

规格书 SPECIFICATION SHEET

Customer name:					
BERYL SERIES:	RC	ТУ	YPE:	RADIAL	
DESCRIPTION:	10uF/400V	Φ8*13			
Apply date :	2022-04-12				
BERYL			C	USTOMER	
P/N:RC400M100LO8*13TH-2B	1Et	P/N:			
PREPARED	APPROVAL	PREPARE	D C	CHECKED	APPROVAL
董桂茹、夏梅君	张业维				
After approved, please sign	n hack 1 Annrova	l Sheet hefore	e order	If not we wil	l treat it as

tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com <u>http://www.zq-beryl.com</u>

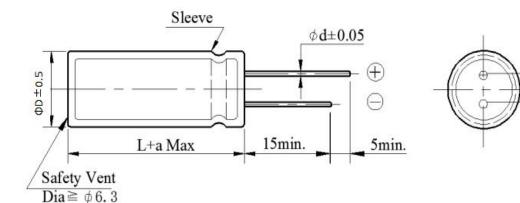
NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2022.04.12	First issue	First issue	董桂茹

1、 Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

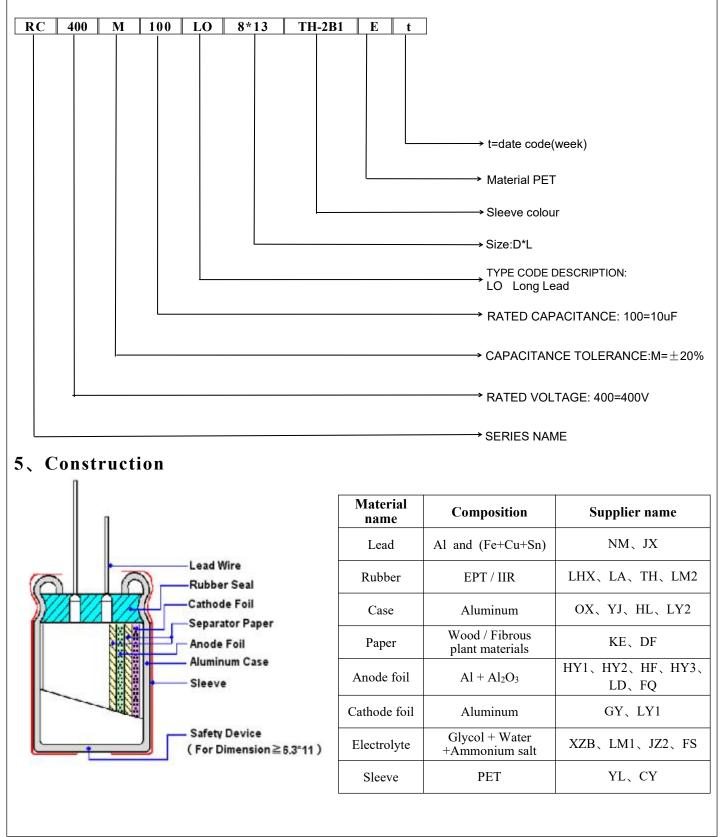

2. Table of specification and characteristics

Series	Cap(uF)	WV(V)	Size	Size(mm)		Temperature Capacit: (°C) Tolera						
	120Hz/20°C		D	L	(°C)		(°C)		(°C)		1 oleranc	e @105(°C)
RC	10	400	8	13	-40~ +105		±20%	5000				
)(MAX) z/20°C	LC(µA)(MAX 2 min/20°C				mA rms) 95℃/100KHz	Surge voltage(V)					
≤	≤20 ≤90			-			246	440				

Other: /

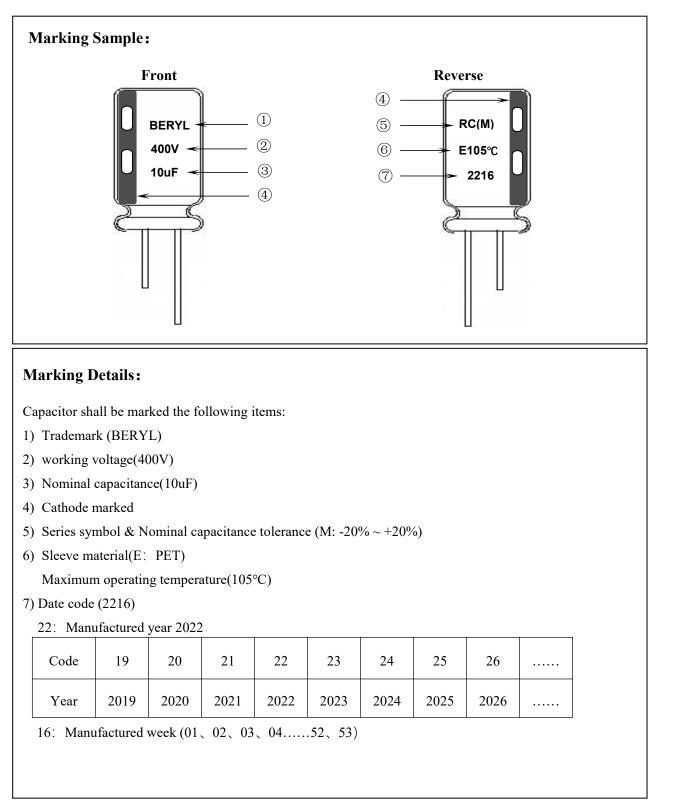
3、 Product Dimensions

Type


		-						-
ΦD	5	6.3	8	10	13	16	18	22
Р	2	2.5	3.5	5	5	7.5	7.5	10
Φd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L<20)	± 1.5	(L≥2	$(0) \pm 2.0$		

Sheet No.: 20220412

P±0.5



4、Part Number

6、Product Marking

7、 Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature :15°C to 35°CRelative humidity:45% to 85%

Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature : $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3 \sim 450 \text{WV}) - 40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$.

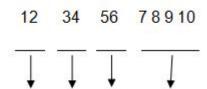
Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	<condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>
2	Leakage current	$\begin{array}{c} < \textbf{Condition} > \\ \text{Connecting the capacitor with a protective resistor } (1k\Omega \pm 10\Omega) \text{ in series for} \\ 2 \text{ minutes, and then, measure leakage current.} \\ < \textbf{Criteria} > \\ \text{I: Leakage current } (\mu A) \\ 1 (\mu A) \leq 0.02 \text{CV} + 10 (\mu A) \\ \text{measurement circuit refer to right drawing.} \\ \text{C: Capacitance } (\mu F) \\ \text{V: Rated DC working voltage (V)} \end{array}$
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

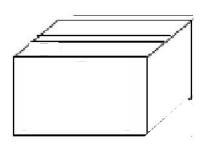
	ITEM		P]	ERFORMAN	ICE		
4	Impedance	<condition> Measuring frequency:1 Measuring point: 2mm <criteria> (20°C) Must be within</criteria></condition>	r on the lead	vire.			
5	Load life test	<condition> According to IEC60384 Maximum operating ten current for Rated life +4 exceed the rated worki recovering time at atmost <criteria> The characteristic shall Leakage current Capacitance Change Dissipation Factor Appearance</criteria></condition>	mperature ±2°G 48/0hours. (Th ng voltage) Th ospheric condi meet the follor Not more Within ±20 Not more	C with DC bia he sum of DC en the produc tions. The rest	s voltage plu and ripple p t should be t ult should m nents. ified value. ralue. he specified	is the rated rip eak voltage sh ested after 16 eet the follow value.	ple all not hours
6	Shelf life test	<condition> The capacitors are then temperature±2°C for from the test chambe leakage current <criteria> The characteristic shall m Leakage current Capacitance Change Dissipation Factor Appearance</criteria></condition>	1000+48/0 hou read be allow neet the follow Not more th Within ±20% Not more th	rs. Following ed to stabilize	this period, d at room te nts. e specified v lue. e specified v	the capacitors mperature for value alue.	shall be ren
		<condition> The maximum permissib applied at maximum ope Table-3</condition>			num A.C cu	rrent at 100kH	z and can be

	ITEM						P	ER	FOR	MAN	ICE					
8	Terminal strength	Tensile s Fixed the seconds. Fixed the 2~3 seco Dia	<condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 30 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the r 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds Diameter of lead wire Condition Condition> C</condition>								rubbe	r) for 90° within				
			0.5 mm ar		S		1		(0.51)				(0.2			
		0.6~0.8 mm					1	0 (1.02)			5 (0.5	1)		
		<criteria> No notic</criteria>	eable cha	anges	sha	ll be	found	l, no	brea	kage	or loo	seness	s at t	he ter	minal.	
		<condition< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></condition<>														
		STEP	Test	ing te			e (°C)				Time				
		1			20±2							herma	-			
		2) -2							herma	-			
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								ne to reach thermal equilibrium						
								Time to reach thermal equilibrium Time to reach thermal equilibrium								
9	Temperature characteristics	Capacit < Criteria> a. At +10 Dissip The le b. In step Dissip The le c. At - 40 Vottage Z-40°C/2	ation fac akage cu 0.5, capac ation fac akage cu 0° C, Impo 0° C, Impo 0° C, Impo	, and pacitan tor sh rrent citance tor sh rrent	impo nce i all b mea e me all b shal e (Z	edano meas be wi surec easur be wi l not) rati	ured a thin t l shal ed at thin t more o sha	at +2 he li l not +20 he li thai ll no	e mea 20°C mit o t more °C sh mit o n the ot exc	shall f Iten e than all be f Iten speci	l at 12 be with n 7.3 n 10 ti e within n 7.3 fied v ne val	20Hz. thin ± 2 mes of n $\pm 10^{\circ}$ alue.	25% f its % o	of its specif f its of	origir ied va iginal	value.
10	Surge test	Condition> Applied a surge voltage series for 30±5 seconds in ever 1000 times. Then the capacitor before measurement CR : Nominal Capacitance (µ < <u>Criteria></u> Leakage current Capacitance Change Dissipation Factor Appearance Attention : This test simulates over voltage					t mor thin ± t mor thin ±	e that e that e that all b	an the of in an the of of in an the oe no	15~3 r norr spec nitial spec leaka	5°C.F nal hu ified value ified value	value. value. value. electro	ure s y for	shall b : 1-2 h :.	e repe ours	ated

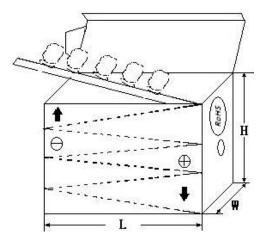
	ITEM			PERFORMAN	ICE		
		<condition> Temperatu According according</condition>	placed in an over	n, the condition			
				perature		Time	
		(1)+	+20°C		3 M	linutes	
	Change of	(2) H	Rated low temperatu	re (- 40°C)(-25°C)	30±2	Minutes	
11	temperature test	(3) H	Rated high temperatu	ure (+105°C)	30±2	Minutes	
		(1) t	to $(3) = 1$ cycle, total	5 cycle			
		<criteria> The chara</criteria>	cteristic shall meet t	he following requireme	ent.		
			kage current	Not more than the sp		alue.	
		Diss	sipation Factor	Not more than the s	pecified v	value.	
		Арр	earance	There shall be no lea	akage of e	electrolyte.	
			test: g to IEC60384-4 No.	4.12 methods, capacito			
12	Damp heat	Humidity According be expose 40±2°C, th < Criteria >	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha	an atmosphere of 90~4 nge shall meet the follo	95%R H . wing requ	uirement.	
12	-	Humidity According be expose 40±2°C, th <criteria></criteria> Leakag	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha ge current	an atmosphere of 90~5 nge shall meet the follo Not more than the spe	95%R H . owing requ	uirement.	
12	heat	Humidity According be expose 40±2°C, th < Criteria> Leakag Capaci	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha ge current itance Change	an atmosphere of $90 \sim 90$ nge shall meet the follo Not more than the spe Within $\pm 10\%$ of initial	95%R H . owing requ cified value.	uirement. ue.	
12	heat	Humidity According be expose 40±2°C, th < Criteria> Leakag Capaci	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha ge current itance Change ation Factor	an atmosphere of 90~5 nge shall meet the follo Not more than the spe	95%R H . wing requ cified valu l value. of the spec	uirement. ue. cified value.	
12	heat	Humidity According be expose 40±2°C, th < Criteria> Leakag Capaci Dissipa	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha ge current itance Change ation Factor	an atmosphere of $90 \sim 90$ nge shall meet the follo Not more than the spe Within $\pm 10\%$ of initial Not more than 120% of	95%R H . wing requ cified valu l value. of the spec	uirement. ue. cified value.	
12	heat	Humidity According be expose 40±2°C, th <criteria></criteria> Leakag Capaci Dissipa Appear <condition< b="">> The capac</condition<>	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha ge current itance Change ation Factor rance	an atmosphere of $90 \sim 9$ nge shall meet the following Not more than the spe Within $\pm 10\%$ of initial Not more than 120% of There shall be no leak nder the following con- $\pm 5^{\circ}C$ m ± 2.5 mm/s	95%R H . owing requ cified valu l value. of the spec age of ele	uirement. ue. cified value.	
	heat test Solderabilit	Humidity According be expose 40±2°C, th <criteria></criteria> Leakag Capaci Dissipa Appear <condition< b=""> The capac Soldering Dipping d Dipping si Dipping ti <criteria></criteria></condition<>	test: g to IEC60384-4 No. d for 500±8 hours in he characteristic cha ge current itance Change ation Factor rance	an atmosphere of $90 \sim 9$ nge shall meet the following Not more than the spe Within $\pm 10\%$ of initial Not more than 120% of There shall be no leak nder the following con- $\pm 5^{\circ}C$ m ± 2.5 mm/s	95%R H . owing requ cified valu l value. of the spec age of ele	uirement. ue. cified value.	


	ITEM	PERFORMANCE
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz each to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30° 4mm or less UNT or less Within 30° To be soldered
		After the test, the following items shall be tested: Image: sense truction No intermittent contacts, open or short circuiting.
		Inner construction No intermination contacts, open of short chedring. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage
		Appearance of electrolyte or swelling of the case. The markings shall be legible.
	Resistance to	Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. <criteria></criteria>
15	solder heat	Leakage current Not more than the specified value.
	test	Capacitance Change Within ±5% of initial value.
		Dissipation Factor Not more than the specified value.
		Appearance There shall be no leakage of electrolyte.
16	Vent	<condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied.</condition>
-	test	Diameter (mm) DC Current (A)
		<criteria> 1 The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>

8、 Packing Information


Packing Label Marked (the following items shall be marked on the label)
(Inside box or bag)
(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension
(7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (0) Lot number (1) Series

LOT Number :



year month date number

1) Bulk Packing:

2) Taped Packing:

3) Outer box

外箱

4) Outer box label:

BERYL	Zhao Qin	g Beryl Ele Ltd.	ctronic	c Technology Co.,
C.S.R:				
C.S.R P/O				ROHS HE
C.S.R P/N				
S.P.R P/N	1			QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		3

9、 Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

	Cadmium and cadmium compounds
Accord with	Lead and lead compounds
heavy metal	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
	Polychlorinated naphthalenes (PCN)
Organic chlorin	Polychlorinated terphenyls (PCT)
compounds	Chlorinated paraffins (CP)
	Other chlorinated organic compounds
Organic	Polybrominated biphenyls (PBB)
bromine	Polybrominated diphenylethers (PBDE)
compounds	Other brominated organic compounds
Tributyltin compo	bunds
Triphenyltin com	pounds
Asbestos	
Specific azo comp	pounds
Formaldehyde	
Polyvinyl chloride	e (PVC) and PVC blends
F、Cl、Br、I	
REACH	

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>