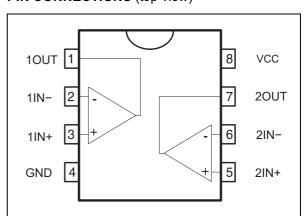

LOW POWER DUAL VOLTAGE COMPARATORS

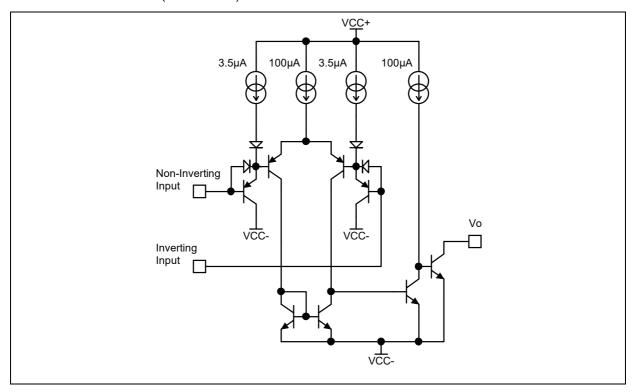
- WIDE SINGLE SUPPLY VOLTAGE RANGE OR DUAL SUPPLIES +2V TO +36V OR ±1V TO ±18V
- VERY LOW SUPPLY CURRENT (0.4mA) INDEPENDENT OF SUPPLY VOLTAGE (1mW/comparator at +5V)
- LOW INPUT BIAS CURRENT: 25nA TYP
- LOW INPUT OFFSET CURRENT: ±5nA TYP
- INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND
- LOW OUTPUT SATURATION VOLTAGE: 250mV TYP. (I_O = 4mA)
- DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE SUPPLY VOLTAGE
- TTL, DTL, ECL, MOS, CMOS COMPATIBLE OUTPUTS


DESCRIPTION

This device consists of two independent low power voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

These comparators also have a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

PIN CONNECTIONS (top view)



www.slkormicro.com

1

SCHEMATIC DIAGRAM (1/2 LM2903)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±18 to 36	V
V _{ID}	Differential Input Voltage	±36	V
VI	Input Voltage	-0.3 to +36	V
	Output Short-circuit to Ground ¹⁾	Infinite	
P_{d}	Power Dissipation ²⁾ DIP8 SO8 TSSOP8	1250 710 625	mW
T _{Junction}	Junction Temperature	+150	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

Short-circuit from the output to V_{cc}⁺ can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA, independent of the magnitude of V_{cc}⁺

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{icm}	Common Mode Input Voltage Range	0 to V _{CC} ⁺ -1.5	٧
T _{oper}	Operating Free-Air Temperature range	-40 to +125	°C

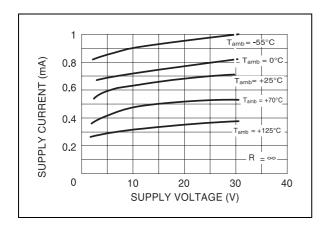
2

www.slkormicro.com

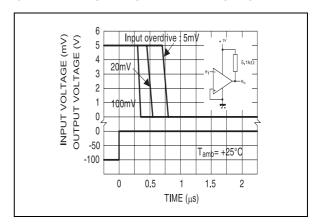
^{2.} Pd is calculated with T_{amb} = +25°C, T_j = +150°C and R_{thja} = 100°C/W for DIP8 package = 175°C/W for SO8 package = 200°C/W for TSSOP8 package

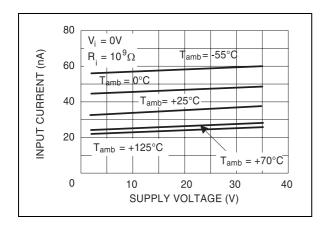
ELECTRICAL CHARACTERISTICS

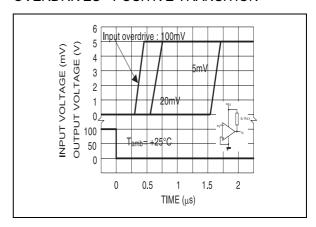
 V_{CC}^+ = 5V, V_{cc}^- = GND, T_{amb} = 25°C (unless otherwise specified)

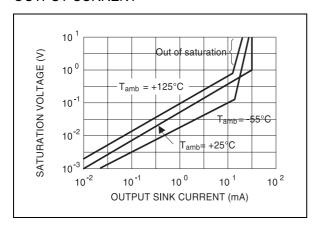

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IO}	Input Offset Voltage ¹⁾ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1	7 15	mV
I _{IO}	Input Offset Current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}.$		5	50 150	nA
I _{IB}	Input Bias Current $^{2)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$.		25	250 400	nA
A _{VD}	Large Signal Voltage Gain ($V_{cc} = 15V, R_L = 15k\Omega, V_0 = 1 \text{ to } 11V$)	25	200		V/mV
Icc	Supply Current (all comparators) V _{CC} = 5V, no load V _{CC} = 30V, no load		0.4	1 2.5	mA
V _{ICM}	Input Common Mode Voltage Range $(V_{cc}=30V)^{3)}$ $T_{amb}=+25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max.}$	0 0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V
V _{ID}	Differential Input Voltage ⁴⁾			V _{CC} ⁺	V
V _{OL}	Low Level Output Voltage (V_{id} = -1V, I_{sink} = 4mA) T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		250	400 700	mV
I _{OH}	High Level Output Current ($V_{CC} = V_o = 30V$, $V_{id} = 1V$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		0.1	1	nA μA
I _{SINK}	Output Sink Current (V _{id} = -1V,V _o = 1.5V)	6	16		mA
t _{RE}	Small Signal Response Time $^{5)}$ (R _L = 5.1k Ω to V $_{\rm CC}^+$)		1.3		μs
t _{REL}	Large Signal Response Time $^{6)}$ TTL Input (V_{ref} = +1.4 V, R_L =5.1k Ω to V_{CC} [†]) Output Signal at 50% of final value Output Signal at 95 % of final value			500 1	ns μs

- 1. At output switch point, $V_0 \approx 1.4V$, $R_S = 0\Omega$ with V_{CC}^+ from 5V to 30V, and over the full input common-mode range (0V to V_{CC}^+ -1.5V).
- 2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines
- The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC}⁺-1.5V, but either or both inputs can go to +30V without damage.
- Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the
 comparator will provide a proper output state.
 The low input voltage state must not be less than -0.3V (or 0.3V below the negative power supply, if used)
- 5. The response time specified is for a 100mV input step with 5mV overdrive.
- 6. Maximum values are guaranteed by design & evaluation.

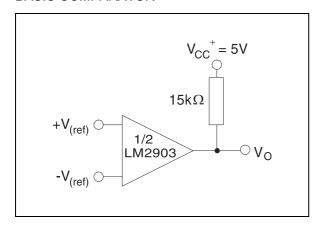

www.slkormicro.com


SUPPLY CURRENT versus SUPPLY VOLTAGE


RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - NEGATIVE TRANSITION

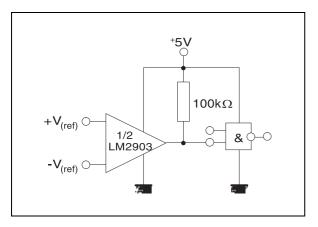

INPUT CURRENT versus SUPPLY VOLTAGE

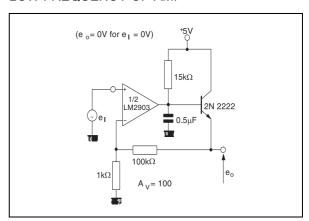
RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - POSITIVE TRANSITION

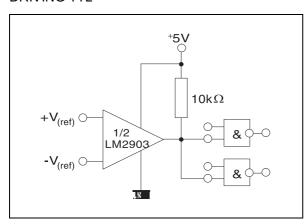

OUTPUT SATURATION VOLTAGE versus OUTPUT CURRENT

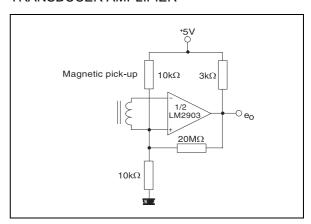


TYPICAL APPLICATIONS

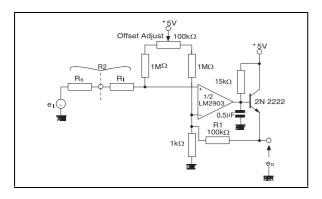

BASIC COMPARATOR


LOW FREQUENCY OP AMP

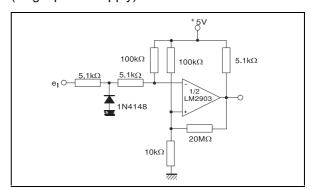

DRIVING CMOS

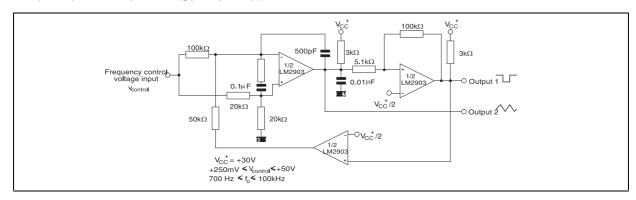

LOW FREQUENCY OP AMP

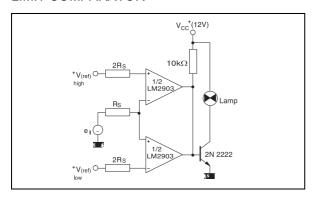
DRIVING TTL

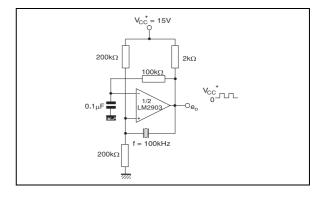


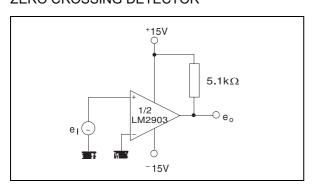
TRANSDUCER AMPLIFIER

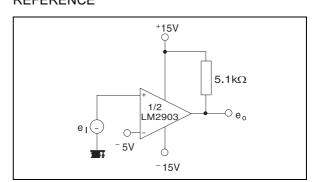



LOW FREQUENCY OP AMP WITH OFFSET ADJUST


ZERO CROSSING DETECTOR (single power supply)


TWO-DECADE HIGH-FREQUENCY VCO


LIMIT COMPARATOR


CRYSTAL CONTROLLED OSCILLATOR

SPLIT-SUPPLY APPLICATIONS ZERO CROSSING DETECTOR

COMPARATOR WITH A NEGATIVE REFERENCE

