure the operation of the circuit. Please conduct full measurement on the actual application circuit before setting the parameters.


Precautions


- Pay attention to the operating conditions for input/output voltage and load current so that the power loss in XB4908 SERIES does not exceed the power dissipation of the package.
- Do not apply an electrostatic discharge to this XB4908 SERIES that exceeds the performance ratings of the built-in electrostatic protection circuit.



PACKAGE OUTLINE(ESN4)

DISCLAIMER

The information described herein is subject to change without notice.

Suzhou XySemi Electronic Technology Co., Limited is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.

When the products described herein are regulated products subject to the Wassenaar Arrangement or other arrangements, they may not be exported without authorization from the appropriate governmental authority.

Use of the information described herein for other purposes and/or reproduction or copying without express permission of Suzhou XySemi Electronic Technology Co., Limited is strictly prohibited.

The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Suzhou XySemi Electronic Technology Co., Limited.

Although Suzhou XySemi Electronic Technology Co., Limited. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor may occur. The use of these products should therefore give thorough

consideration to safety design, including redundancy, fire-prevention measure and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.