Positive Voltage Regulators

100 mA

MC78L00A Series, NCV78L00A

The MC78L00A Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.

Features

- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00A Series)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

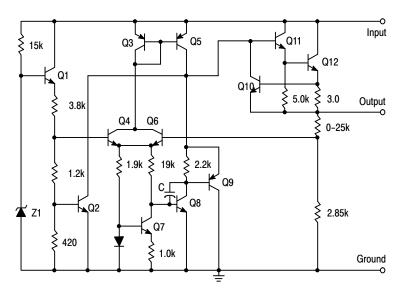
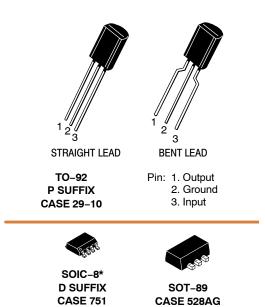
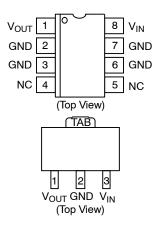
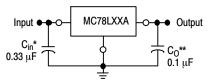




Figure 1. Representative Schematic Diagram

*SOIC-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOIC-8 conforms to all external dimensions of the standard SO-8 package.

PIN CONNECTIONS



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 12 of this data sheet.

Figure 2. Standard Application

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

* C_{in} is required if regulator is located an appreciable distance from power supply filter.

** C_0 is not needed for stability; however, it does improve transient response.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (5.0 V–9.0 V) (12 V–18 V) (24 V)	VI	30 35 40	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Maximum Junction Temperature	TJ	150	°C
Moisture Sensitivity Level	MSL	1	-
ESD Capability, Human Body Model (Note 1)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 1)	ESD _{MM}	200	V
ESD Capability, Charged Device Model (Note 1)	ESD _{CDM}	2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)

ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

ESD Charged Device Model tested per EIA/JES D22/C101, Field Induced Charge Model.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Package Dissipation	PD	Internally Limited	W
Thermal Characteristics, TO-92 Thermal Resistance, Junction-to-Ambient	R _{θJA}	200	°C/W
Thermal Characteristics, SOIC8 Thermal Resistance, Junction-to-Ambient	R _{θJA}	Refer to Figure 8	°C/W
Thermal Characteristics, SOT-89 Thermal Resistance, Junction-to-Ambient	R _{θJA}	55	°C/W

2. Thermal Resistance, Junction-to-Ambient depends on P.C.B. Copper area. See details in Figure 8.

Thermal Resistance, Junction-to-Case is not defined. SOIC 8 lead and TO-92 packages that do not have a heat sink like other packages may have. This is the reason that a Theta JC is never specified. A little heat transfer will occur through the package but since it is plastic, it is minimal. The majority of the heat that is transferred is through the leads where they connect to the circuit board.

ELECTRICAL CHARACTERISTICS (V _I = 10 V, I _O = 40 mA, C _I = 0.33 μ F, C _O = 0.1 μ F, -40°C < T _J < +125°C (for MC78LXXAB,
NCV78L05A), $0^{\circ}C < T_{J} < +125^{\circ}C$ (for MC78LXXAC), unless otherwise noted.)

		MC78L05AC, AB, NCV78L05A			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	4.8	5.0	5.2	Vdc
	Reg _{line}		55 45	150 100	mV
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		11 5.0	60 30	mV
$\begin{array}{l} \text{Output Voltage} \\ (7.0 \ \text{Vdc} \leq \text{V}_{I} \leq 20 \ \text{Vdc}, \ 1.0 \ \text{mA} \leq \text{I}_{O} \leq 40 \ \text{mA}) \\ (\text{V}_{I} = 10 \ \text{V}, \ 1.0 \ \text{mA} \leq \text{I}_{O} \leq 70 \ \text{mA}) \end{array}$	Vo	4.75 4.75		5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.8 -	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V _I \leq 20 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	40	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 8.0 Vdc \leq V _I \leq 18 V, T _J = +25°C)	RR	41	49	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O	-	1.7	-	Vdc

NOTE: NCV78L05A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

ELECTRICAL CHARACTERISTICS (V_I = 14 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L08AC, AB			
Characteristics	Symbol	Min	Тур	Мах	Unit
Output Voltage (T _J = +25°C)	Vo	7.7	8.0	8.3	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ $10.5 \text{ Vdc} \le V_I \le 23 \text{ Vdc}$ $11 \text{ Vdc} \le V_I \le 23 \text{ Vdc}$	Reg _{line}		20 12	175 125	mV
Load Regulation ($T_J = +25^{\circ}C$, 1.0 mA $\le I_O \le$ 100 mA) ($T_J = +25^{\circ}C$, 1.0 mA $\le I_O \le$ 40 mA)	Reg _{load}		15 8.0	80 40	mV
Output Voltage (10.5 Vdc \leq V _I \leq 23 Vdc, 1.0 mA \leq I _O \leq 40 mA) (V _I = 14 V, 1.0 mA \leq I _O \leq 70 mA)	Vo	7.6 7.6		8.4 8.4	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.0 _	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	60	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 12 V \leq V _I \leq 23 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage (T _J = +25°C)	V _I – V _O	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 15 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		м	C78L09AC,	AB	
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	V _O	8.6	9.0	9.4	Vdc
	Reg _{line}		20 12	175 125	mV
Load Regulation (T _J = +25°C, 1.0 mA \leq I _O \leq 100 mA) (T _J = +25°C, 1.0 mA \leq I _O \leq 40 mA)	Reg _{load}		15 8.0	90 40	mV
Output Voltage (11.5 Vdc \leq V $_{I}$ \leq 24 Vdc, 1.0 mA \leq I $_{O}$ \leq 40 mA) (V $_{I}$ = 15 V, 1.0 mA \leq I $_{O}$ \leq 70 mA)	Vo	8.5 8.5		9.5 9.5	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.0 -	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI_{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	60	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 13 V \leq V _I \leq 24 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc

$\textbf{ELECTRICAL CHARACTERISTICS} (V_I = 19 \text{ V}, I_O = 40 \text{ mA}, C_I = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, -40^\circ\text{C} < T_J < +125^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, -40^\circ\text{C} < 10^\circ\text{C} < 10^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{F}, -10^\circ\text{C} < 10^\circ\text{C} < 10^\circ\text{C} < 10^\circ\text{C} \text{ }(\text{for MC78LXXAB}), \text{ }\mu\text{C} = 0.33 \text{ }\mu\text{C$

 $0^{\circ}C < T_J < +125^{\circ}C$ (for MC78LXXAC), unless otherwise noted.)

		MC78L12AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	11.5	12	12.5	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ Ma})$ 14.5 Vdc $\leq V_I \leq 27 \text{ Vdc}$ 16 Vdc $\leq V_I \leq 27 \text{ Vdc}$	Reg _{line}		120 100	250 200	mV
Load Regulation	Reg _{load}		20 10	100 50	mV
$\begin{array}{l} Output \ Voltage \\ (14.5 \ Vdc \leq V_{I} \leq 27 \ Vdc, \ 1.0 \ mA \leq I_{O} \leq 40 \ mA) \\ (V_{I} = 19 \ V, \ 1.0 \ mA \leq I_{O} \leq 70 \ mA) \end{array}$	Vo	11.4 11.4		12.6 12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		4.2	6.5 6.0	mA
Input Bias Current Change (16 Vdc \leq V _I \leq 27 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-	80	_	μV
Ripple Rejection (I_O = 40 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = +25°C)	RR	37	42	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	_	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 23 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L15AC, AB / NCV78L15A			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	14.4	15	15.6	Vdc
	Reg _{line}		130 110	300 250	mV
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		25 12	150 75	mV
Output Voltage (17.5 Vdc \leq V _I \leq 30 Vdc, 1.0 mA \leq I _O \leq 40 mA) (V _I = 23 V, 1.0 mA \leq I _O \leq 70 mA)	Vo	14.25 14.25		15.75 15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		4.4	6.5 6.0	mA
Input Bias Current Change (20 Vdc \leq V _I \leq 30 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-	90	-	μV
Ripple Rejection (I_O = 40 mA, f = 120 Hz, 18.5 V \leq V_I \leq 28.5 V, T_J = +25°C)	RR	34	39	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O	-	1.7	-	Vdc

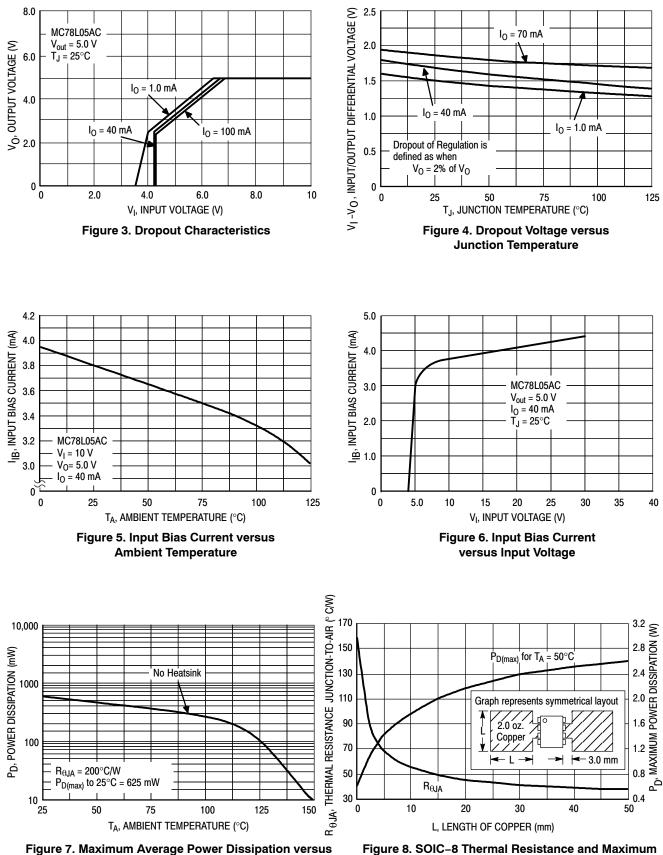
$\textbf{ELECTRICAL CHARACTERISTICS} (V_I = 27 \text{ V}, I_O = 40 \text{ mA}, C_I = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, 0^\circ\text{C} < T_J < +125^\circ\text{C}, \text{ unless otherwise noted.})$

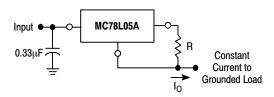
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	17.3	18	18.7	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ 21.4 Vdc $\leq V_I \leq 33 \text{ Vdc}$	Reg _{line}				mV
$\begin{array}{l} 20.7 \ \text{Vdc} \leq \text{V}_{I} \leq 33 \ \text{Vdc} \\ 22 \ \text{Vdc} \leq \text{V}_{I} \leq 33 \ \text{Vdc} \\ 21 \ \text{Vdc} \leq \text{V}_{I} \leq 33 \ \text{Vdc} \end{array}$		_	45 35	325 275	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		30 15	170 85	mV
Output Voltage (21.4 Vdc $\leq V_l \leq 33$ Vdc, 1.0 mA $\leq I_O \leq 40$ mA) (20.7 Vdc $\leq V_l \leq 33$ Vdc, 1.0 mA $\leq I_O \leq 40$ mA) (V ₁ = 27 V, 1.0 mA $\leq I_O \leq 70$ mA)	Vo	17.1	-	18.9	Vdc
$(V_{I} = 27 \text{ V}, 1.0 \text{ mA} \le I_{O} \le 70 \text{ mA})$		17.1	-	18.9	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	Ι _{ΙΒ}	-	3.1 -	6.5 6.0	mA
Input Bias Current Change (22 Vdc \leq V ₁ \leq 33 Vdc)	Δl _{IB}				mA
(21 Vdc \leq V ₁ \leq 33 Vdc) (1.0 mA \leq I _O \leq 40 mA)		-		1.5 0.1	
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	150	-	μV
Ripple Rejection (I_O = 40 mA, f = 120 Hz, 23 V \leq V_I \leq 33 V, T_J = +25°C)	RR	33	48	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O	-	1.7	-	Vdc

		MC78L24AC			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	23	24	25	Vdc
	Reg _{line}	- - -	_ 50 60	300 350	mV
Load Regulation ($T_J = +25^{\circ}C$, 1.0 mA $\leq I_O \leq$ 100 mA) ($T_J = +25^{\circ}C$, 1.0 mA $\leq I_O \leq$ 40 mA)	Reg _{load}	-	40 20	200 100	mV
$\begin{array}{l} \mbox{Output Voltage} \\ (28 \mbox{ Vdc} \leq V_l \leq 38 \mbox{ Vdc}, \ 1.0 \ mA \leq I_O \leq 40 \ mA) \\ (27 \mbox{ Vdc} \leq V_l \leq 38 \mbox{ Vdc}, \ 1.0 \ mA \leq I_O \leq 40 \ mA) \\ (28 \mbox{ Vdc} \leq V_l = 33 \mbox{ Vdc}, \ 1.0 \ mA \leq I_O \leq 70 \ mA) \\ (27 \mbox{ Vdc} \leq V_l \leq 33 \ \mbox{ Vdc}, \ 1.0 \ mA \leq I_O \leq 70 \ mA) \end{array}$	Vo	22.8 22.8	-	25.2 25.2	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.1 -	6.5 6.0	mA
Input Bias Current Change (28 Vdc \leq V _I \leq 38 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-	200	-	μV
Ripple Rejection (I_O = 40 mA, f = 120 Hz, 29 V \leq V _I \leq 35 V, T _J = +25°C)	RR	31	45	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{I} = 33 \text{ V}, \text{ I}_{O} = 40 \text{ mA}, \text{ C}_{I} = 0.33 \text{ }\mu\text{F}, \text{ C}_{O} = 0.1 \text{ }\mu\text{F}, 0^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.




Figure 8. SOIC–8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

APPLICATIONS INFORMATION

Design Considerations

The MC78L00A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The

The MC78L00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5.0 \text{ V}}{\text{B}} + I_{\text{B}}$$

 $I_{IB} = 3.8$ mA over line and load changes

For example, a 100 mA current source would require R to be a 50 $\Omega,$ 1/2 W resistor and the output voltage compliance would be the input voltage less 7 V.

Figure 9. Current Regulator

input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

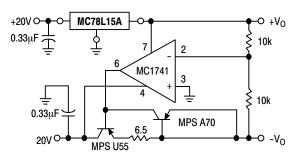


Figure 10. ±15 V Tracking Voltage Regulator

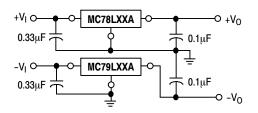


Figure 11. Positive and Negative Regulator

ORDERING INFORMATION

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L05ABDG	5.0 V	$T_J = -40^\circ$ to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
NCV78L05ABDG*	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L05ABDR2G	5.0 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV78L05ABDR2G*	5.0 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L05ABPG	5.0 V	$T_J = -40^\circ$ to +125°C	TO–92 (Pb–Free)	2000 Units / Bag
NCV78L05ABPG*	5.0 V	$T_J = -40^\circ$ to +125°C	TO–92 (Pb–Free)	2000 Units / Bag
MC78L05ABPRAG	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Tape & Reel
NCV78L05ABPRAG*	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L05ABPREG	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Tape & Reel
NCV78L05ABPREG*	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L05ABPRMG	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Ammo Pack
NCV78L05ABPRMG*	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Ammo Pack
NCV78L05ABPRPG*	5.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L05ACDG	5.0 V	$T_J = 0^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L05ACDR2G	5.0 V	$T_J = 0^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L05ACPG	5.0 V	$T_J = 0^\circ \text{ to } +125^\circ \text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L05ACPRAG	5.0 V	$T_J = 0^\circ \text{ to } +125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L05ACPREG	5.0 V	$T_J = 0^\circ$ to +125°C	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L05ACPRMG	5.0 V	$T_J = 0^\circ$ to +125°C	TO-92 (Pb-Free)	2000 / Ammo Pack
MC78L05ACPRPG	5.0 V	$T_J = 0^\circ$ to +125°C	TO-92 (Pb-Free)	2000 / Ammo Pack
MC78L05ACHT1G	5.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOT-89 (Pb-Free)	2500 / Tape & Reel
MC78L08ABDG	8.0 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail

*NCV78L05A, NCV78L12A, NCV78L15A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifica-tions Brochure, BRD8011/D.

ORDERING INFORMATION (continued)

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L08ABDR2G	8.0 V	$T_J = -40^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV78L08ABDR2G*	8.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L08ABPG	8.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 Units / Bag
MC78L08ABPRAG	8.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L08ABPRPG	8.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L08ACDG	8.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L08ACDR2G	8.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L08ACPG	8.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L08ACPRAG	8.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L08ACPREG	8.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L08ACPRPG	8.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L09ABDG	9.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L09ABDR2G	9.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L09ABPRAG	9.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L09ABPRPG	9.0 V	$T_J = -40^\circ$ to $+125^\circ$ C	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L09ACDG	9.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L09ACDR2G	9.0 V	$T_J = 0^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L09ACPG	9.0 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L12ABDG	12 V	$T_J = -40^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L12ABDR2G	12 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV78L12ABDG*	12 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	98 Units / Rail
NCV78L12ABDR2G*	12 V	$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L12ABPG	12 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92 (Pb-Free)	2000 Units / Bag

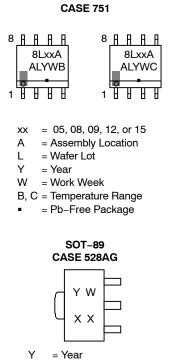
*NCV78L05A, NCV78L12A, NCV78L15A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifica-tions Brochure, BRD8011/D.

ORDERING INFORMATION (continued)

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L12ABPRPG	12 V	$T_{\rm J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
NCV78L12ABPG*	12 V	$T_{\rm J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L12ACDG	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L12ACDR2G	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L12ACPG	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO-92 (Pb-Free)	2000 Units / Bag
MC78L12ACPRAG	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO-92 (Pb-Free)	2000 / Tape & Reel
MC78L12ACPREG	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO-92 (Pb-Free)	2000 / Tape & Reel
MC78L12ACPRMG	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L12ACPRPG	12 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L15ABDG	15 V	$T_J = -40^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L15ABDR2G	15 V	$T_{\rm J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV78L15ABDR2G*	15 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L15ABPG	15 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L15ABPRAG	15 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L15ABPRPG	15 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L15ACDG	15 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
MC78L15ACDR2G	15 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC78L15ACPG	15 V	$T_J = 0^\circ$ to +125°C	TO–92 (Pb–Free)	2000 Units / Bag
MC78L15ACPRAG	15 V	$T_J = 0^\circ$ to +125°C	TO–92 (Pb–Free)	2000 / Tape & Reel
MC78L15ACPRPG	15 V	$T_J = 0^\circ$ to +125°C	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L18ABPG	18 V	$T_{\rm J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L18ACPG	18 V	$T_J = 0^\circ$ to +125°C	TO–92 (Pb–Free)	2000 Units / Bag
MC78L18ACPRAG	18 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO-92 (Pb-Free)	2000 / Tape & Reel

*NCV78L05A, NCV78L12A, NCV78L15A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

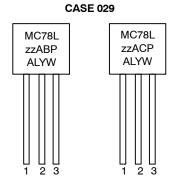

ORDERING INFORMATION (continued)

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L18ACPRMG	18 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L18ACPRPG	18 V	$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO–92 (Pb–Free)	2000 / Ammo Pack
MC78L24ABPG	24 V	$T_J = -40^\circ \text{ to } +125^\circ \text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
NCV78L24ABPRPG*	24 V	$T_J = -40^\circ \text{ to } +125^\circ \text{C}$	TO–92 (Pb–Free)	2000 Units / Bag
MC78L24ACPG	24 V	$T_J = 0^\circ$ to +125°C	TO–92 (Pb–Free)	2000 Units / Bag
MC78L24ACPRAG	24 V	$T_J = 0^\circ$ to +125°C	TO-92 (Pb-Free)	2000 / Tape & Reel
MC78L24ACPRPG	24 V	$T_J = 0^\circ$ to +125°C	TO-92 (Pb-Free)	2000 / Ammo Pack

*NCV78L05A, NCV78L12A, NCV78L15A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifica-

tions Brochure, BRD8011/D.

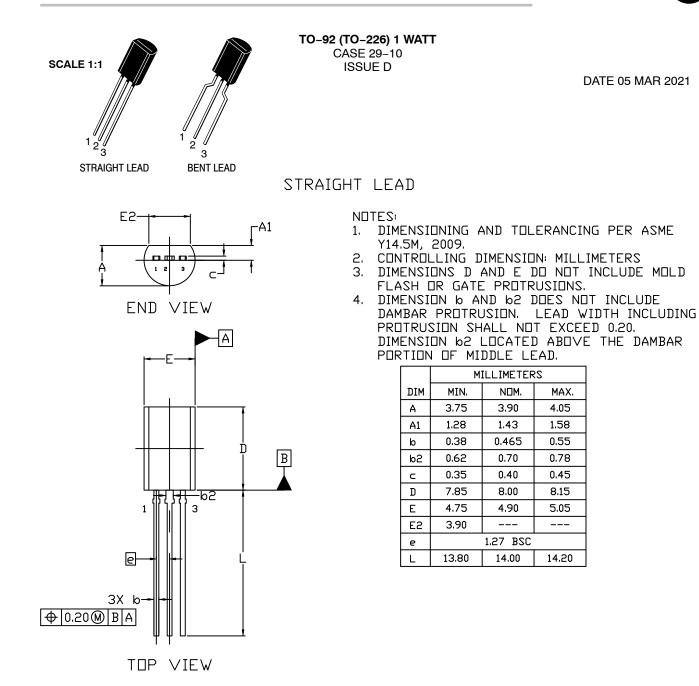
MARKING DIAGRAMS



SOIC-8

D SUFFIX

XX = Specific Device Code

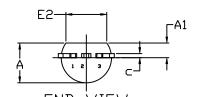

TO-92

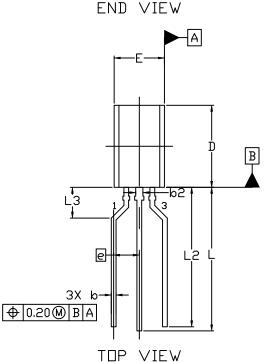
P SUFFIX

- = 05, 08, 09, 12, 15, 18 or 24 ΖZ
- А = Assembly Location
- L = Wafer Lot = Year Υ
- W = Work Week

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

STYLES AND MARKING ON PAGE 3


DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT PAGE		PAGE 1 OF 3		
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				



TO-92 (TO-226) 1 WATT CASE 29–10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS,
- 4. DIMENSION ७ AND ७2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION ७2 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS		
DIM	MIN.	NDM.	MAX.
Α	3.75	3.90	4.05
A1	1.28	1.43	1.58
σ	0.38	0.465	0.55
b2	0.62	0.70	0.78
с	0.35	0.40	0.45
D	7.85	8.00	8.15
Е	4.75	4.90	5.05
E2	3.90		
e	2.50 BSC		
L	13.80	14.00	14.20
L2	13.20	13.60	14.00
L3	3.00 REF		

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

2.	EMITTER BASE COLLECTOR
STYLE 6: PIN 1. 2. 3.	SOURCE & SUBSTRATE
2.	ANODE CATHODE & ANODE CATHODE
2.	ANODE GATE CATHODE
2.	COLLECTOR EMITTER BASE
	V _{CC} GROUND 2 OUTPUT
	GATE DRAIN SOURCE

STYLE 2: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 7: PIN 1. SOURCE 2. DRAIN 3. GATE STYLE 12: PIN 1. MAIN TERMINAL 1 2. GATE 3. MAIN TERMINAL 2 STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER STYLE 22: PIN 1. SOURCE 2. GATE 3. DRAIN STYLE 27: PIN 1. MT 2. SUBSTRATE 3. MT STYLE 32 PIN 1. BASE 2. COLLECTOR 3. EMITTER

2	: ANODE ANODE CATHODE
2	: DRAIN GATE SOURCE & SUBSTRATE
2	3: ANODE 1 GATE CATHODE 2
2	8: . ANODE . CATHODE . NOT CONNECTED
2	3: . Gate . Source . Drain
2	8: . CATHODE . ANODE . GATE
2	3: . Return . INPUT . Output

STYLE 4: PIN 1. CATHODE STYLE 5: 2. CATHODE 3. ANODE STYLE 9: PIN 1. BASE 1 EMITTER 2. 3. BASE 2 STYLE 14: PIN 1. EMITTER 2. COLLECTOR 3. BASE STYLE 19: PIN 1. GATE 2. ANODE 3. CATHODE STYLE 24: PIN 1. EMITTER 2. COLLECTOR/ANODE 3. CATHODE STYLE 29: PIN 1. NOT CONNECTED 2. ANODE 3. CATHODE STYLE 34: PIN 1. INPUT 2. GROUND

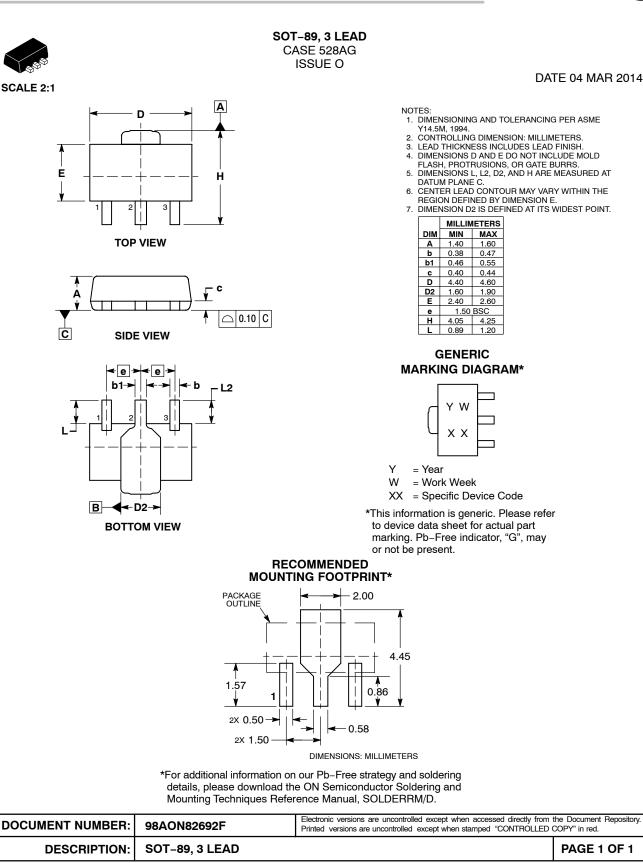
3. LOGIC

PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE STYLE 15: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 STYLE 20: PIN 1. NOT CONNECTED 2. CATHODE 3. ANODE STYLE 25: PIN 1. MT 1 2. GATE 3. MT 2 STYLE 30: PIN 1. DRAIN 2. GATE 3. SOURCE STYLE 35: PIN 1. GATE 2. COLLECTOR 3. EMITTER

GENERIC MARKING DIAGRAM*

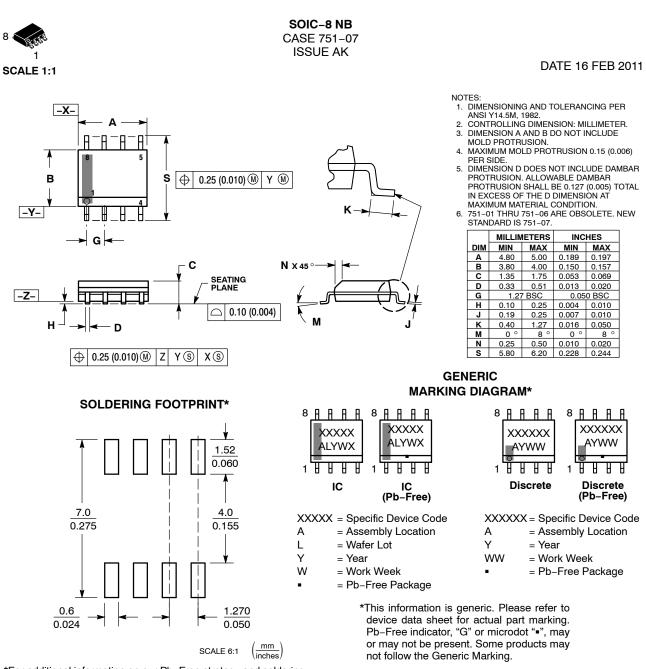
XXXXX XXXXX ALYW

XXXX = Specific Device Code


- A = Assembly Location
- L = Wafer Lot
- Y = Year
- W = Work Week
 - = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o ncidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or thers.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or ncidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. 6. BASE 7 BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN З. DRAIN DRAIN 4. 5. GATE 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6. BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. 4. TXE 5. RXE 6. VFF GND 7. 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 З. CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. EMITTER, #1 BASE, #2 2. З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 З. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND BIAS 2 INPUT 6. 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. 5. P-DRAIN 6. P-DRAIN N-DRAIN 7. 8. N-DRAIN STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1
STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd
STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 7. DRAIN 1 8. DRAIN 1
STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON
STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1
STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT
STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER З. COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE CATHODE COLLECTOR/ANODE 6. 7. COLLECTOR/ANODE 8. STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET 3. 4. GND 5. 6. V MON VBULK 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF	
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

8

rights of others.

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative