

规 格书 SPECIFICATION SHEET

	-	
BERYL SERIES:	RC	TYPE: RADIAL
DESCRIPTION:	1000uF/16V	Ф8*16
Apply date :	2022-04-13	

BERYL			CUSTOMER	2
P/N:RC016M102LO8*16TH-2A	1Et	P/N:		
PREPARED	APPROVAL	PREPARED	CHECKED	APPROVAL
董桂茹、工程部內有	张业维			

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 13428556686 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet NO.: 20220413 Page : 1/12

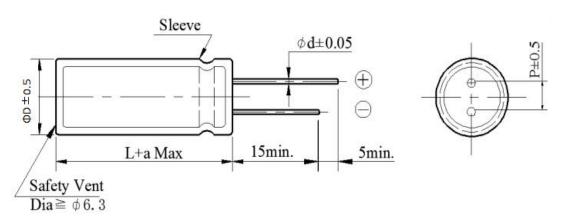
Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2022.04.13	First issue	First issue	董桂茹

Sheet NO.: 20220413	Page : 2/12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

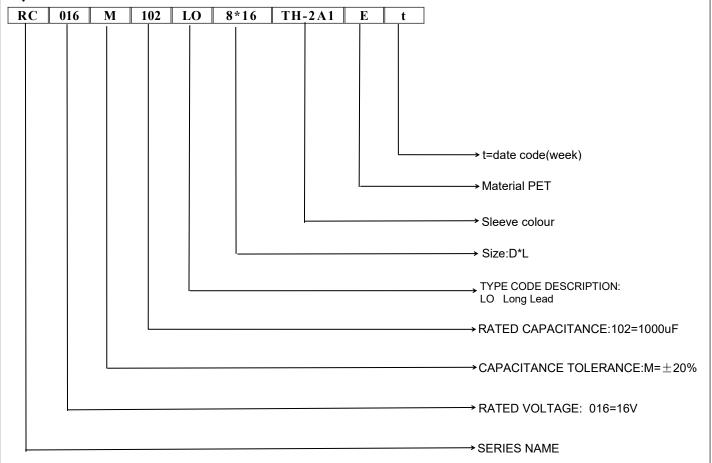

2. Table of specification and characteristics

Series	Cap(uF) 120Hz/20°C	WV(V)	Size	(mm)	_		Temperature (°C)		-		-		Temperature Capacitance (°C) Capacitance	
	120112/20 C		D	L			Toterance	@105(°C)						
RC	1000	16	8	16	-40 ~+1	105	±20%	2000						
	%)(MAX) 0Hz/20°C	LC(μA)(1 2min/2		,)(MAX) Hz/25°C	1	C (mA rms) ()105°C/100KHz	Surge voltage(V)						
	≤16	≤16	0	≤(0.07		920	18						

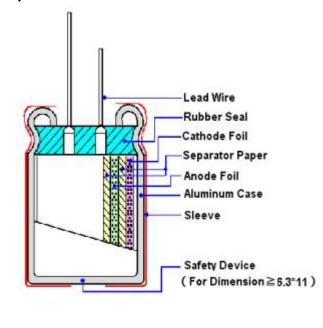
Other: /

3. Product Dimensions

Type



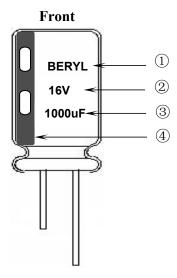
ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		

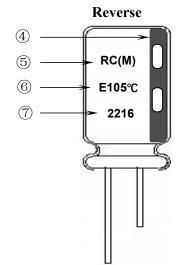

Sheet NO.: 20220413 Page: 3 / 12

4. Part Number

5. Construction

Material name	Composition	Supplier name	
Lead	Al and (Fe+Cu+Sn)	NM、JX	
Rubber	EPT / IIR	LHX、LA、TH、LM2	
Case	Aluminum	OX、YJ、HL、LY2	
Paper	Wood / Fibrous plant materials	KE、DF	
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ	
Cathode foil	Aluminum	GY、LY1	
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS	
Sleeve	PET	YL, CY	


Sheet NO.: 20220413 Page: 4/12


BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(16V)
- 3) Nominal capacitance(1000uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2216)

22: Manufactured year 2022

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

16: Manufactured week (01, 02, 03, 04......52, 53)

Sheet NO.: 20220413 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim450\mathrm{WV})$ -40°C to +105°C.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	 Condition> Connecting the capacitor with a protective resistor (1kΩ±10Ω) in series for 2 minutes, and then, measure leakage current. Criteria> I: Leakage current (μA) I (μA) ≤0.01CVor 3 (μA) whichever is greater, measurement circuit refer to right drawing. C: Capacitance (μF) V: Rated DC working voltage (V)
3	Dissipation factor	Condition> Nominal capacitance, for measuring frequency, voltage and temperature. Criteria> Must be within the parameters (See page 3)

Sheet NO.: 20220413 Page: 6 / 12

	ITEM			PER	FORM.	ANCE		PERFORMANCE							
4	Impedance	Measuring point: 2mm < Criteria >	100kHz; Measuring temperature:20±2°C max. from the surface of a sealing rubber on the lead wire. the parameters (See page 3)												
5	Load life test	<condition> According to IEC6038 Maximum operating te current for Rated life + exceed the rated work recovering time at atm <criteria> The characteristic shall Leakage current Capacitance Change Dissipation Factor Appearance</criteria></condition>	e ±2°C w.s. (The see) Then condition following more that in ±20% more that	ith DC bum of D the produs. The r g requir n the sp of initia	pias voltage ploc and ripple puct should be esult should nements.	lus the rated beak voltage tested after neet the follow d value.	ripple e shall not 16 hours								
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be from the test chamber and be allowed to stabilized at room temperature for16 hours. leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.					tors shall be removed								
7	Maximum permissible (ripple current, temperature coefficient)	applied at maximum ope Table-3	Itipliers: Greq (Hz) 120 1k 10k 100k 1000 0.60 0.80 0.96 1.00 Coefficient: Imperature (°C) 60 85 95 105												

Sheet NO.: 20220413 Page: 7/12

	ITEM	PERFORMANCE											
		Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for30+5-0 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° with 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.										er) for 90° within	
8	Terminal strength	Diameter of lead wire				sile	force force				force N (
	8	0.5	mm and le	ss			(0.51))		2.:	5 (0.25)		
		(0.6~0.8 mm		1	0 (1.02))		5	(0.51)		
		<criteria> No noticea</criteria>	able change	s shall b	e found	, no	brea	ıkage	or lo	osenes	s at the ter	rminal	
		<condition></condition>											-
		STEP	Testing t	emperat	ire (°C))				Time			
		1		20±2			Tim	e to 1	each	therma	al equilibr	ium	
		2 -40 -2			1		Tim	ne to reach thermal equilibrium				ium	
		3				Tim	e to 1	each	each thermal equilibrium				
		4				Tim	e to i	each	therma	al equilibr	ium		
		5 20±2 Time to reach thermal equilibrium						ium					
9	Temperature characteristics	a. At +105 Dissipat The lead b. In step 5 Dissipat The lead c. At- 40°C	°C, capacitation factor stage currents, capacitantion factor stage currents, Impedants (1) (6.3) (6.3) (6.3)	ance mea hall be w t measur ce measu hall be w t shall no ce (Z) ra	sured a vithin thed shall ared at- vithin the t more tio shal	nt +2 ne li no +20 ne li tha	20°C mit of the mit of the of	shall of Iter e that hall be of Iter specificeed t	be w n 7.3 n 10 t e with n 7.3 ified v	ithin ± times of tin ±10 tin ±	of its speci 1% of its o	fied varigina	alue. I value.
10	Surge test	series for 30± 1000 times. T before measur CR: Nomina <criteria> Leakage cu Capacitance Dissipation Appearance Attention:</criteria>	5 seconds in then the cap rement all Capacitar arrent e Change a Factor e	n every 5 acitors s nce (μF) No No Th er voltag	e±0.5 m hall be ot more ithin ± ot more here sha	tha 15% tha	n the	spec spec nitial spec leaka	ified value ified ge of	value. value.	lure shall l y for 1-2 l	be repo	Ω) resistor in eated

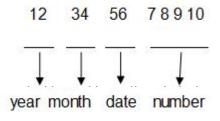
Sheet NO.: 20220413 Page: 8 / 12

	ITEM	PERFORMANCE								
		<condition> Temperature cycle: According to IEC60384-4 Naccording as below:</condition>	No.4.7 methods, capacito	r shall be placed in an oven, the condition						
			emperature	Time						
		(1) +20°C		3 Minutes						
	Change of	(2) Rated low tempera	ature (- 40°C) (-25°C)	30±2 Minutes						
11	temperature test	(3) Rated high temper	rature (+105°C)	30±2 Minutes						
		(1) to (3) =1 cycle, tot	al 5 cycle							
		Criteria> The characteristic shall mee	t the following requirem	ent.						
		Leakage current	Not more than the s	specified value.						
		Dissipation Factor	Not more than the s	specified value.						
		Appearance	There shall be no le	akage of electrolyte.						
12	Damp heat test	be exposed for 500±8 hours	ording to IEC60384-4 No.4.12 methods, capacitor shall exposed for 500±8 hours in an atmosphere of 90~95%R H 2°C, the characteristic change shall meet the following requia> Leakage current Not more than the specified value.							
			Within ±10% of initia	of the specified value.						
		Dissipation Factor Appearance	There shall be no lead							
Condition> The capacitor shall be tested under the follow Soldering temperature : 245 ±5°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria>				nditions:						
		Soldering wetting tim Coating quality		% of the surface being						

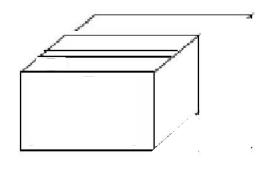
Sheet NO.: 20220413 Page: 9 / 12

ITEM		PERFORMANCE				
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°				
		<criteria> To be soldered</criteria>				
		After the test, the following items shall be tested:				
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.				
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.				
15	Resistance to solder heat test	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 -0 seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>				
		Leakage current Not more than the specified value.				
		Capacitance Change Within ±5% of initial value.				
		Dissipation Factor Not more than the specified value.				
		Appearance There shall be no leakage of electrolyte.				
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>				
16	test	Diameter (mm) DC Current (A)				
		22.4 or less 1				
		<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>				

Sheet NO.: 20220413 Page: 10 / 12

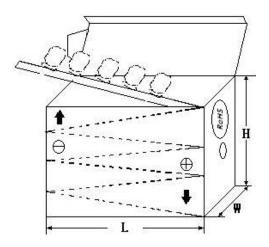


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

C.S.R:				- 110 115
C.S.R P/C):	ROHS HE		
C.S.R P/N	l:			
S.P.R P/N	l:	QC		
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet NO.: 20220413 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	Cadmium and cadmium compounds					
Accord with	Lead and lead compounds					
heavy metal	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Organia ablaria	Polychlorinated naphthalenes (PCN)					
Organic chlorin	Polychlorinated terphenyls (PCT)					
compounds	Chlorinated paraffins (CP)					
	Other chlorinated organic compounds					
Organic	Polybrominated biphenyls (PBB)					
bromine	Polybrominated diphenylethers (PBDE)					
compounds	Other brominated organic compounds					
Tributyltin compounds						
Triphenyltin compounds						
Asbestos						
Specific azo compounds						
Formaldehyde						
Polyvinyl chloride (PVC) and PVC blends						
F、Cl、Br、I						
REACH						

Sheet NO.: 20220413 Page: 12 / 12