

规格书 SPECIFICATION SHEET

Customer name:			
BERYL SERIES:	RD	TYPE:	RADIAL
DESCRIPTION:	22uF/400V	Ф10*30	
Apply date :	2022-04-12		

BERYL			CUSTOMER	
P/N:RD400M220LO10*30TH-2	A2Et	P/N:		
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL
董桂茹工程的表	张业维			

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet No.: 20220412 Page : 1/12

Revise record

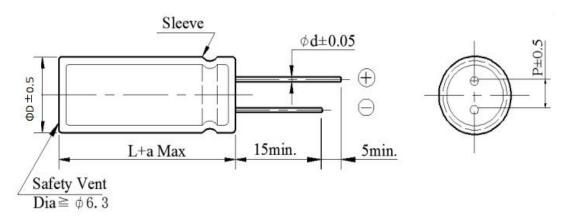
NO.	Date	Revise reason	Revise content	Prepared					
01	2022.04.12	First issue	First issue 董桂茹						

Sheet No.: 20220412 Page : 2 / 12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

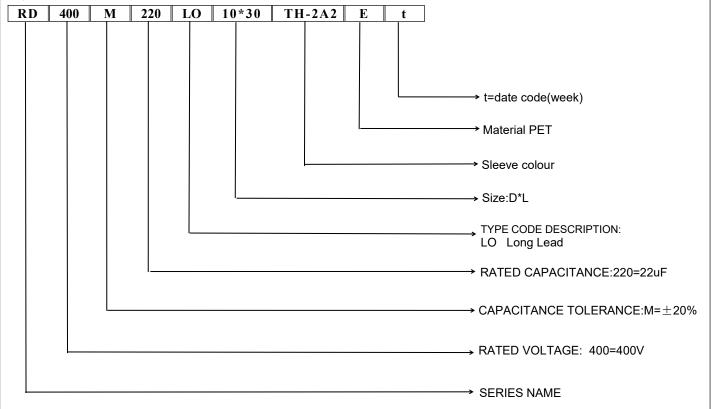

Series	Cap(uF) 120Hz/20°C	WV(V)	Size(mm)		Size(mm)		Temperature	Capacitance Tolerance	Life(hours)
	120HZ/20°C	D I		L	(°C)	1 oterance	@105(°C)		
RD	22	400	10	30	-40 ~ +105	±20%	8000		

DF (%)(MAX)	LC(μA)(MAX)	ESR(Ω)(MAX)	RC (mA rms)	Surge voltage(V)
120Hz/20°C	2min/20°C	100KHz/25°C	(MAX)105°C/120Hz	
≤24	≤186	-	395	440

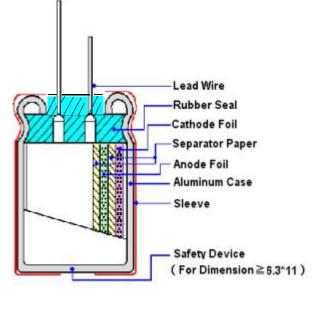
Other: /

3. Product Dimensions

Type

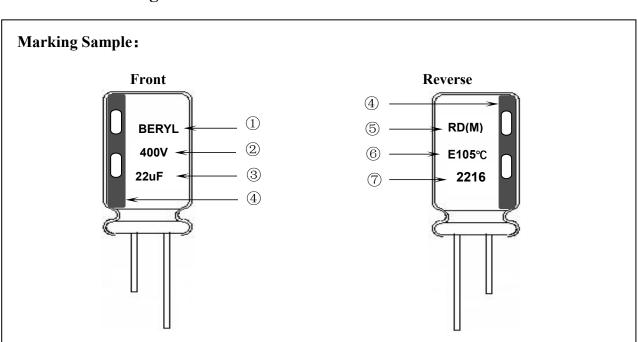


ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		


Sheet No.: 20220412 Page: 3 / 12

4. Part Number

5. Construction


Material name	Composition	Supplier name		
Lead	Al and (Fe+Cu+Sn)	NM、JX		
Rubber	EPT / IIR	LHX、LA、TH、LM2		
Case	Aluminum	OX、YJ、HL、LY2		
Paper	Wood / Fibrous plant materials	KE、DF		
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ		
Cathode foil	Aluminum	GY、LY1		
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS		
Sleeve	PET	YL、CY		

Sheet No.: 20220412 Page: 4/12

BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(400V)
- 3) Nominal capacitance(22uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2216)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

16: Manufactured week (01, 02, 03, 04......52, 53)

Sheet No.: 20220412 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(160\sim400\mathrm{WV})$ -40°C to +105°C . $(450\sim500\mathrm{WV})$ -25°C to +105°C

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	<condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>
2	Leakage current	<condition> Connecting the capacitor with a protective resistor $(1k\Omega\pm10\Omega)$ in series for 2 minutes, and then, measure leakage current. <criteria> I: Leakage current (μA) I(μA) ≤ 0.02CV +10 (μA), measurement circuit refer to right drawing. C: Capacitance (μF) V: Rated DC working voltage (V)</criteria></condition>
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

Sheet No.: 20220412 Page: 6 / 12

	ITEM]	PERI	FORMAN	NCE		
4	Impedance	<condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. <criteria> (20°C) Must be within the parameters (See page 3)</criteria></condition>							
5	Load life test	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a temperature of Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table: Criteria> The characteristic shall meet the following requirements. Leakage current						us the rated rigeak voltage slested after 16 eet the follow value.	pple hall not hours
6	Shelf life test							s shall be remo	
7	Maximum permissible (ripple current, temperature coefficient)	Cap. (µ) 1 Temperature C	vimum operated value of D.C. all not reverse tipliers: req (Hz) F) 5	ing temper	nd th	:			

Sheet No.: 20220412 Page: 7 / 12

	ITEM				PER	FORM	MAN(CE			
8 Terminal strength		seconds. Bending strength o Fixed the capacitor, applied f 2~3 seconds, and then bent it Diameter of lead wire 0.5mm and less 0.6~0.8 mm <criteria></criteria>			I force to the terminal in lead out direction for 30+5-0					ober) for 90° within nds.	
		<condition></condition>	Testing ten	nperature	(°C)			Ti	ime		
		1		0±2						luilibriun	
	Temperature characteristics	2		0-25±3		Time to read				•	
		3		0±2						luilibriun	
		5	105±2 20±2							_l uilibriun _l uilibriun	
9		Capacitan <criteria> a. At +105 Dissipat The lead b. In step 5 Dissipat The lead</criteria>	°C, capacitance ion factor shared current mode, capacitance ion factor shared current shared cur	mpedance ee measured ll be with neasured ll be with nall not n (Z) ratio	red at + nin the l shall no d at +20 nin the l nore tha shall no	20°C simit of the control of the con	shall the flee shall be all be fleem fleem fleem fleem fleem specif	at 1200 oe within 7.3 10 tim within 7.3 ied value	Hz. $\pm 25\%$ es of its $\pm 10\%$ coue.	of its or	riginal value. d value. ginal value.
10	Surge test	Condition> Applied series for 30± 1000 times. T before measur CR: Nomina Criteria> Leakage cu Capacitand Dissipation Appearand Attention:	5 seconds in e hen the capacirement al Capacitance arrent be Change a Factor	very 5±0 itors shal e (μF) Not m Within Not m	0.5 minuted by the left of th	n the s	15~3: r norm pecifitial va pecifitial va	5°C.Pronal humed value.	ocedure nidity fo	shall be	
		This test si	mulates over voften applied.	voltage a	t abnor	mal si	tuatio	n only.	It is no	t applica	able to such over

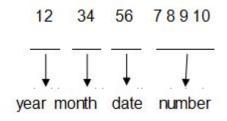
Sheet No.: 20220412 Page: 8 / 12

	ITEM			PERFORMAN	NCE		
		Ten Aco	dition> nperature cycle: cording to IEC60384-4 No ording as below:	.4.7 methods, capacito	or shall be placed in an over	, the condition	
				nperature	Time		
			(1) +20°C		3 Minutes		
	Change of		(2) Rated low temperatu	are (-40°C) (-25°C)	30±2 Minutes		
11	temperature test		(3) Rated high temperat	ure (+105°C)	30±2 Minutes		
			(1) to (3) =1 cycle, total	5 cycle			
		<crite< td=""><td></td><td>ha following requirem</td><td>ant</td><th></th></crite<>		ha following requirem	ant		
	The characteristic shall meet the following requirement. Leakage current Not more than the specified value.						
			Dissipation Factor	Not more than the	Not more than the specified value.		
				Appearance	There shall be no le	eakage of electrolyte.	
12	Damp heat test	40±	exposed for 500±8 hours in 2°C, the characteristic characteristic characteristic characteristic characteristic characteria> Leakage current Capacitance Change Dissipation Factor Appearance	Not more than the sp Within $\pm 10\%$ of initial	owing requirement. ecified value. al value. of the specified value.		
13	Solderability test	<conde< td=""><td>dition> capacitor shall be tested udering temperature : 245 ping depth : 2m ping speed : 255 ping time : 3±0</td><td>5±5°C .m ±2.5mm/s</td><td>nditions:</td><th></th></conde<>	dition> capacitor shall be tested udering temperature : 245 ping depth : 2m ping speed : 255 ping time : 3±0	5±5°C .m ±2.5mm/s	nditions:		
			Coating quality	A minimum of 950 immersed	% of the surface being		

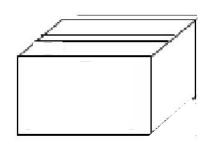
Sheet No.: 20220412 Page: 9 / 12

ITEM		PERFORMANCE			
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°			
			To be soldered		
		Criteria> After the test, the following ite			
			o intermittent contacts, open or short circuiting.		
		No	o damage of tab terminals or electrodes.	_	
		Appearance of	o mechanical damage in terminal. No leakage electrolyte or swelling of the case. The arkings shall be legible.		
	Resistance to solder heat test	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>			
15		Leakage current Not more than the specified value.			
		Capacitance Change	Within ±5% of initial value.		
		Dissipation Factor	Not more than the specified value.		
		Appearance	There shall be no leakage of electrolyte.		
16	Vent test	Condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2> Diameter (mm) DC Current (A) 22.4 or less 1			
			no dangerous conditions such as flames or disp	persion of pieces of	

Sheet No.: 20220412 Page: 10 / 12

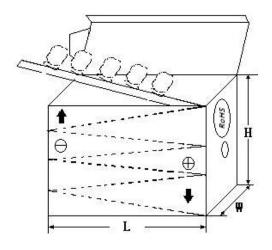


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

BERYL Zhao Qin	Ltd.	TOTAL	rectificity co.,
C.S.R:		- 110 115	
C.S.R P/O:		ROHS HE	
C.S.R P/N:			
S.P.R P/N:	QC		
SPEC:			
QTY: PCS	TOL:	%	
L/N:	S.P.R:		

Sheet No.: 20220412 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	· · · · · · · · · · · · · · · · · · ·				
	Cadmium and cadmium compounds				
Accord with	Lead and lead compounds				
heavy metal	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
0	Polychlorinated naphthalenes (PCN)				
Organic chlorin	Polychlorinated terphenyls (PCT)				
compounds	Chlorinated paraffins (CP)				
	Other chlorinated organic compounds				
Organic	Polybrominated biphenyls (PBB)				
bromine	Polybrominated diphenylethers (PBDE)				
compounds	Other brominated organic compounds				
Tributyltin compounds					
Triphenyltin compounds					
Asbestos					
Specific azo compounds					
Formaldehyde					
Polyvinyl chloride (PVC) and PVC blends					
F、Cl、Br、I					
REACH					

Sheet No.: 20220412 Page: 12 / 12