

规格书 SPECIFICATION SHEET

Customer name:			
BERYL SERIES:	RC	TYPE:	RADIAL
DESCRIPTION:	15uF/400V	Ф10*16	
Apply date :	2022-04-12		

BERYL		CUSTOMER				
P/N:RC400M150LO10*16TH-2A	A1E t	P/N:				
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL		
董桂茹	张业维					
202001958						

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet No.: 20220412 Page : 1/12

Revise record

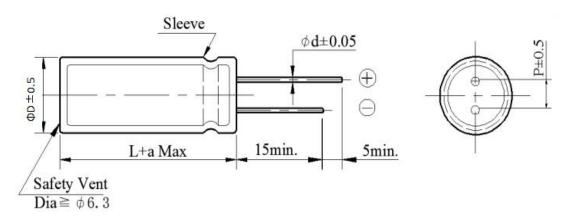
NO.	Date	Revise reason	Revise content	Prepared
01	2022.04.12	First issue	First issue	董桂茹

Sheet No.: 20220412 Page: 2 / 12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

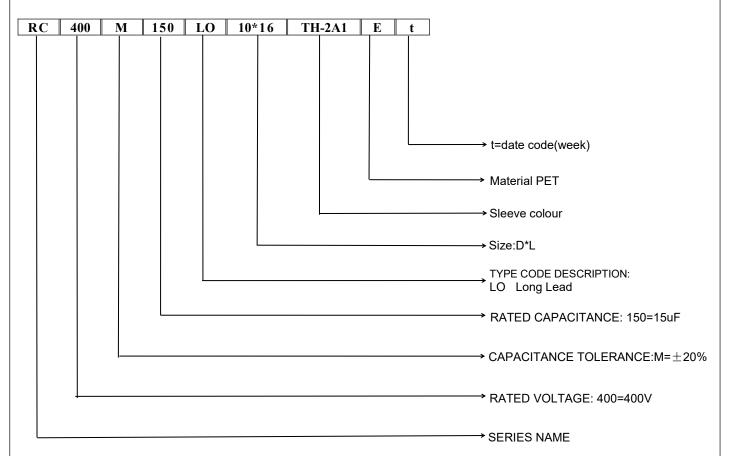

Series	Cap(uF)	WV(V)	Size((mm)	Temperature	Capacitance Tolerance	Life(hours)	
	120Hz/20°C	` ,	D	L	(°C)	Tolerance	@105(°C)	
RC	15	400	10	16	-40~ +105	±20%	5000	

DF (%)(MAX) 120Hz/20°C	LC(μA)(MAX) 2 min/20°C	ESR(Ω)(MAX) 100KHz/25°C	RC (mA rms) (MAX)105°C/100KHz	Surge voltage(V)
≤20	≤130	-	430	440

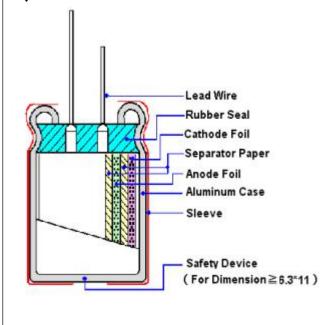
Other: /

3. Product Dimensions

Type



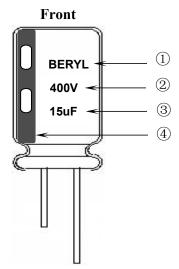
ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L<20)	± 1.5	(L≥2	$0) \pm 2.0$		

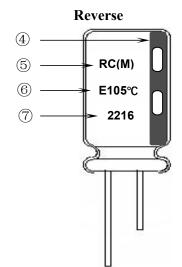

Sheet No.: 20220412 Page : 3 / 12

4. Part Number

5, Construction

Material name	Composition	Supplier name
Lead	Al and (Fe+Cu+Sn)	NM、JX
Rubber	EPT / IIR	LHX、LA、TH、LM2
Case	Aluminum	OX、YJ、HL、LY2
Paper	Wood / Fibrous plant materials	KE、DF
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ
Cathode foil	Aluminum	GY、LY1
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS
Sleeve	PET	YL、CY


Sheet No.: 20220412 Page: 4/12


BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(400V)
- 3) Nominal capacitance(15uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2216)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

16: Manufactured week (01, 02, 03, 04......52, 53)

Sheet No.: 20220412 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim450\mathrm{WV})$ -40°C to +105°C .

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	Condition> Connecting the capacitor with a protective resistor (1kΩ±10Ω) in series for 2 minutes, and then, measure leakage current. Criteria> I: Leakage current (μA) I (μA) ≤0.02CV +10 (μA) measurement circuit refer to right drawing. C: Capacitance (μF) V: Rated DC working voltage (V)
3	Dissipation factor	Condition> Nominal capacitance, for measuring frequency, voltage and temperature. Criteria> Must be within the parameters (See page 3)

Sheet No.: 20220412 Page : 6 / 12

ITEM			PERFORMANCE							
4	Impedance	Me <crite< th=""><th>asuring frequency: lasuring point: 2mm</th><th>max. fro</th><th>om the sur</th><th>face of a</th><th>sealing rubbe</th><th>er on the lead</th><th>wire.</th></crite<>	asuring frequency: lasuring point: 2mm	max. fro	om the sur	face of a	sealing rubbe	er on the lead	wire.	
5	Load life test	Ma: currexc rec <criter ci<="" le="" td="" the=""><td colspan="7">According to IEC60384-4No. 4.13 methods, the capacitor is stored at a tempera Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall exceed the rated working voltage) Then the product should be tested after 16 he recovering time at atmospheric conditions. The result should meet the following criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.</td></criter>	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a tempera Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall exceed the rated working voltage) Then the product should be tested after 16 he recovering time at atmospheric conditions. The result should meet the following criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.							
6	Shelf life test	The control of the co	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operatemperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be remo from the test chamber and be allowed to stabilized at room temperature for16 hours. meastleakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.							
7	Maximum permissible (ripple current, temperature coefficient)	appli Tabl The volta Freque	maximum permissi ed at maximum op	D.C voltaverse volt 120 0.50	emperature age and th tage.	;				

Sheet No.: 20220412 Page: 7 / 12

	ITEM					P	ER	FOR	MAN	ICE				
		Fixed the seconds. Fixed the	rength of to capacitor, a Bending st	applied rength applied	d fore of te	rmina ce to l r 90°	als. cent to it	the to	ermir inal p	nal (1~	4 mm	from the	rubbe	r) for 90° within
8	Terminal strength	Diameter of lead wire				Te		forc	e N	Bei	nding	force N (k	gf)	
		0	.5mm and l	ess			5 ((0.51))		2.5	(0.25)		
			0.6~0.8 mr	n		1	0 (1.02)			5 (0.51)		
		<criteria> No notice</criteria>	eable chang	es sha	ll be	found	l, no	brea	kage	or loo	seness	at the ter	minal.	
		<condition></condition>												
		STEP	Testing			e (°C)				Time			
		1		2							l equilibri			
		2		5±3						ach thermal equilibrius				
		3		2					to reach thermal equilibriun to reach thermal equilibriun					
		5		105± 20±								l equilibri l equilibri		
9	Temperature characteristics	a. At +10 Dissipa The lea b. In step Dissipa The lea c. At - 40 Voltage Z-40°C/Z		tance is shall but mea mee me shall but shall tance (Z	meas be wi sured easur be wi l not	ured at thin the shall shall thin the shall more of shall at the shall	at +2 he li l no +20 he li than	20°C mit o t mor °C sh mit o n the	shall f Iten e than all be f Iten speci	be with a 7.3 a 10 tile within 7.3 fied value value	0Hz. thin ± 2 mes of $n \pm 10^{\circ}$ alue. ue of the	25% of its f its specification of its of its of its of the follows:	origin ied va riginal	lue. value.
10	Surge test	Appl series for 30: 1000 times. 'before meast CR: Nomin <criteria> Leakage Capacitan Dissipatic Appearan Attention:</criteria>	Leakage currentNot more than the specified value.Capacitance ChangeWithin $\pm 15\%$ of initial value.Dissipation FactorNot more than the specified value.AppearanceThere shall be no leakage of electrolyte.								ated			

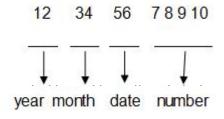
Sheet No.: 20220412 Page: 8 / 12

	ITEM		PERFORMA	PERFORMANCE								
		<condition> Temperature cycle: According to IEC60384-4 N according as below:</condition>	r shall be placed in an oven, the condition	1								
		Te	mperature	Time								
		(1) +20°C		3 Minutes								
	Change of	(2) Rated low temperat	cure (-40°C)(-25°C)	30±2 Minutes								
11	temperature test	(3) Rated high tempera	ture (+105°C)	30±2 Minutes								
			(1) to (3) =1 cycle, total 5 cycle									
		Criteria> The characteristic shall meet Leakage current	the following requirem Not more than the									
		Dissipation Factor	Not more than the	specified value.								
		Appearance	There shall be no le	o leakage of electrolyte.								
12	Damp 12 heat test	be exposed for 500±8 hours	Leakage current Not more than the specified value. Capacitance Change Within ±10% of initial value. Dissipation Factor Not more than 120% of the specified value.									
13	Solderabilit y test	<condition> The capacitor shall be tested Soldering temperature : 24 Dipping depth : 2r Dipping speed : 2d Dipping time : 3± <criteria> Soldering wetting time Coating quality</criteria></condition>	nditions: % of the surface being									

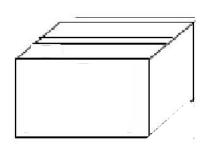
Sheet No.: 20220412 Page: 9 / 12

ITEM		PERFORMANCE				
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30° 4mm or less				
		Critaria> To be soldered				
		Criteria> 10 be soldered After the test, the following items shall be tested:				
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.				
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.				
	Resistance to solder heat test	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>				
15		Leakage current Not more than the specified value.				
		Capacitance Change Within ±5% of initial value.				
		Dissipation Factor Not more than the specified value.				
		Appearance There shall be no leakage of electrolyte.				
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>				
16	test	Diameter (mm) DC Current (A)				
		22.4 or less 1				
		<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>				

Sheet No.: 20220412 Page: 10 / 12

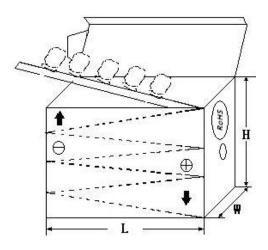


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

		Ltd.		: Technology Co.,
C.S.R:		B UA HE		
C.S.R P/O		ROHS HE		
C.S.R P/N	100			
S.P.R P/N		QC		
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet No.: 20220412 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	- · · · · · · · · · · · · · · · · · · ·					
	Cadmium and cadmium compounds					
Accord with	Lead and lead compounds					
heavy metal	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
0	Polychlorinated naphthalenes (PCN)					
Organic chlorin	Polychlorinated terphenyls (PCT)					
compounds	Chlorinated paraffins (CP)					
	Other chlorinated organic compounds					
Organic	Polybrominated biphenyls (PBB)					
bromine	Polybrominated diphenylethers (PBDE)					
compounds	Other brominated organic compounds					
Tributyltin compounds						
Triphenyltin compounds						
Asbestos						
Specific azo compounds						
Formaldehyde						
Polyvinyl chloride (PVC) and PVC blends						
F、Cl、Br、I						
REACH						

Sheet No.: 20220412 Page: 12 / 12