

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch

FUNCTIONAL BLOCK DIAGRAM

ADG3247

BO

R7

B8

B15

FEATURES

225 ps Propagation Delay through the Switch 4.5 Ω Switch Connection between Ports Data Rate 1.244 Gbps 2.5 V/3.3 V Supply Operation Selectable Level Shifting/Translation Small Signal Bandwidth 610 MHz Level Translation 3.3 V to 2.5 V 3.3 V to 1.8 V 2.5 V to 1.8 V

38-Lead TSSOP Package

APPLICATIONS

3.3 V to 1.8 V Voltage Translation 3.3 V to 2.5 V Voltage Translation 2.5 V to 1.8 V Voltage Translation Bus Switching Bus Isolation Hot Plug Hot Swap Analog Switching Applications

GENERAL DESCRIPTION

The ADG3247 is a 2.5 V or 3.3 V 16-bit, 2-port digital switch. It is designed on Analog Devices' low voltage CMOS process, which provides low power dissipation yet gives high switching speed and very low on resistance, allowing inputs to be connected to outputs without additional propagation delay or generating additional ground bounce noise.

The ADG3247 is organized as dual 8-bit bus switches with separate bus enable (\overline{BEx}) inputs. This allows the device to be used as two 8-bit digital switches or one 16-bit bus switch. These bus switches allow signals to be switched when ON. In the OFF condition, signal levels up to the supplies are blocked.

This device is ideal for applications requiring level translation. When operated from a 3.3 V supply, level translation from 3.3 V inputs to 2.5 V outputs occurs. Similarly, if the device is operated from a 2.5 V supply and 2.5 V inputs are applied, the device will translate the outputs to 1.8 V. In addition to this, the ADG3247 has a level translating select pin (SEL). When SEL is low, V_{CC} is reduced internally, allowing for level translation between 3.3 V inputs and 1.8 V outputs. This makes the device suited to applications requiring level translation between different supplies, such as converter to DSP/microcontroller interfacing.

PRODUCT HIGHLIGHTS

1. 3.3 V or 2.5 V supply operation

A0

Δ7

BE1

Δ15

- 2. Extremely low propagation delay through switch
- 3. 4.5 Ω switches connect inputs to outputs
- 4. Level/voltage translation
- 5. 38-lead TSSOP package

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Conditions	Min	B Version Typ ²	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DC ELECTRICAL CHARACTERISTICS						
		VINH	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0			v
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1						V
	Input Low Voltage					0.8	v
	mp at 2000 Contage						v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Leakage Current				+0.01		μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	$0 \le A B \le V_{\text{pro}}$				μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6			2.0			V
$ \begin{array}{ c c c c c c c c } \hline V_A V_B = V_{CC} = 3.3 \text{ V}, \ \overline{\text{SEL}} = 0 \text{ V}, \ I_O = -5 \mu\text{A} & 1.5 & 1.8 & 2.1 \\ \hline \text{CAPACITANCE}^3 & & & & & & & & & & & & & & & & & & &$	Wiaxinfulli I ass Voltage	• P					v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							v
A Port Off Capacitance $C_A OFF \\ C_B OFF \\ f = 1 MHzf = 1 MHz \\ f = 1 MHz5 \\ 5 \\ 5 \\ c_{Ab} C_B OK \\ f = 1 MHz5 \\ 5 \\ c_{b} CF \\ c_{b} OFF \\ f = 1 MHz5 \\ 1 MHz \\ 10 \\ c_{control Input Capacitance5 \\ 5 \\ c_{ab} C_B OK \\ f = 1 MHz \\ c_{control Input Capacitance5 \\ c_{b} C_B OFF \\ c_{b} C_B OK \\ f = 1 MHz \\ c_{control Input Capacitance5 \\ c_{control Input Capacitance \\ c_{b} C_{b} OFF \\ c_{control Input Capacitance \\ c_{control Input Cap$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C ₂ OFF	f = 1 MHz		5		pF
A, B Port On Capacitance Control Input Capacitance $C_A, C_B ON$ C_{IN} $f = 1 \text{ MHz}$ 10SWITCHING CHARACTERISTICS3 Propagation Delay Ato B or B to A, t_{PD}^{-4} 							pF
$ \begin{array}{c c} \mbox{Control Input Capacitance} & C_{IN} & f = 1 \mbox{ MHz} & 6 \\ \hline \\ \hline \\ SWITCHING CHARACTERISTICS^3 \\ Propagation Delay A to B or B to A, tpp^4 \\ Propagation Delay Matching^5 \\ Bus Disable Time BEx to A or B^6 \\ tpztb tpzL \\ Bus Disable Time BEx to A or B^6 \\ tpzzb tpzL \\ Bus Disable Time BEx to A or B^6 \\ tpzzb tpzL \\ Bus Disable Time BEx to A or B^6 \\ tpzzb tpzL \\ Bus Disable Time BEx to A or B^6 \\ tpzzb tpzL \\ tpzzb tpzL \\ V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}; \\ SEL = 0 \mbox{ V to } 3.6 \mbox{ V}; \\ SEL = 0 \mbox{ V to } 0.5 \\ 2.2 \mbox{ 3.8 \mbox{ 3.6 \mbox{ V}; } \\ SEL = 0 \mbox{ V to } 0.5 \\ 0.5 \mbox{ 2.2 \mbox{ 3.8 \mbox{ 3.6 \mbox{ V}; } \\ SEL = 0 \mbox{ V to } 0.5 \\ 0.5 \mbox{ 2.2 \mbox{ 3.8 \mbox{ 3.8 \mbox{ 3.8 \mbox{ 3.6 \mbox{ V}; } } \\ V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}; \\ SEL = 0 \mbox{ V to } 0.5 \\ 0.5 \mbox{ 2.2 \mbox{ 3.8 \mbox{ 3.8 \mbox{ 3.6 \mbox{ V}; } \\ SU = 0 \mbox{ V to } 0.5 \\ 0.5 2.2 \mbox{ 3.8 $							pF
SWITCHING CHARACTERISTICS3 Propagation Delay A to B or B to A, t_{PD}^4 $t_{PHL, t_{PLL}} t_{PLL}$ $C_L = 50 \text{ pF}, V_{CC} = \overline{SEL} = 3 \text{ V}$ 0.225 22.5Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZ, t_{PLZ}}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; \overline{SEL} = V_{CC}$ 13.24.8Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZ, t_{PLZ}}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.52.23.3Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZ, t_{PLZ}}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.51.72.9Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZ, t_{PZL}}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.51.72.9Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZ, t_{PZL}}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.51.72.9Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZ, t_{PZL}}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}; \overline{SEL} = V_{CC}$ 0.51.244Channel Jitter $V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 10DIGITAL SWITCH $N_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 1118 $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 59 $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 58 $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 1118 $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 0.65							pF
Propagation Delay A to B or B to A, t_{PD}^4 $t_{PHLs} t_{PLH}$ $C_L = 50 \text{ pF}, V_{CC} = \overline{SEL} = 3 \text{ V}$ 0.225Propagation Delay Matching ⁵ $t_{PHLs} t_{PLH}$ $V_{CC} = 3.0 \text{ V}$ to $3.6 \text{ V}; \overline{SEL} = V_{CC}$ 1 3.2 4.8 Bus Enable Time BEx to A or B ⁶ $t_{PHZs} t_{PLZ}$ $V_{CC} = 3.0 \text{ V}$ to $3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.5 2.2 3.3 Bus Enable Time BEx to A or B ⁶ $t_{PHZs} t_{PLZ}$ $V_{CC} = 3.0 \text{ V}$ to $3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.5 2.2 3.3 Bus Enable Time BEx to A or B ⁶ $t_{PHZs} t_{PLZ}$ $V_{CC} = 3.0 \text{ V}$ to $3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ 0.5 1.7 2.9 Bus Enable Time BEx to A or B ⁶ $t_{PHZs} t_{PLZ}$ $V_{CC} = 2.3 \text{ V}$ to $2.7 \text{ V}; \overline{SEL} = V_{CC}$ 0.5 1.7 2.9 Bus Disable Time BEx to A or B ⁶ $t_{PHZs} t_{PLZ}$ $V_{CC} = 2.3 \text{ V}$ to $2.7 \text{ V}; \overline{SEL} = V_{CC}$ 0.5 1.7 2.9 Maximum Data Rate $V_{CC} = 3.0 \text{ V}; 0.7 \text{ V}; \overline{SEL} = V_{CC}$ 0.5 1.244 0.5 0.5 1.244 Operating Frequency—Bus Enable f_{BEx} $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 15 28 On Resistance R_{ON} $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 11 18 $V_{CC} = 3.0 \text{ V}; \overline{SEL} = 0 \text{ V}; V_A = 10, I_{BA} = 8 \text{ mA}$ 10 10 DIGITAL SWITCH R_{ON} $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 15 8 <tr< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td>PI</td></tr<>					0		PI
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$C = 50 \times E M = \overline{SEL} = 2M$			0.005	
Bus Enable Time \overline{BEx} to A or B ⁶ t_{PZH} , t_{PZL} $V_{CC} = 3.0 V$ to $3.6 V$; $\overline{SEL} = V_{CC}$ 1 3.2 4.8 Bus Disable Time \overline{BEx} to A or B ⁶ t_{PHZ} , t_{PZL} $V_{CC} = 3.0 V$ to $3.6 V$; $\overline{SEL} = V_{CC}$ 1 3.2 4.8 Bus Disable Time \overline{BEx} to A or B ⁶ t_{PHZ} , t_{PZL} $V_{CC} = 3.0 V$ to $3.6 V$; $\overline{SEL} = 0 V$ 0.5 2.2 3.3 Bus Disable Time \overline{BEx} to A or B ⁶ t_{PHZ} , t_{PZL} $V_{CC} = 3.0 V$ to $3.6 V$; $\overline{SEL} = 0 V$ 0.5 1.7 2.9 Bus Disable Time \overline{BEx} to A or B ⁶ t_{PHZ} , t_{PZL} $V_{CC} = 3.0 V$ to $3.6 V$; $\overline{SEL} = 0 V$ 0.5 1.7 2.9 Bus Disable Time \overline{BEx} to A or B ⁶ t_{PHZ} , t_{PZL} $V_{CC} = 3.0 V$ to $3.6 V$; $\overline{SEL} = 0 V$ 0.5 1.7 2.9 Maximum Data Rate t_{PHZ} , t_{PZL} $V_{CC} = 3.0 V$ to $2.7 V$; $\overline{SEL} = V_{CC}$ 0.5 $1.7 2.9$ Operating Frequency—Bus Enable f_{EEx} $V_{CC} = 3.3 V$; $V_A/V_B = 2 V$ 0.5 $1.7 2.9$ On Resistance R_{ON} $V_{CC} = 3V$, $\overline{SEL} = V_{CC}$, $V_A = 0 V$, $I_{BA} = 8$ mA 1.244 $V_{CC} = 3 V$, $\overline{SEL} = 3.3 V$; $V_A/V_B = 2 V$ 1.244 $V_{CC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 0 V$, $I_{BA} = 8$ mA 15 On Resistance Matching A_{OO} $A_{OC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 1.7 V$, $I_{BA} = 8$ mA 11 18 $V_{CC} = 3 V$, $\overline{SEL} = 0$, $V_A = 0$, $V_{AB} = 8$ mA 11 18 $V_{CC} = 3 V$, $\overline{SEL} = 0$, $V_A = 0$, $V_{AB} = 8$ mA 11 18 On Re		τ _{PHL} , τ _{PLH}	$C_L = 50 \text{ pF}, V_{CC} = SEL = 5 \text{ V}$				ns
Bus Disable Time \overline{BEx} to A or B ⁶ $t_{HZS} t_{PZL}$ $V_{CC} = 3.0 V to 3.6 V; \overline{SEL} = V_{CC}$ 13.24.8Bus Enable Time \overline{BEx} to A or B ⁶ $t_{PHZS} t_{PZL}$ $V_{CC} = 3.0 V to 3.6 V; \overline{SEL} = 0 V$ 0.52.23.3Bus Disable Time \overline{BEx} to A or B ⁶ $t_{PHZS} t_{PZL}$ $V_{CC} = 3.0 V to 3.6 V; \overline{SEL} = 0 V$ 0.52.23.3Bus Disable Time \overline{BEx} to A or B ⁶ $t_{PHZS} t_{PZL}$ $v_{CC} = 3.0 V to 2.7 V; \overline{SEL} = V_{CC}$ 0.52.23Maximum Data Rate $t_{PHZS} t_{PZL}$ $v_{CC} = 2.3 V to 2.7 V; \overline{SEL} = V_{CC}$ 0.51.752.6Channel Jitter $v_{CC} = 3.0 V; v_{A} V_{B} = 2 V$ $v_{CC} = 3.3 V; v_{A} V_{B} = 2 V$ 0.51.244Operating Frequency—Bus Enable $f_{\overline{BEx}}$ 10DIGITAL SWITCH $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 1528 $v_{CC} = 2.3 V; \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 1528 $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 1118 $v_{CC} = 3 V, \overline{SEL} = 0, V, V_A = 0, V, I_{BA} = 8 mA$ 1118 $v_{CC} = 3 V, \overline{SEL} = 0, V, V_A = 0, V, I_{BA} = 8 mA$ 1414 $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 0.45 $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 0.45 $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 0.45 $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 0.45 $v_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0, V, I_{BA} = 8 mA$ 0.45 $v_{CC} = 3 V, \overline{SEL} = V_{CC}$							ps
Bus Enable Time \overline{BEx} to A or \mathbb{B}^6 Bus Disable Time \overline{BEx} to A or \mathbb{B}^6 Bus Enable Time \overline{BEx} to A or \mathbb{B}^6 Bus Enable Time \overline{BEx} to A or \mathbb{B}^6 Bus Disable Time \overline{BEx} to A or \mathbb{B}^6 Bus Disable Time \overline{BEx} to A or \mathbb{B}^6 Harmonic Time \overline{BEx} to A or \mathbb{B}^6 Bus Disable Time \overline{BEx} to A or \mathbb{B}^6 Maximum Data Rate Channel Jitter Operating Frequency—Bus Enable $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; \overline{SEL} = 0 \text{ V}$ $V_{CC} = 3.0 \text{ V to } 2.7 \text{ V}; \overline{SEL} = V_{CC}$ $V_{CC} = 3.0 \text{ V to } 2.7 \text{ V}; \overline{SEL} = V_{CC}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}; \overline{SEL} = V_{CC}$ $V_{CC} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$ $V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$ $V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$ $V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = 0 \text{ V}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = 0 \text{ V}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = 0 \text{ V}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$ $V_{CC} = 3 \text{ V}; \overline{SEL} = V_{CC}, V_$							ns
Bus Disable Time \overline{BEx} to A or B6 Bus Enable Time \overline{BEx} to A or B6 Bus Disable Time \overline{BEx} to A or B6 Bus Disable Time \overline{BEx} to A or B6 Maximum Data Rate Channel Jitter Operating Frequency—Bus Enable $V_{CC} = 3.0 V to 3.6 V; \overline{SEL} = 0 V$ $V_{CC} = 2.3 V to 2.7 V; \overline{SEL} = V_{CC}$ $V_{CC} = 2.3 V to 2.7 V; \overline{SEL} = V_{CC}$ $V_{CC} = 3.3 V; V_A/V_B = 2 V$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ 10DIGITAL SWITCH On ResistanceRoN $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3.0 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3.0 V; \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3.0 V; \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3.0 V; \overline{SEL} = 0, V_{VA} = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3$							ns
Bus Enable Time \overline{BEx} to A or B ⁶ There \overline{PZL} $V_{CC} = 2.3 V \text{ to } 2.7 V; \overline{SEL} = V_{CC}$ 0.5 2.2 3 Bus Disable Time \overline{BEx} to A or B ⁶ t_{PHZ} , t_{PLZ} $V_{CC} = 2.3 V \text{ to } 2.7 V; \overline{SEL} = V_{CC}$ 0.5 1.75 2.6 Maximum Data Rate Channel Jitter Operating Frequency—Bus Enable $f_{\overline{BEx}}$ $V_{CC} = 2.3 V \text{ to } 2.7 V; \overline{SEL} = V_{CC}$ 0.5 1.244 DIGITAL SWITCH On Resistance $f_{\overline{BEx}}$ $V_{CC} = 3 V, \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ 10 DIGITAL SWITCH On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 4.5 8 $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 15 28 $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 5 9 $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ 11 18 $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ 14 0.45 On Resistance Matching ΔR_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 0.45 $Ouicscent Power Supply Current$ I_{CC} $Digital$ Inputs $= 0 V$ or $V_{CC}; \overline{SEL} = V_{CC}$ 2.3 $Ouicscent Power Supply Current$ I_{CC} $Digital$ Inputs $= 0 V$ or $V_{CC}; \overline{SEL} = V_{CC}$ 2.3		t _{PZH} , t _{PZL}					ns
Bus Disable Time \overline{BEx} to A or B ⁶ Maximum Data Rate Channel Jitter Operating Frequency—Bus Enable t_{PHZ}, t_{PLZ} t_{PEX} $V_{CC} = 2.3 V to 2.7 V; \overline{SEL} = V_{CC}$ $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 VV_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 VV_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V0.51.752.61.244DIGITAL SWITCHOn ResistanceR_{ON}V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mAV_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA0.450.65POWER REQUIREMENTSV_{CC}Quiescent Power Supply CurrentI_{CC}Digital Inputs = 0 V or V_{CC}; \overline{SEL} = V_{CC}2.33.60.001$		t _{PHZ} , t _{PLZ}					ns
Maximum Data Rate Channel Jitter Operating Frequency—Bus Enable $V_{CC} = \overline{SEL} = 3.3 V; V_A/V_B = 2 V$ 1.244 50DIGITAL SWITCH On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $4.5 8$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $4.5 8$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $11 18$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $11 18$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ 14 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.65 POWER REQUIREMENTS V_{CC} $U_{CC} = 3 V, \overline{SEL} = V_{CC}$ $2.3 $ 3.6 V_{CC} $U_{UESCENT}$ Power Supply Current I_{CC} D_{UE} Inputs = $0 V \text{ or } V_{CC}$ $2.3 $ 3.6		t _{PZH} , t _{PZL}		0.5	2.2	3	ns
Channel Jitter Operating Frequency—Bus Enable $V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$ 50DIGITAL SWITCH On Resistance R_{ON} $V_{CC} = 3 \text{ V}, \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 4.58 $V_{CC} = 3 \text{ V}, \overline{SEL} = V_{CC}, V_A = 1.7 \text{ V}, I_{BA} = 8 \text{ mA}$ 1528 $V_{CC} = 2.3 \text{ V}, \overline{SEL} = V_{CC}, V_A = 1.7 \text{ V}, I_{BA} = 8 \text{ mA}$ 59 $V_{CC} = 2.3 \text{ V}, \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 1118 $V_{CC} = 3 \text{ V}, \overline{SEL} = 0 \text{ V}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 58 $V_{CC} = 3 \text{ V}, \overline{SEL} = 0 \text{ V}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 1414 $V_{CC} = 3 \text{ V}, \overline{SEL} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA}$ 0.450.65POWER REQUIREMENTS $V_{CC} = 3 \text{ V}, \overline{SEL} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$ 0.652.3 V_{CC} Quiescent Power Supply Current I_{CC} Digital Inputs = 0 \text{ V or } V_{CC}; \overline{SEL} = V_{CC}2.33.6		t _{PHZ} , t _{PLZ}		0.5		2.6	ns
Operating Frequency—Bus Enable $f_{\overline{BEx}}$ 10DIGITAL SWITCH On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 0.45 0.65 POWER REQUIREMENTS V_{CC} Quiescent Power Supply CurrentI_{CC}Digital Inputs = 0 V or $V_{CC}; \overline{SEL} = V_{CC}$ 2.3 0.001 3.6 0.001	Maximum Data Rate		$V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$		1.244		Gbp
DIGITAL SWITCH On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1.7 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 POWER REQUIREMENTS V_{CC} Quiescent Power Supply CurrentIIIIccDigital Inputs = 0 V or $V_{CC}; \overline{SEL} = V_{CC}$ 2.33.6 0.001	Channel Jitter		$V_{CC} = \overline{SEL} = 3.3 \text{ V}; V_A/V_B = 2 \text{ V}$		50		ps p
On Resistance R_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 4.58 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1.7 V, I_{BA} = 8 mA$ 1528 $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 59 $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 1118 $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ 58 $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 mA$ 14 $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 1 V, I_{BA} = 8 mA$ 14 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.65POWER REQUIREMENTS V_{CC} Digital Inputs = 0 V or $V_{CC}; \overline{SEL} = V_{CC}$ 2.3 V_{CC} U_{CC} U_{CC} U_{CC}	Operating Frequency—Bus Enable	$f_{\overline{BEx}}$				10	MH
$V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1.7 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 2.3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 2.3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{BA} = 8 \text{ mA} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{A} = 1 V, I_{CC} $ $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_{CC} = V_{CC} $ $V_{CC} = 3 V, \overline{SEL} =$	DIGITAL SWITCH						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	On Resistance	R _{ON}	$V_{CC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 0 V$, $I_{BA} = 8 mA$		4.5	8	Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{CC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 1.7 V$, $I_{BA} = 8 mA$		15	28	Ω
$\begin{array}{c c} V_{CC} = 2.3 \text{ V}, \overline{\text{SEL}} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA} \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = 0 \text{ V}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA} \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = 0 \text{ V}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA} \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = 0 \text{ V}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA} \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA} \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA} \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = V_{CC}, V_A = 0 \text{ V}, I_{BA} = 8 \text{ mA} \\ 0.45 \\ V_{CC} = 3 \text{ V}, \overline{\text{SEL}} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA} \\ 0.65 \end{array}$					5	9	Ω
$\begin{array}{c c} On \ Resistance \ Matching \end{array} \begin{array}{c} V_{CC} = 3 \ V, \ \overline{SEL} = 0 \ V, \ V_A = 0 \ V, \ I_{BA} = 8 \ mA \\ V_{CC} = 3 \ V, \ \overline{SEL} = 0 \ V, \ V_A = 1 \ V, \ I_{BA} = 8 \ mA \\ V_{CC} = 3 \ V, \ \overline{SEL} = V_{CC}, \ V_A = 1 \ V, \ I_{BA} = 8 \ mA \\ V_{CC} = 3 \ V, \ \overline{SEL} = V_{CC}, \ V_A = 1 \ V, \ I_{BA} = 8 \ mA \\ 0.45 \\ V_{CC} = 3 \ V, \ \overline{SEL} = V_{CC}, \ V_A = 1 \ V, \ I_{BA} = 8 \ mA \\ 0.65 \end{array}$			$V_{CC} = 2.3 \text{ V}, \overline{\text{SEL}} = V_{CC}, V_A = 1 \text{ V}, I_{BA} = 8 \text{ mA}$		11	18	Ω
On Resistance Matching ΔR_{ON} $V_{CC} = 3 V, \overline{SEL} = 0 V, V_A = 1 V, I_{BA} = 8 mA$ 14 ΔR_{ON} $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 0 V, I_{BA} = 8 mA$ 0.45 $V_{CC} = 3 V, \overline{SEL} = V_{CC}, V_A = 1 V, I_{BA} = 8 mA$ 0.65POWER REQUIREMENTS V_{CC} Digital Inputs = 0 V or $V_{CC}; \overline{SEL} = V_{CC}$ 2.3 V_{CC} O_{CC} O_{CC} O_{CC}							Ω
On Resistance Matching ΔR_{ON} $V_{CC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 0 V$, $I_{BA} = 8 mA$ 0.45OWER REQUIREMENTS $V_{CC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 1 V$, $I_{BA} = 8 mA$ 0.65POWER REQUIREMENTS V_{CC} Digital Inputs = 0 V or V_{CC} ; $\overline{SEL} = V_{CC}$ 2.33.60.001 1						-	Ω
$V_{CC} = 3 V$, $\overline{SEL} = V_{CC}$, $V_A = 1 V$, $I_{BA} = 8 mA$ 0.65POWER REQUIREMENTS V_{CC} Quiescent Power Supply Current I_{CC} Digital Inputs = 0 V or V_{CC} ; $\overline{SEL} = V_{CC}$ 2.33.60.001 1	On Resistance Matching	ARoy					Ω
V_{CC} Quiescent Power Supply Current I_{CC} Digital Inputs = 0 V or V_{CC} ; $\overline{SEL} = V_{CC}$ 2.33.60.0011		DAR ON					Ω
V_{CC} Quiescent Power Supply Current I_{CC} Digital Inputs = 0 V or V_{CC} ; $\overline{SEL} = V_{CC}$ 2.33.60.0011	POWER REOUIREMENTS						
Quiescent Power Supply Current I_{CC} Digital Inputs = 0 V or V_{CC} ; $\overline{SEL} = V_{CC}$ 0.0011				2.3		3.6	V
		Lac	Digital Inputs = 0 V or V_{aa} : $\overline{SEI} = V_{aa}$	1.5	0.001		μA
$ 1_{CC} Digital inputs - 0 v of v_{CC}, 5EL - 0 v 0.00 1.2 $	Zulescent i ower Supply Suffert						mA
	Increase in L ner Innut ⁷				0.05	1.4	III.A
Increase in I_{CC} per Input ⁷ $\Delta I_{CC} \qquad \frac{V_{CC} = 3.6 \text{ V}, \overline{BE}_1 = 3.0 \text{ V};}{\overline{BE}_2 = V_{CC} \text{ or GND}; \overline{SEL} = V_{CC}}$ 85	merease in i _{CC} per mput	DTCC	$\frac{\mathbf{v}_{CC} - \mathbf{v}_{O}}{\mathbf{PE}} = \mathbf{V}$			95	μA

NOTES

¹Temperature range is as follows: B Version: -40 °C to +85 °C.

²Typical values are at 25°C, unless otherwise stated.

³Guaranteed by design, not subject to production test.

⁴The digital switch contributes no propagation delay other than the RC delay of the typical R_{ON} of the switch and the load capacitance when driven by an ideal voltage source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side. ⁵Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.

⁶See Timing Measurement Information section.

⁷This current applies to the control pins ($\overline{\text{BEx}}$) only. The A and B ports contribute no significant ac or dc currents as they transition.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

($T_A = 25^{\circ}C$, unless otherwise noted.)

V_{CC} to GND $\hfill \hfill \ldots \hfill \hf$
Digital Inputs to GND
DC Input Voltage
DC Output Current 25 mA per channel
Operating Temperature Range
Industrial (B Version)
Storage Temperature Range65°C to +150°C
Junction Temperature 150°C

TSSOP Package

θ_{IA} Thermal Impedance	98°C/W
Lead Temperature, Soldering (10 seconds)	. 300°C
IR Reflow, Peak Temperature (<20 seconds)	. 235°C

*Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ORDERING GUIDE

	Temperature		
Model ¹	Range	Package Description	Package Option
ADG3247BRUZ	-40°C to +85°C	38-Lead Thin Shrink Small Outline Package [TSSOP]	RU-38
ADG3247BRUZ-REEL7	–40°C to +85°C	38-Lead Thin Shrink Small Outline Package [TSSOP]	RU-38

¹ Z = RoHS Compliant Part.

Table I. Pin Description

Description
Bus Enable (Active Low) Level Translation Select
Level Translation Select
Port A, Inputs or Outputs
Port A, Inputs or Outputs Port B, Inputs or Outputs

Table II. Truth Table

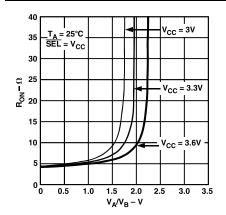
BEx	SEL *	Function
L	L	A = B, 3.3 V to 1.8 V Level Shifting
L	Η	A = B, 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting
Н	Х	Disconnect

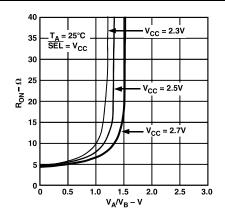
* \overline{SEL} = 0 only when V_{DD} = 3.3 V \pm 10%

PIN CONFIGURATION 38-Lead TSSOP

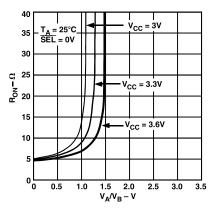
		-	
SEL 1	•	38	v _{cc}
A0 2		37	BE2
A1 3		36	BE1
A2 4	ADG3247	35	В0
A3 5	TOP VIEW (Not to Scale)	34	B1
A4 6	1	33	B2
A5 7		32	B3
A6 8		31	B4
A7 9		30	B5
A8 10		29	B6
A9 11		28	B7
A10 12		27	B8
A11 13		26	B9
A12 14		25	B10
A13 15		24	B11
A14 16		23	B12
A15 17		22	B13
GND 18		21	B14
NC 19		20	B15
NC = N0	CONNECT	-	

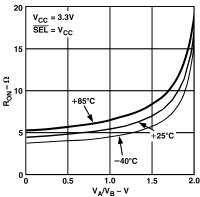
CAUTION .

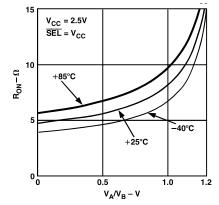

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG3247 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

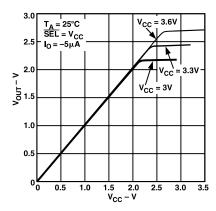

TERMINOLOGY

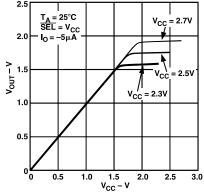
V _{CC}	Positive Power Supply Voltage.
GND	Ground (0 V) Reference.
V _{INH}	Minimum Input Voltage for Logic 1.
V _{INL}	Maximum Input Voltage for Logic 0.
I_{I}	Input Leakage Current at the Control Inputs.
I _{OZ}	OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.
I _{OL}	ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.
V_P	Maximum Pass Voltage. The maximum pass voltage relates to the clamped output voltage of an NMOS device when the switch input voltage is equal to the supply voltage.
R _{ON}	Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified amount of current through the switch.
ΔR_{ON}	On Resistance Match between Any Two Channels, i.e., R _{ON} Max – R _{ON} Min.
C _X OFF	OFF Switch Capacitance.
C _X ON	ON Switch Capacitance.
C _{IN}	Control Input Capacitance. This consists of BEx and SEL.
I _{CC}	Quiescent Power Supply Current. It is measured when all control inputs are at a logic HIGH or LOW level and the switches are OFF.
ΔI_{CC}	Extra power supply current component per each $\overline{\text{BEx}}$ control input when the Input is not driven at the supplies.
t _{PLH} , t _{PHL}	Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant $R_{ON} \times C_L$, where C_L is the load capacitance.
t _{PZH} , t _{PZL}	Bus Enable Times. These are the times taken to cross the V_T voltage at the switch output when the switch turns on in response to the control signal, \overline{BEx} .
t _{PHZ} , t _{PLZ}	Bus Disable Times. These are the times taken to place the switch in the high impedance OFF state in response to the control signal. They are measured as the time taken for the output voltage to change by V_{Δ} from the original quiescent level, with reference to the logic level transition at the control input. (Refer to Figure 3 for enable and disable times.)
Max Data Rate	Maximum Rate at which Data Can Be Passed through the Switch.
Channel Jitter	Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.
$f_{\overline{BEx}}$	Operating Frequency of Bus Enable. This is the maximum frequency at which bus enable (\overline{BEx}) can be toggled.

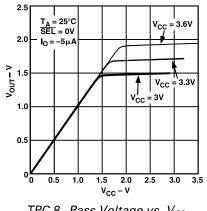

Typical Performance Characteristics-ADG3247

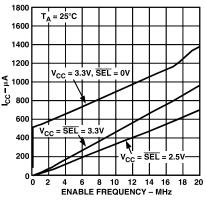

TPC 1. On Resistance vs. Input Voltage

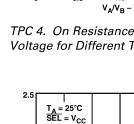

TPC 2. On Resistance vs. Input Voltage

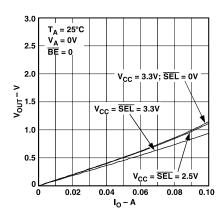

TPC 3. On Resistance vs. Input Voltage


TPC 4. On Resistance vs. Input Voltage for Different Temperatures

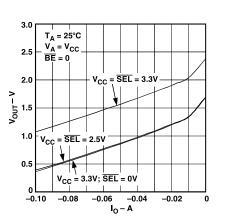

TPC 5. On Resistance vs. Input Voltage for Different Temperatures

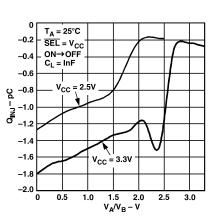

TPC 6. Pass Voltage vs. V_{CC}

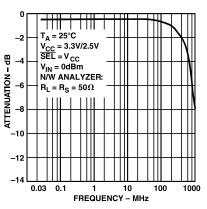

TPC 7. Pass Voltage vs. V_{CC}

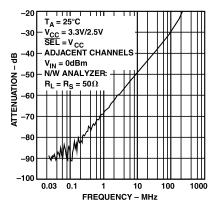


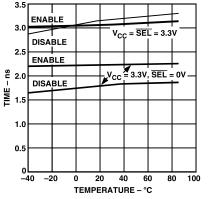
TPC 8. Pass Voltage vs. V_{CC}

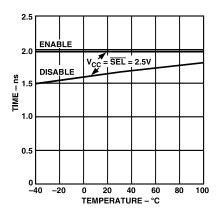


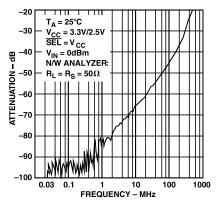


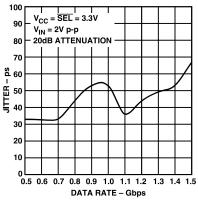

TPC 10. Output Low Characteristic

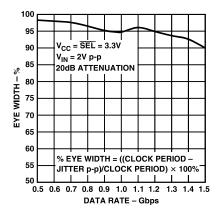

TPC 11. Output High Characteristic

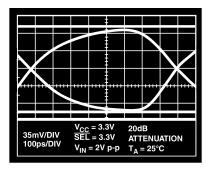

TPC 12. Charge Injection vs. Source Voltage

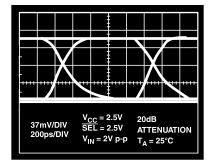

TPC 13. Bandwidth vs. Frequency


TPC 14. Crosstalk vs. Frequency


TPC 16. Enable/Disable Time vs. Temperature


TPC 17. Enable/Disable Time vs. Temperature

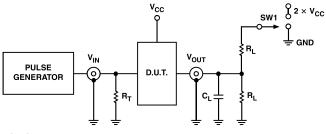

TPC 15. Off Isolation vs. Frequency


TPC 18. Jitter vs. Data Rate; PRBS 31

TPC 19. Eye Width vs. Data Rate; PRBS 31

TPC 20. Eye Pattern; 1.244 Gbps, V_{CC} = 3.3 V, PRBS 31

TPC 21. Eye Pattern; 1 Gbps, V_{CC} = 2.5 V, PRBS 31


						Î		
/								
						0dB		
	.1mV				A	TTEN		
- 50 T _A	ps/DI = 25	°C	Ī			<u>cc</u> = EL =		
					Γv	in = 2	2V p- I	p I

TPC 22. Jitter @ 1.244 Gbps, PRBS 31

TIMING MEASUREMENT INFORMATION

For the following load circuit and waveforms, the notation that is used is V_{IN} and V_{OUT} where

 $V_{IN} = V_A$ and $V_{OUT} = V_B$ or $V_{IN} = V_B$ and $V_{OUT} = V_A$

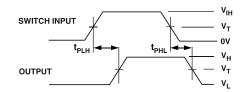


Figure 2. Propagation Delay

NOTES PULSE GENERATOR FOR ALL PULSES: $t_R^{} \leq$ 2.5ns, $t_F^{} \leq$ 2.5ns, FREQUENCY \leq 10MHz.

CL INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES

 R_T is the termination resistor, should be equal to z_{OUT} of the pulse generator.

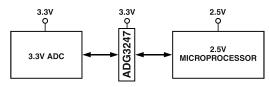
Figure 1. Load Circuit

Test Conditions

Symbol	V_{CC} = 3.3 V ± 0.3 V (SEL = V _{CC})	$V_{CC} = 2.5 V \pm 0.2 V (\overline{SEL} = V_{CC})$	$\mathbf{V}_{\rm CC} = 3.3 \mathrm{V} \pm 0.3 \mathrm{V} (\overline{\mathrm{SEL}} = 0 \mathrm{V})$	Unit
R _L	500	500	500	Ω
V_{Δ}^{-}	300	150	150	mV
C _L	50	30	30	pF
V _T	1.5	0.9	0.9	V

Figure 3. Enable and Disable Times

Table III. Switch Position


TEST	S 1
t _{PLZ} , t _{PZL}	$2 imes V_{CC}$
t _{PHZ} , t _{PZH}	GND

BUS SWITCH APPLICATIONS

Mixed Voltage Operation, Level Translation

Bus switches can be used to provide an ideal solution for interfacing between mixed voltage systems. The ADG3247 is suitable for applications where voltage translation from 3.3 V technology to a lower voltage technology is needed. This device can translate from 3.3 V to 1.8 V, from 2.5 V to 1.8 V, or from 3.3 V directly to 2.5 V.

Figure 4 shows a block diagram of a typical application in which a user needs to interface between a 3.3 V ADC and a 2.5 V microprocessor. The microprocessor may not have 3.3 V tolerant inputs; therefore placing the ADG3247 between the two devices allows the devices to communicate easily. The bus switch directly connects the two blocks, thus introducing minimal propagation delay, timing skew, or noise.

Figure 4. Level Translation between a 3.3 V ADC and a 2.5 V Microprocessor

3.3 V to 2.5 V Translation

When V_{CC} is 3.3 V (SEL = V_{CC}) and the input signal range is 0 V to V_{CC} , the maximum output signal will be clamped to within a voltage threshold below the V_{CC} supply.

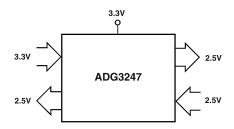
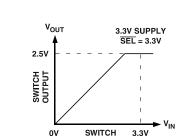
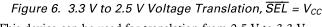




Figure 5. 3.3 V to 2.5 V Voltage Translation, $\overline{SEL} = V_{CC}$ In this case, the output will be limited to 2.5 V, as shown in

INPUT

This device can be used for translation from 2.5 V to 3.3 V devices and also between two 3.3 V devices.

2.5 V to 1.8 V Translation

When V_{CC} is 2.5 V (SEL = V_{CC}) and the input signal range is 0 V to V_{CC} , the maximum output signal will, as before, be clamped to within a voltage threshold below the V_{CC} supply.

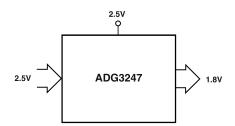


Figure 7. 2.5 V to 1.8 V Voltage Translation, $\overline{SEL} = V_{CC}$

In this case, the output will be limited to approximately 1.8 V, as shown in Figure 7.

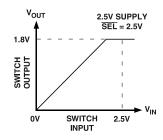


Figure 8. 2.5 V to 1.8 V Voltage Translation, $\overline{SEL} = V_{CC}$

3.3 V to 1.8 V Translation

The ADG3247 offers the option of interfacing between a 3.3 V device and a 1.8 V device. This is possible through use of the SEL pin.

 $\overline{\text{SEL}}$ pin: An active low control pin. $\overline{\text{SEL}}$ activates internal circuitry in the ADG3247 that allows voltage translation between 3.3 V devices and 1.8 V devices.

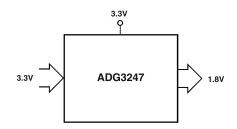


Figure 9. 3.3 V to 1.8 V Voltage Translation, $\overline{SEL} = 0$ V

When V_{CC} is 3.3 V and the input signal range is 0 V to V_{CC} , the maximum output signal will be clamped to 1.8 V, as shown in Figure 9. To do this, the SEL pin must be tied to Logic 0. If SEL is unused, it should be tied directly to V_{CC} .

Figure 6.

Figure 10. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V

Bus Isolation

A common requirement of bus architectures is low capacitance loading of the bus. Such systems require bus bridge devices that extend the number of loads on the bus without exceeding the specifications. Because the ADG3247 is designed specifically for applications that do not need drive yet require simple logic functions, it solves this requirement. The device isolates access to the bus, thus minimizing capacitance loading.

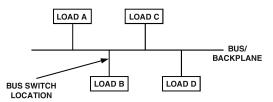


Figure 11. Location of Bus Switched in a Bus Isolation Application

Hot Plug and Hot Swap Isolation

The ADG3247 is suitable for hot swap and hot plug applications. The output signal of the ADG3247 is limited to a voltage that is below the V_{CC} supply, as shown in Figures 6, 8, and 10. Therefore the switch acts like a buffer to take the impact from hot insertion, protecting vital and expensive chipsets from damage.

In hot-plug applications, the system cannot be shutdown when new hardware is being added. To overcome this, a bus switch can be positioned on the backplane between the bus devices and the hot plug connectors. The bus switch is turned off during hot plug. Figure 12 shows a typical example of this type of application.

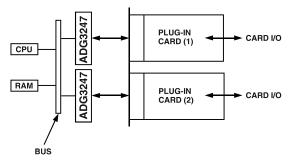


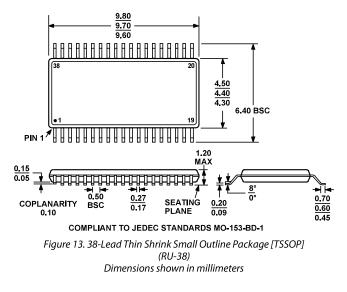
Figure 12. ADG3247 in a Hot Plug Application

There are many systems that require the ability to handle hot swapping, such as docking stations, PCI boards for servers, and line cards for telecommunications switches. If the bus can be isolated prior to insertion or removal, then there is more control over the hot swap event. This isolation can be achieved using a bus switch. The bus switches are positioned on the hot swap card between the connector and the devices. During hot swap, the ground pin of the hot swap card must connect to the ground pin of the back plane before any other signal or power pins.

Analog Switching

Bus switches can be used in many analog switching applications; for example, video graphics. Bus switches can have lower on resistance, smaller ON and OFF channel capacitance and thus improved frequency performance than their analog counterparts. The bus switch channel itself consisting solely of an NMOS switch limits the operating voltage (see TPC 1 for a typical plot), but in many cases, this does not present an issue.

High Impedance during Power-Up/Power-Down


To ensure the high impedance state during power-up or powerdown, BEx should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the currentsinking capability of the driver.

PACKAGE AND PINOUT

The ADG3247 is packaged in a small 38-lead TSSOP. The area of the TSSOP option is 62.7 mm^2 .

The ADG3247 in the TSSOP package offers a flowthrough pinout. The term flowthrough signifies that all the inputs are on opposite sides from the outputs. A flowthrough pinout simplifies the PCB layout.

OUTLINE DIMENSIONS

REVISION HISTORY

6/2019—Rev. A to Rev. B	
Deleted 40-Lead LFCSP	Universal
Changes to Ordering Guide	
Updated Outline Dimensions	

5/2017—Rev. 0 to Rev. A
Change to Mixed Voltage Operation, Level Translation
Section9
Updated Outline Dimensions

