

规格书 SPECIFICATION SHEET

Customer name:			
BERYL SERIES:	RG	TYPE:	RADIAL
DESCRIPTION:	100uF/16V	Ф5*11	
Apply date :	2022-04-13		

BERYL		CUSTOMER				
P/N:RG016M101LO5*11TA-1A	AlEt	P/N:				
PREPARED CHECKED	PREPARED CHECKED APPROVAL		CHECKED	APPROVAL		
董桂茹 廖梅君	张业维					

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet NO.: 20220413 Page: 1/12

Revise record

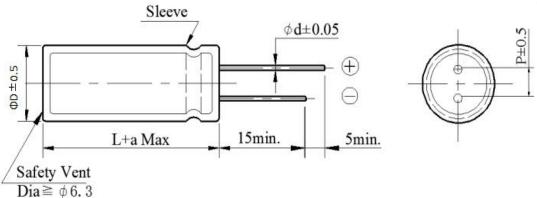
NO.	Date	Revise reason	Revise content	Prepared
01	2022.04.13	First issue	First issue	董桂茹

Sheet NO.: 20220413 Page : 2 / 12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

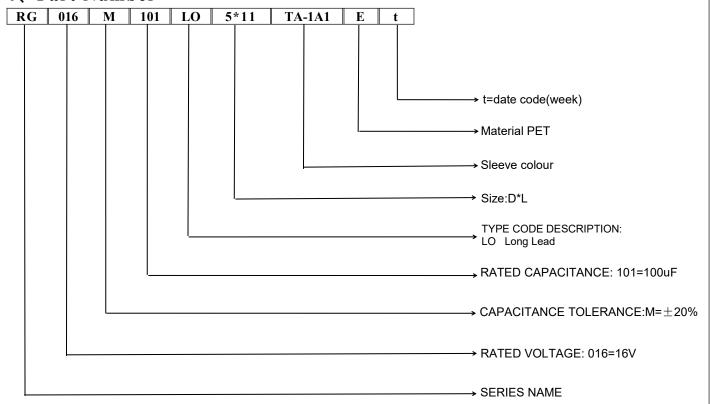

Series	Cap(uF) 120Hz/20°C	WV(V)	Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Size (mm)		Temperature (°C)	Capacitance Tolerance	Life(hours) @105(°C)	
	120112/20		D	L		1 orer unce																								
RG	100	16	5	11	-40~ +105	±20%	6000																							

DF (%)(MAX) 120Hz/20°C	LC(μA)(MAX) 2min/20°C	ESR(Ω)(MAX) 100KHz/25°C	RC (mA rms) (MAX)105°C/100KHz	Surge voltage(V)
≤16	≤16	≤0.75	250	18

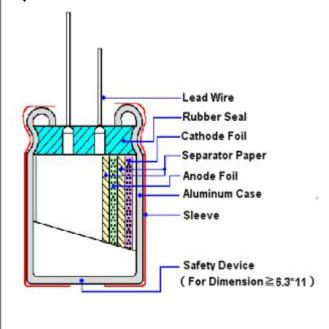
Other: /

3, Product Dimensions

Type



ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
a			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		


Sheet NO.: 20220413 Page: 3 / 12

4. Part Number

5, Construction

Material name	Composition	Supplier name		
Lead	Al and (Fe+Cu+Sn)	NM、JX		
Rubber	EPT / IIR	LHX、LA、TH、LM2		
Case	Aluminum	OX、YJ、HL、LY2		
Paper	Wood / Fibrous plant materials	KE、DF		
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ		
Cathode foil	Aluminum	GY、LY1		
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS		
Sleeve	PET	YL、CY		

Sheet NO.: 20220413 Page: 4 / 12

BERYL 緑宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(16V)
- 3) Nominal capacitance(100uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2216)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

16: Manufactured week (01, 02, 03, 04......52, 53)

Sheet NO.: 20220413 Page : 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim100\text{WV})$ -40°C to +105°C.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	$ \begin{array}{l} \textbf{} \\ \textbf{Connecting the capacitor with a protective resistor } (1k\Omega\pm10\Omega) \text{ in series for} \\ \textbf{2 minutes, and then, measure leakage current.} \\ \textbf{} \\ \textbf{I: Leakage current } (\mu A) \\ \textbf{I } (\mu A) \leqslant 0.01 \text{CVor 3 } (\mu A) \text{ whichever is greater, measurement circuit refer to right drawing.} \\ \textbf{C: Capacitance } (\mu F) \\ \textbf{V: Rated DC working voltage } (V) \\ \end{array} $
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

Sheet NO.: 20220413 Page: 6 / 12

	ITEM			PER	FORMA	NCE		
4	Impedance	<condition> Measuring frequency: 1 Measuring point: 2mm <criteria> (20°C) Must be within</criteria></condition>	n max. from t	he sui	rface of a	sealing rubbe	er on the lead	wire.
5	Load life test	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a temperature of Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table: Criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±25% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.						
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operatemperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be remore from the test chamber and be allowed to stabilized at room temperature for16 hours. mean leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value. Capacitance Change Within ±25% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.						s shall be removed
7	Maximum permissible (ripple current, temperature coefficient)	Condition The maximum permissible ripple current is the maximum A.C current at 100kHz and cat applied at maximum operating temperature Table-3 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers:						

Sheet NO.: 20220413 Page: 7 / 12

	ITEM				PER	FORMA	NCE				
		Fixed the seconds. I	Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for30+5-0 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° 12~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.								r) for 90° within
8	Terminal strength	Diam	eter of lead	wire		e force N kgf)	Bei	nding fo	rce N ((kgf)	
		0	5mm and les	S		(0.51)		2.5 (0.25)		
			0.6~0.8 mm		10	(1.02)		5 (0	.51)		
		<criteria> No notice</criteria>	able changes	shall be	e found, no	o breakag	e or loo	seness a	t the te	rminal	l.
		<condition></condition>									_
		STEP	Testing to		ire (°C)			Time			_
		1		20±2				hermal o			_
		2	-40 -25±3				Time to reach thermal equilibrium				_
	Temperature characteristics	3	20±2			Time to reach thermal equilibrium				_	
		4	105±2			Time to	reach t	hermal	equilibi	rium	_
		5	Time to reach thermal equilibriumce, DF, and impedance shall be measured at 120Hz.				rium				
9		a. At +105 Dissipar The leaf b. In step 5 Dissipar The leaf c. At- 40°C	confector slower confector slower current curr	nce mea nall be w measure e measu nall be w shall no ce (Z) rai	sured at + ithin the l ed shall no red at +20 ithin the l t more that	20°C sha imit of It of more the 0°C shall imit of It in the spe ot exceed	ll be with an 10 ti be within em 7.3 cified value 50	thin ± 25 mes of in $\pm 10\%$ alue.	ts spec of its o	ified vorigina	alue. Il value. ble.
10	Surge test	series for 30± 1000 times. T before measu CR: Nomin <criteria> Leakage cr Capacitant Dissipation Appearanc Attention: This test si</criteria>	5 seconds in then the caparement al Capacitan current be Change in Factor	every 5 sectors share (μF) Not With Not The	±0.5 minumall be left more that hin ±15% more that re shall be	n the spec of initial n the spec	~35°C.Pormal hu cified va value. cified va age of el	lue.	e shall for 1-2	be rep hours	2) resistor in eated

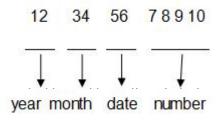
Sheet NO.: 20220413 Page: 8 / 12

	ITEM	PERFORMANCE							
		<condition> Temperature cycle: According to IEC60384-4 N according as below:</condition>	Io.4.7 methods, capacito	r shall be placed in an oven, the condition					
		Te	emperature	Time					
		(1) +20°C		3 Minutes					
	Change of	(2) Rated low tempera	ture (- 40°C) (-25°C)	30±2 Minutes					
11	temperature test	(3) Rated high temper	ature (+105°C)	30±2 Minutes					
		(1) to $(3) = 1$ cycle, tot	al 5 cycle						
		Criteria> The characteristic shall mee Leakage current	t the following requirem Not more than the s						
		Dissipation Factor	Not more than the s	specified value.					
		Appearance	There shall be no le	eakage of electrolyte.					
12	or shall 95%R H .at owing requirement. ecified value. al value. of the specified value. gage of electrolyte.								
13	Solderability test	Condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245 ±5°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Soldering wetting time Less than 3s Coating quality A minimum of 95% of the surface being immersed							

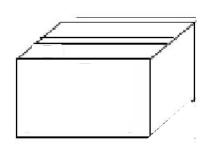
Sheet NO.: 20220413 Page: 9 / 12

	ITEM	PERFORMANCE
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°
		<criteria> To be soldered</criteria>
		After the test, the following items shall be tested:
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
	Resistance	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>
15	to solder heat	Leakage current Not more than the specified value.
	test	Capacitance Change Within ±5% of initial value.
		Dissipation Factor Not more than the specified value.
		Appearance There shall be no leakage of electrolyte.
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥∅6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>
10	test	Diameter (mm) DC Current (A)
		22.4 or less 1
		<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>

Sheet NO.: 20220413 Page: 10 / 12

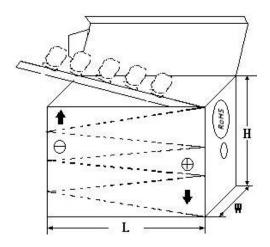


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

		Ltd.		
C.S.R:				B UA HE
C.S.R P/O:				ROHS HE
C.S.R P/N:				
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet NO.: 20220413 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

Accord with heavy metal Organic chlorin compounds Organic chlorin compounds Organic chlorin compounds Organic chlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB) Polybrominated diphenylethers (PBDE)
heavy metal Mercury and mercury compounds Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Organic chlorin compounds Organic chlorin compounds Organic chlorin compounds Organic chlorin compounds Organic chlorinated naphthalenes (PCN) Polychlorinated naphthalenes (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Organic chlorin compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Organic chlorin compounds Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Organic chlorin compounds Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Polychlorinated terphenyls (PCT) Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Chlorinated paraffins (CP) Other chlorinated organic compounds Organic Polybrominated biphenyls (PBB)
Organic Polybrominated biphenyls (PBB)
bromine Polybrominated diphenylethers (PBDE)
compounds Other brominated organic compounds
Tributyltin compounds
Triphenyltin compounds
Asbestos
Specific azo compounds
Formaldehyde
Polyvinyl chloride (PVC) and PVC blends
F、Cl、Br、I
REACH

Sheet NO.: 20220413 Page: 12 / 12